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Abstract 

The deployment of imaging examinations has evolved into a robust approach for the diagnosis of lymph node 
metastasis (LNM). The advancement of technology, coupled with the introduction of innovative imaging drugs, 
has led to the incorporation of an increasingly diverse array of imaging techniques into clinical practice. Nonetheless, 
conventional methods of administering imaging agents persist in presenting certain drawbacks and side effects. The 
employment of controlled drug delivery systems (DDSs) as a conduit for transporting imaging agents offers a prom‑
ising solution to ameliorate these limitations intrinsic to metastatic lymph node (LN) imaging, thereby augmenting 
diagnostic precision. Within the scope of this review, we elucidate the historical context of LN imaging and encapsu‑
late the frequently employed DDSs in conjunction with a variety of imaging techniques, specifically for metastatic LN 
imaging. Moreover, we engage in a discourse on the conceptualization and practical application of fusing diagnosis 
and treatment by employing DDSs. Finally, we venture into prospective applications of DDSs in the realm of LNM 
imaging and share our perspective on the potential trajectory of DDS development.

Highlights 

1.	 The shortcomings inherent in traditional methods of administering imaging agents and the application of drug 
delivery systems (DDSs) across diverse imaging techniques are elucidated.

2.	 The pivotal role that  DDSs play in  specifically targeting metastatic lymph node (LN) imaging and  integrating 
the diagnosis and treatment of lymph node metastasis (LNM) is discussed.

3.	 The potential risks associated with the targeting of LNs using DDSs are detailed.
4.	 The prospects of utilizing DDSs in LNM imaging are explored, and insights are provided regarding the anticipated 

trajectory of DDSs’ future development.
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Introduction
Cancer stands as a paramount global public health con-
cern, assuming the second rank after cardiovascular 
disease in terms of mortality [1]. Lymphatic invasion 
and subsequent metastasis to lymph nodes (LNs), lead-
ing to the propagation to other regions of the body, is 
a predominant characteristic of cancer cells [2]. Lymph 
node metastasis (LNM) significantly contributes to 
cancer-related mortalities and forms a key determinant 
in assessing the survival and prognosis of patients [3, 
4]. The societal and healthcare burden attributable to 
cancer’s lymphatic metastasis is substantial, posing a 
serious threat to human health and survival.

LNs, as secondary lymphatic organs, have crucial roles 
in facilitating immune evasion by cancer cells and serve 
as primary routes for metastatic dissemination, espe-
cially in cancers such as breast, and head and neck cancer 
[5, 6]. LNM is indicative of a grim prognosis and func-
tions as a relay station and booster for distant metasta-
sis, thereby profoundly influencing survival time and life 
quality of patients. Moreover, LNM significantly impacts 
the TNM staging, guiding the treatment decision-making 
process which frequently involves surgical intervention 
for lymphatic metastasis [7].

Up to now, LN dissection remains one of the main 
methods for treating LNM. Although current diagnos-
tic techniques are multifarious, imaging examination 
still serves as the mainstay for diagnosing LNM. The 
development of LN dissection evolves with the renewal 
of treatment concepts and the advancement of basic 
theories. The determination of the surgical range often 
depends on the imaging diagnosis; thus, defective diag-
nostic performance may result in a poor prognosis, 
such as occult LNM [8]. Furthermore, the implemen-
tation of excessive surgical procedures may also result 
in many adverse outcomes, such as nerve damage, 
pneumothorax, chyle leak, lymphedema, etc., which 
further lead to physiological dysfunction, disability, 
appearance damage, and even death [9–14]. Therefore, 
improving diagnostic efficiency and accurately identi-
fying tumor LNM is critical for early cancer diagnosis 
and treatment, precise staging, and prognosis predic-
tion, ultimately contributing to the reduction of missed 
diagnoses and treatment side effects. This improve-
ment helps in identifying the presence of LNM, distant 
metastasis, and other complications. ultimately aiming 
to improve patient survival and quality of life [15].

Fig. 1  The chronological progression—past, present, and anticipated future—of lymph node (LN) imaging via the medium of drug delivery 
systems (DDSs). Created with BioRender.com
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Medical imaging has been instrumental in diagnos-
ing LNM. In the past, clinicians typically used X-rays 
to diagnose LNM. Currently, commonly used imaging 
techniques in the diagnosis of LNM include computed 
tomography (CT), magnetic resonance imaging (MRI), 
and ultrasound (US) imaging, among others (Fig.  1). 
Because the density difference between LNs and sur-
rounding tissues is low, the introduction of contrast 
agents can effectively improve LNs contrast, making 
the image easier to identify and increasing the diagnos-
tic performance. Contrast agents significantly enhance 
the visual differentiation of lymphoid tissue, bolster-
ing diagnostic capabilities. The combination of various 
imaging techniques and contrast agents can achieve 
accurate and minimally invasive visualization of LNM 
[16]. However, traditional contrast agent administration 
faces issues such as lack of targeting, brief fluid reten-
tion time, a single imaging modality, and limited detec-
tion points; some contrast agents may also produce 
renal and nerve toxicity [17, 18]. It has been reported 
that reversible acute renal failure may occur shortly 
after the injection of a radioactive contrast agent, pos-
sibly due to the direct induction of renal tubular epi-
thelial cell toxicity and renal medulla ischemia [17]. 
Moreover, the use of gadolinium-based contrast agents 
is closely related to renal systemic fibrosis and gado-
linium accumulation in the brain [19]. This evidence 
has the potential to influence the use of contrast agents 
in LNM imaging. Given the limitations of traditional 
administration methods and the importance of accu-
rate imaging in the diagnosis of LNM, it is urgent to 
propose new methods of imaging agent delivery.

Controlled drug delivery systems (DDSs) are spe-
cialized devices designed to precisely deliver drugs to 
targeted sites within the body. Composed of the drug 
(imaging agent), a targeting component, and a carrier, 
they form an interactive system capable of specifi-
cally delivering diagnostic agents to biological targets. 
Through modification, contrast agents can effectively 
avoid clearance by phagocytes and actively target 
specific sites in LNs. Some studies have shown that 
DDSs are highly retained in metastatic LNs due to the 
enhanced permeability and retention (EPR) effect. Lev-
eraging both active and passive targeting effects, these 
systems offer optimized delivery of imaging agents for 
superior diagnostic efficacy and biosafety, facilitated by 
accurate drug release sites, rates, and times, compared 
to traditional administration methods. Some DDSs also 
allow fluorescence imaging techniques to image longer 
wavelengths beyond the traditional near-infrared (NIR) 
region, effectively reducing molecular scattering and 
interference from endogenous substances [20]. Addi-
tionally, DDSs are ideal for combining two or more 

contrast agents to overcome the limitations of a single 
imaging modality. These characteristics enable DDSs 
to provide accurate diagnosis and guidance for subse-
quent treatment.

DDSs have emerged as promising new vehicles for the 
delivery of imaging agents, with researchers emphasizing 
the pivotal role of the carrier in the DDSs’ targeting abil-
ity. Present research primarily focuses on nanomaterial 
carriers such as nanoparticles (NPs), and microbubbles 
[21, 22], that endow controlled DDSs with unique adjust-
ability, surface effects, and size effects [23, 24]. Given the 
essential role of LNM localization in directing cancer 
staging and treatment outcomes, the amalgamation of 
DDSs with CT, MRI, and other imaging techniques for 
LNM imaging has drawn considerable attention [25–27]. 
DDSs exhibit properties that enable rapid clearance from 
the injection site, targeted transport facilitated by the 
targeting component [28], and evasion of the reticular 
endothelial system (RES) phagocytosis effect, leading to 
retention in LN [29, 30]. This enhances LN imaging accu-
racy, ensures precise metastasis localization, and reduces 
non-target accumulation and the dosage and toxicity of 
diagnostic drugs. The use of DDSs effectively mitigates 
the need for LN dissection, lowers postoperative recur-
rence rates and side effects [31], establishing DDSs as a 
promising avenue for metastatic LN imaging research.

In this review, we present an overview of the evolution 
of LN imaging, and outline the application of commonly 
used DDSs in conjunction with various imaging tech-
niques for LNM imaging (Fig. 1). Furthermore, we delve 
into the concept and implementation of integrated diag-
nosis and treatment using DDSs. Lastly, we discuss the 
potential of DDSs in LN imaging and present our insights 
into the future developmental trajectory of DDSs.

Brief history
The genesis of medical imaging can be traced back to 
1895 when Röntgen captured the world’s first X-ray 
image of a human hand [32]. This pioneering effort 
marked the birth of medical imaging and catalyzed its 
continuous evolution, significantly contributing to dis-
ease diagnosis and treatment. In 1915, Dewis and col-
leagues advocated for the use of imaging tests to aid in 
the diagnosis of LNM when conventional diagnostic 
means fell short, thus averting unnecessary explora-
tory surgeries [33]. This initiated a novel paradigm for 
diagnosing subsequent LNM. By 1938, Warren et  al., 
through their analysis of soft tissue sarcoma hospitali-
zation cases, discovered that 5–10% of sarcomas had 
LNM, emphasizing the critical role of LNs in human 
tumor metastasis [34].
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In 1971, the introduction of CT to clinical prac-
tice marked another milestone, further bolstered by 
Ambrose et  al.’s application of CT in clinical trials 
[35]. This development advanced digital radiographic 
technology and enriched the diagnostic capabilities 
for ensuing diseases [36]. By 1977, Mancuso and col-
leagues utilized CT to appraise the association between 
primary lesions of laryngeal cancer and LNM, provid-
ing a foundation for subsequent CT applications in 
LNM diagnosis [37]. A year later, Carter successfully 
employed lymphoscintigraphy (LSG) to analyze LNM 
in breast cancer patients, obtaining satisfactory imag-
ing results [38]. This feasibility study helped establish 
LSG as the gold standard for clinical lymph imaging 
[39].

In 1992, Husband et al. integrated MRI into the imag-
ing of LNM in bladder cancer, yielding enhanced contrast 
between LNs and blood vessels as compared to prior 
imaging techniques [40]. In 2004, indocyanine green 
(ICG), the first cyanine dye approved by the US Food 
and Drug Administration (FDA), was utilized for sentinel 
lymph node (SLN) detection in gastric cancer patients in 
combination with the NIR lymphography technique [41], 
affirming the utility of NIR lymphography in diagnosing 
LNM.

The evolution of DDSs was catalyzed in 1952 by the 
development of the first controlled release preparation by 
Smith and colleagues [42]. Subsequently, in 1976, Kreu-
ter introduced the concept of “nanoparticle” in medicine 
[43]. As effective carriers and imaging drugs, NPs have 
progressively found their place in DDSs. In 1984, Nefzger 

and colleagues discovered that NPs exhibited high reten-
tion in tissues such as LNs, liver, stomach, and bone mar-
row post-administration, foreshadowing the successful 
application of DDSs in LNM imaging [44].

In 1989, Pouliquen and colleagues engineered a super-
paramagnetic NP to function as a contrast agent for liver 
MRI, effectively amplifying hepatic contrast and thus 
promoting the application of DDSs in imaging [45]. In 
1994, Anzai et  al. pioneered the application of DDSs in 
imaging LNM in head and neck cancer patients, observ-
ing that benign LNs exhibited significantly lower signal 
intensity than metastatic LNs post-injection, aiding in 
their differentiation and accurate diagnosis [46]. In 2004, 
Kobayashi and colleagues employed DDSs for lymph 
imaging by MRI to visualize the drainage from mouse 
mammary tumors to lymphatic vessels and LNs. The 
lymphatic drainage visualization capability of DDSs out-
performed that of conventional administration methods, 
providing a clearer depiction of lymphatic drainage [47].

In 2009, Song and colleagues employed gold nanoclus-
ters-based DDSs as imaging agents for NIR lymphogra-
phy to map SLNs [48]. Subsequently, in 2011, Boll and 
colleagues injected NP-based DDSs into mice and found 
that DDSs provided strong contrast for abdominal, medi-
astinal LNs, and adrenal glands with a low dose require-
ment when monitoring liver diseases using micro-CT 
[49]. These advances highlight the potential of DDSs in 
precise imaging and differential diagnosis of tumor LNM, 
warranting further research and clinical applications 
(Fig. 2).

Fig. 2  A brief historical overview of lymph node metastasis imaging based on DDSs. DDS drug delivery system, CT computed tomography, LSG 
lymphoscintigraphy, NP nanoparticle, MRI magnetic resonance imaging, ICG indocyanine green, SLN sentinel lymph node
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Cancer‑induced alterations in LNs
The lymphatic system, which includes a multitude of 
organs such as the bone marrow, spleen, tonsils, thymus, 
and LNs, interconnected by lymphatic vessels, serves as 
the body’s second vascular system. It plays crucial roles 
in maintaining fluid homeostasis and regulating adaptive 
immune responses [50]. The ensuing discussion explores 
LN modifications induced by cancer cell infiltration.

Imaging‑based detection of metastatic alterations in LNs
Tumor metastasis to LNs causes changes in the size, 
shape, and structure of LNs, which can be detected by 
imaging examination to confirm the occurrence of LNM 
[51]. These modifications include cancer cell infiltration 
into LNs, eliciting inflammatory responses and altering 
the nodes’ size and shape.

Apart from external morphological shifts, metastatic 
LNs may also undergo structural modifications. The 
edges of metastatic LNs are usually sharper than those of 
benign LNs, a characteristic related to tumor cell infiltra-
tion in LNs [52]. This is because the infiltration of nor-
mal LN tissue by cancer cells can enhance the acoustic 
impedance within the LN, making the boundaries more 
distinctive in imaging compared to normal LNs. Inva-
sion by cancer cells can also compromise or obliterate the 

fatty tissue in the hilum of the LN, leading to the loss of 
a low-density structure on imaging [53, 54]. However, a 
blurry border of a confirmed metastatic LN may indicate 
extracapsular infiltration by cancer cells, which usually 
indicates a worse prognostic outcome [55]. Additionally, 
metastatic LNs may exhibit features such as centrifugal 
cortical hypertrophy [56], intranodal necrosis [57], cal-
cification, and the corresponding characteristics of the 
intranodal echogenic hilus, cystic area, or a punctate 
acoustic shadow, among other imaging features [58]. By 
identifying these alterations, imaging techniques can 
assist in diagnosing LNM.

In the past, there was no clear consensus on the diag-
nostic criteria for imaging LNM. The diagnosis of LN 
imaging still relied mainly on the experience of phy-
sicians. The introduction of the Node Reporting and 
Data System (Node-RADS) addressed this problem 
and facilitated the standardization of imaging evalua-
tion of affected LNs [59]. Evaluation according to the 
size, configuration, boundary, and other categories 
within this system can effectively assess the involve-
ment of LNs, providing a structured and repeatable cri-
terion for the diagnosis of LNM to address the consensus 
and experience gap between radiologists. At the same 
time, it also reduces the risk of missed diagnosis due to 

Fig. 3  The targeted lymph node mechanisms of drug delivery systems (DDSs). A By modifying their surface charge, composition, and shape, DDSs 
possess the capability to elude phagocytosis activity by macrophages. B Benefitting from the EPR effect, DDSs can maintain a persistent presence 
within metastatic lymph nodes. C Leveraging the use of ligand-coupled NPs, DDSs have the potential to actively home in on targeted lymph nodes. 
D DDSs, when tailored to a specific size, gain the ability to infiltrate lymphatic vessels in substantial volumes. Created with BioRender.com
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varying diagnostic criteria (such as the missed diagnosis 
of micro-metastatic LNs) [60]. Currently, this system has 
been applied to the LN imaging of patients with blad-
der cancer, colon cancer, cholangiocarcinoma, lung can-
cer, etc. Compared with traditional non-standardized 
diagnostic criteria, the overall diagnostic performance 
of the new system has improved [60–63]. Nevertheless, 
these shape and structure changes should not be used as 
standalone diagnostic markers, and a definitive diagnosis 
requires a combination of multiple indicators and patho-
logical examination results.

Physiological basis of DDS in LN imaging
Lymphatic capillaries, positioned at the terminus of the 
lymphatic system, gather lymphatic fluid from interstitial 
tissues and transport it back to the cardiovascular sys-
tem via lymphatic vessels, thereby maintaining the fluid 
balance of the circulatory system. The broad intercellu-
lar space and high permeability of the endothelial cells 
in lymphatic capillaries facilitate the passage of intersti-
tial fluid, which is subsequently collected as lymphatic 
fluid [16]. Capitalizing on this characteristic, DDSs with 
a diameter less than 200 nm can enter the lymphatic ves-
sels and flow into the LNs [64].

During lymphatic return, macrophages remove for-
eign material. To evade macrophage clearance and 
amplify their passive targeting ability towards LNs, DDSs 
undergo specific modifications in shape, surface charge, 
and composition, effectively impeding their clearance 
by macrophages. In terms of shape modification, non-
spherical NPs can effectively reduce the likelihood of 
clearance by phagocytes, whereas spherical NPs are more 
susceptible to blood convection and tend to drift later-
ally along the walls of blood or lymphatic vessels, thus 
reducing the likelihood of margination [65, 66]. Regard-
ing surface charge, negatively charged DDSs enhance the 
efficiency of transport to LNs and effectively promote the 
activation of immune cells in the tumor microenviron-
ment of metastatic LNs. They can be preferentially taken 
up by cancerous tissues and reduce the non-specific 
clearance of macrophages [67]. Concerning composition, 
the composition of DDSs affects the pharmacokinetics of 
their internal drugs and the immune system’s clearance 
efficiency. For example, PEGylation—a technique that 
modifies compounds or supports by adding polymeric 
chains of ethylene glycol (or polyethylene oxide, or poly-
oxyethylene)—is a widely used DDS structure modifica-
tion strategy. It endows DDSs with inertness and stability, 
mitigates the interaction between the drugs and the bio-
logical milieu, confers stealth effects on DDSs, dimin-
ishes protein adsorption, and prevents cellular ingestion 

(Fig.  3A) [68–71]. It has been demonstrated that, com-
pared to healthy LNs, metastatic LNs exhibit increased 
lymphatic vessel permeability and obstructed lymphatic 
drainage, which facilitate the retention of DDSs and aug-
ment their passive targeting effect through the EPR effect 
(Fig. 3B) [72].

LNs are known to house a profusion of immune cells 
such as dendritic cells (DCs), T cells, B cells, among oth-
ers. These cells sample the incoming lymphatic fluid to 
capture antigens and initiate adaptive immune responses 
[73]. Upon entry into LNs, appropriately sized DDSs can 
be engulfed by antigen-presenting cells (APCs), thereby 
serving a passive targeting role (Fig.  3D). Furthermore, 
APCs in LNs express mannose receptors [74], CD11c 
[75], CD169, and other specific targets [76]. The cancer 
cell infiltration in metastatic LNs also exhibits abnor-
mally high expression of molecules like CD44 [77]. Con-
jugation of DDSs to ligands for these targets can enable 
active targeted delivery to metastatic LNs (Fig. 3C). Rec-
ognizing the imaging potential of DDSs, researchers have 
committed themselves to the development of LNM imag-
ing using DDSs. This aims to enhance the efficiency and 
precision of diagnosing cancer LNM through the intro-
duction of this delivery system (Fig. 3).

Current techniques in LN imaging
Several methods for lymphatic imaging are available, ena-
bling visualization of LN structures in various body parts 
and diagnosing LNM. The minimal density difference 
between LNs and surrounding tissues, however, often 
complicates the diagnosis of metastasis through imag-
ing, leading to misdiagnoses and missed diagnoses [78]. 
Frequently, contrast agents are employed to enhance the 
imaging effect and improve tissues contrast. Although 
many articles detail non-targeted and traditional LN 
imaging techniques, this section focuses on the principles 
and limitations of imaging agents within these traditional 
administration methods [79]. This coverage encompasses 
numerous imaging techniques employed in medical diag-
nostics, such as X-ray scans and digital imaging methods.

Digital imaging techniques, such as CT, MRI, US imag-
ing, NIR lymphography, and other LN imaging tech-
niques, have revolutionized the medical field by enabling 
high contrast, high resolution, and minimally invasive 
LN imaging [80–82]. Despite these advancements, tra-
ditional administration methods paired with various 
imaging techniques, while offering acceptable results, 
continue to face issues such as lack of targeting, brief 
fluid retention time, and limited detection points. These 
drawbacks inhibit the effectiveness of diagnosing LNM 
[83, 84].
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X‑ray imaging
The earliest approach to LN imaging involved the use 
of X-rays to visualize LNs post the injection of contrast 
agents [85]. However, this method necessitates invasive 
contrast agent injections, conflicting with modern non-
invasive diagnostic philosophies and negatively impact-
ing patient compliance [86].

LSG and SPECT/CT
LSG, recognized as the gold standard for LN imaging, is 
routinely employed to assess lymph transport and iden-
tify metastatic LNs associated with cancer [39]. This 
procedure encompasses the administration of a tracer, 
imbued with a radioactive isotope, into interstitial tis-
sues. Subsequently, a single-photon-emission-computed-
tomography (SPECT) instrument external to the body is 
utilized to monitor the tracer’s path.

Coupling LSG with SPECT/CT facilitates three-dimen-
sional imaging of the lymphatic system, thereby accu-
rately locating metastatic LNs [87, 88]. This combined 
approach, when utilized with DDSs, proves instrumental 
for the precise localization of the SLN and for effectively 
guiding LN biopsy in breast cancer patients [89].

Dilege et  al.’s study indicated that this imaging meth-
odology was able to accurately identify all sampled LNs. 
Notably, 88.5% of the patients’ clipped nodes were classi-
fied as SLN in this study. This enables early detection and 
precise excision of metastatic LNs, thus mitigating the 
likelihood of postoperative complications [90].

However, there exist limitations with non-NP-based 
Technetium-99 (99mTc) complexes, commonly employed 
in this context. Shortcomings such as a brief half-life and 
suboptimal contrast degrade the diagnostic value of the 
resultant imaging.

PET/CT
Glucose serves as the principal energy source for human 
cells. Exploiting the Warburg effect, cancer cells hinder 
the tricarboxylic acid cycle and preferentially use the gly-
colytic pathway for energy provision, albeit with lower 
efficiency. Consequently, malignant tumors display a 
markedly higher uptake of glucose compared to normal 
tissues [91].

Positron-emission-tomography (PET)/CT leverages 
this distinct trait of malignant tumors by employing radi-
olabeled glucose analogs as tracers to image pathological 
tissue. Herbrik et  al., for instance, utilized 18F-fluoro-
deoxyglucose (18F-FDG) as a tracer to investigate LNM 
in patients diagnosed with non-small cell lung cancer, 
achieving an accuracy rate of 81% [92]. Similarly, Billé 
et al. employed 18-FDG to detect LNM in a cohort of 159 
non-small cell lung cancer patients, documenting a spec-
ificity of 91.9% and an accuracy rate of 80.5% [93].

Nevertheless, FDG-PET/CT has exhibited limited sen-
sitivity in detecting LNM in cases of esophageal squa-
mous cell carcinoma, with a range of merely 30–40%. 
This could potentially result in false negative diagnoses 
[94, 95]. Furthermore, certain diseases may confound the 
diagnosis of metastatic LNs via FDG-PET. For instance, 
nodular lymphoid hyperplasia of the lung, a benign, 
non-neoplastic lesion, can manifest as multifocal lesions 
bilaterally, and its FDG-PET results can be falsely posi-
tive, potentially leading to misdiagnosis [96, 97]. Addi-
tionally, Manta et  al. performed an FDG-PET/CT scan 
on a patient suspected of having thyroid malignancy. The 
results revealed a strong FDG uptake in the mediastinal 
and bilateral hilar LNs. However, post-surgical excision, 
the pathological examination revealed non-necrotizing 
granulomatous lesions, indicative of thyroid nodule dis-
ease [98]. This misdiagnosis could potentially prompt 
incorrect treatment strategies, thereby inflicting undue 
trauma on the patient.

MRI
MRI operates by inducing alignment of hydrogen atoms 
within the body using a magnetic field. The subsequent 
emission of radio waves following disturbance is cap-
tured and processed by an advanced computer system, 
culminating in the generation of detailed images depict-
ing diverse tissues and other critical anatomical struc-
tures [99, 100].

Gadolinium-based contrast agents (GBCAs), such as 
Gd-DOTA, Gd-DTPA, are presently employed exten-
sively for contrast-enhanced MRI. Owing to its strong 
paramagnetism, Gadolinium (Gd) influences tissue con-
trast by stimulating the relaxation of nearby hydrogen 
protons, facilitating indirect imaging [101, 102]. A study 
demonstrated that post-injection of Gd-DTPA, MRI 
yielded a sensitivity of 91.1% and accuracy of 87.2% in 
detecting metastatic LNs in patients with nasopharyn-
geal carcinoma. Precise and efficient localization of the 
SLN substantially mitigates unnecessary tissue resection, 
lessens surgical side effects, and enhances patient quality 
of life [103].

However, GBCAs are associated with certain draw-
backs. Firstly, GBCAs exhibit potential cytotoxicity. 
Research has revealed that this contrast agent incurs 
nephrotoxicity in patients with chronic kidney disease, 
potentially resulting in nephrogenic systemic fibrosis. 
Secondly, the excretion of GBCAs poses a challenge. Even 
in patients with a normal glomerular filtration rate, the 
use of GBCAs can lead to gadolinium deposition in mul-
tiple organs. Certain patients may manifest symptoms 
such as skin burning pain, muscle cramps, and ‘brain fog’, 
indicative of gadolinium deposition disease [104–106]. 
As Gd can persist in the brain for prolonged periods, the 
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FDA has issued a warning about “GBCA retention in the 
body” [107], and the European Medicines Agency (EMA) 
has classified GBCAs as a high-risk imaging agent [108].

NIR fluorescence imaging
NIR fluorescence imaging technology, following the 
administration of a fluorescent dye, stimulates the fluo-
rescent properties of this dye through a detector, thus 
facilitating visualization the contrast agent and enabling 
LN imaging. Within the NIR spectrum, human tissue 
does not exhibit autofluorescence, thus yielding high 
contrast favorable for imaging and observation [109]. 
Additionally, given that NIR light is invisible, the use of 
this fluorescent dye minimizes visual impact on patients, 
thereby reducing potential negative emotional responses 
[110].

ICG, a contrast agent approved by the FDA for clinical 
use [41], boasts robust tissue penetration capacity attrib-
utable to its excited fluorescence (compared to traditional 
blue dyes, which are easily obscured by dense tissues like 
fat, leading to inadequate imaging depth [111]), superior 
biocompatibility, and non-radioactive properties [112]. 
ICG has been broadly utilized in NIR fluorescence imag-
ing [113, 114], offering real-time and accurate detection 
of metastatic LNs [115–117].

But there are certain drawbacks associated with ICG 
that compromise the efficacy of LNM imaging. Firstly, 
ICG’s amphiphilic properties and poor stability in aque-
ous solutions lead to aggregate and self-quenching 
in body fluids, thereby inhibiting the ability of imag-
ing agents to reach the LNs [118]. Secondly, ICG’s low 
molecular weight hampers its retention in the SLN, 
resulting in potential drainage to other LNs or clearance 
via blood vessels, thus reducing imaging specificity [119]. 
Moreover, the first NIR window (NIR-I) (700–900 nm) is 
impacted by signal scattering of biological endogenous 
substances, resulting in excessive background signal in 
the image and inadequate tissue contrast, which compro-
mises image-based diagnosis [120, 121].

Additionally, the toxicity of ICG correlates with light 
duration [122], indicating that the effectiveness of LNM 
detection using ICG hinges on the physician’s expertise 
and technical acuity. This could potentially lead to a dis-
parate distribution of medical resources and unequal 
access to medical diagnosis and treatment for patients. 
Therefore, the redefinition of LNM diagnostic principles 
and strategies is pivotal, not only to enhance survival 
and quality of life for cancer patients but also to promote 
social equity.

US imaging
US imaging operates on the principle of sound wave 
reflection. It gathers these reflected sound waves from 

tissue organs and converts them into images [123]. Some 
researchers have attempted to augment the contrast of 
US imaging using microbubbles (size < 10  μm) encap-
sulating diagnostic gas, thereby procuring high spatial–
temporal resolution images. However, their constrained 
contrast and indistinct tissue boundaries may compro-
mise the diagnostic accuracy for LNM [22, 124].

DDSs for targeting and imaging of LNs
In recent decades, the use of DDSs has expanded con-
siderably. These systems find widespread application in 
drug delivery, tissue engineering, and medical imaging, 
among other fields [125–127]. Particularly within the 
realm of LN imaging, scholars have begun investigating 
DDSs due to their characteristics of reducing toxicity and 
enhancing action, aiming to overcome the limitations of 
traditional imaging methods and agents. A large number 
of studies have demonstrated the effectiveness of DDSs 
in LNM imaging [128–131]. Specifically, DDSs based on 
NPs possess unique characteristics of a high surface area-
to-volume ratio, which can achieve strong and longitudi-
nally stable imaging signals. By reducing the unexpected 
reaction between the drug and the body’s microenviron-
ment, controlling drug release, and altering biological 
distribution, the toxic and side effects of the contrast 
agent on the body can be minimized. Secondly, the strat-
egy of active and passive targeted delivery of DDSs can 
detect the desired target and improve the sensitivity 
and specificity of imaging. Additionally, DDSs can pro-
tect the drug from degradation in the body, improve the 
drug’s bioavailability, and ultimately achieve the purpose 
of reducing toxicity and increasing efficiency [132]. Vari-
ous forms of DDSs, such as wafers, foams, films, hydro-
gels, NPs, and fibers, have been developed [133–138]. 
Among them, NPs are the most popular in the realm of 
LN imaging and can be roughly classified into lipid NPs, 
radioactive nano-colloids, metal NPs, magnetic NPs, etc. 
[139–142]. Available preparation methods include self-
assembling systems, microfluidic production, aqueous 
coprecipitation, thermal decomposition, sol–gel reaction, 
etc. [132, 143, 144].

Depending on the disease, the desired effect, and the 
characteristics of the drug, the route of administration of 
DDSs can usually be divided into oral, parenteral, trans-
dermal, and nasal administration, among others [145]. 
Parenteral administration is currently the most com-
monly used invasive route of DDS administration, with 
advantages including bypassing first-pass metabolism, 
rapid onset, controllable drug utilization, reduction of 
gastrointestinal irritation, and reliability for critically 
ill patients. Parenteral administration can further be 
divided into subcutaneous, intramuscular, and intra-
venous injection, with the absorption and onset rate of 
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the drug increasing respectively [146]. At present, DDSs 
used in LNM imaging can be roughly divided into two 
methods: one is to increase the efficiency of delivery (e.g., 
99mTc-labeled colloids), and the other is to increase the 
specificity of delivery (such as surface modification with 
tumor antigen ligands). This paper will categorize various 
imaging techniques that utilize DDSs and present them 
in tabular form (Table  1). In the following sections, we 
will review the delivery system represented by NPs.

LSG and SPECT/CT
In LSG, the controlled administration strategy most fre-
quently utilized involves NP-colloid-based DDSs labeled 
with the radioactive isotope 99mTc. This approach miti-
gates concerns associated with short half-lives and sub-
optimal contrast. An example is 99mTc-etarfolatide, a 
DDS carrying a 99mTc-labeled folate conjugate, designed 
for imaging targeting folate receptors on tumor cells. 
Preclinical studies have shown that 99mTc-etarfolatide 
has a higher affinity with human folate receptors, thus 
improving the specificity of imaging [147, 148]. Drawing 
on the inherent spatial characteristics of NP carriers [24], 
a diverse range of 99mTc-labeled DDSs are currently in 
use, distinguished by the differing particle sizes of their 
NP carriers. For instance, 99mTc-sulfur colloid (particle 
size exceeding 100 nm) [149], 99mTc-nanocolloidal albu-
min (particle size less than 80 nm) [39, 150], and 99mTc 
antimony trisulfide colloid (particle size between 3 and 
30 nm) [151].

The capacity for passive targeting of LNs by DDSs is 
determined by a variety of factors [152, 153], of which the 
particle size of NP carriers emerges as the most signifi-
cant in LSG LN imaging [154, 155]. Particle sizes of less 
than 10 nm expedite clearance of DDSs from the intersti-
tial fluid and allow for entry into the LN via the lymphatic 
vessel wall. However, such small particles can also easily 
traverse capillaries and thus be cleared prematurely. Con-
versely, DDSs with particle sizes greater than 200 nm are 
more likely to remain entrapped in the interstitium and 
be eliminated by the RES. The optimal particle size for 
DDSs, therefore, typically ranges from 10 to 100 nm. This 
range allows for broad and effective aggregation within 
metastatic LNs [155–158]. However, no consensus has 
been reached regarding the most suitable particle size 
range for DDSs [159, 160].

DDSs with an appropriately sized particle can achieve 
significant regional LN retention. This facilitates intraop-
erative positioning via a γ probe and allows for accurate 
and repeatable SLN localization [161, 162]. This preci-
sion reduces the need for radical LN dissection surgery. 
It is crucial to remember, however, that radioactive iso-
topes possess inherent decay properties. Therefore, the 

attenuation correction of results is indispensable to 
ensure accuracy [163].

PET/CT
The conventional radiolabeled tracers, epitomized by 
18F-FDG, although possessing high sensitivity and speci-
ficity in detecting tumor metastasis, present significant 
limitations, consequently lowering diagnostic accuracy 
and restricting their diagnostic value. Due to the non-
targeted nature of traditional contrast agents, the poten-
tial toxicological side effects of imaging agents during the 
diagnostic process are particularly prominent. Moreover, 
the non-targeted feature restricts the accuracy of diag-
nosis and the ability to distinguish small lesions. These 
shortcomings underscore the need for an altered admin-
istration approach, one that promises enhanced sensitiv-
ity and precision.

Recent studies have begun to employ surface-modified 
DDS tracers for LN imaging, a technique that facilitates 
the entry of DDSs into LNs and enhances the targeting of 
imaging agents [164–166]. Schilham et al. utilized tracers 
based on 68 Ga-labeled targeted prostate-specific mem-
brane antigen (PSMA) DDS, injecting these into patients 
with prostate cancer to detect LNM. The modified PSMA 
DDS demonstrated superior sensitivity to LNM com-
pared to 18F-FDG, with diagnostic accuracy reaching up 
to 85% [167].

In another study, Mumprecht administered a 
124I-labeled antibody against the lymphatic vessel 
endothelial hyaluronan receptor-1 (LYVE-1) DDS to 
mice carrying the B16-F10-luc2-VEGF-C tumor with 
LNM [168]. These surface-modified, immunotargeted 
DDSs showed heightened sensitive to LNM compared to 
18F-FDG [169], accumulating in high concentrations at 
specific sites within LNs. This undoubtedly yielded sig-
nificant improvements in the diagnostic accuracy of PET-
CT [170].

MRI
Although MRI plays a significant role in displaying soft 
tissue imaging, the side effects of GBCAs might not be 
acceptable to clinical doctors and patients. The depo-
sition of GBCAs in the brain could lead to symptoms 
related to central nervous system toxicity or neuroin-
flammation, which has been a particular concern for the 
EMA [103, 106]. To address the aforementioned chal-
lenges associated with GBCAs, several studies have suc-
cessfully incorporated DDSs into magnetic resonance 
LN imaging, yielding substantial improvements. One 
such strategy involved modifying Gd with polycyclo-
dextrin (PCD) to generate a Gd2O3PCD-coated DDS. 
When applied to a mouse model of breast cancer, this 
system demonstrated the capability to deliver GBCAs at 
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lower dosage requirements, thereby enhancing imaging 
localization of LNM. Thanks to the Gd-modified coating, 
which effectively reduced Gd leakage and required lower 
concentrations, this DDS can decrease Gd deposition 
and cytotoxicity. This reduction mitigates the side effects 
associated with detection and enhances the biosafety of 
imaging [171]. Further to this, ultrasmall superparamag-
netic particles of iron oxide (USPIO) currently represent 
the most extensively studied and utilized NPs for MRI 
[172–175]. Ferumoxtran-10, a type of USPIO, presents 
wide-ranging application prospects [176]. This com-
pound is absorbed by macrophages, targeted, and trans-
ported to LNs where it is primarily distributed [177]. 
With satisfactory pharmacokinetics and biocompatibility, 
it proves suitable for MRI imaging detection of human 
LNs [178, 179]. Importantly, the use of USPIO-based 
DDSs for LNM detection demonstrates higher diagnos-
tic specificity and sensitivity compared to MRI detection 
techniques not based on DDSs. Koh DM et al.’s research 
showed that, compared with non-DDS-based imaging 
diagnosis, LNM detection using DDSs based on USPIO 
shows higher diagnostic specificity, with an average spec-
ificity increase from 75 to 93% [175].

NIR fluorescence imaging
ICG forms aggregates in body fluids and lacks stability 
in aqueous solutions, which hinders its effective delivery 
to LNs. Its low molecular weight results in poor reten-
tion in SLNs, thus reducing imaging specificity. Moreo-
ver, the NIR-I window also suffers from signal scattering 
and excessive background noise, which can undermine 
diagnostic accuracy [119]. To surmount the constraints 
of ICG in NIR LN imaging, researchers have sought to 
employ DDSs to enhance ICG delivery. DDSs, such as 
ICG encapsulated with poly (D,L-lactic-co-glycolic acid) 
(PLGA), showed a release of 78% of the encapsulated 
ICG within the initial 8 h of bodily introduction, with the 
residual portion being discharged in the subsequent 16 h. 
Compared to its unencapsulated counterpart, ICG-NaI, 
PLGA-ICG demonstrated an eight-fold increase in reten-
tion rate [180].

Poly (γ-glutamic acid) (γ-PGA)-ICG DDSs also show-
case promising features. They display notable stability in 
an aqueous solution, resist aggregation and self-quench-
ing at physiological temperatures, and produce a more 
robust NIR fluorescence signal than conventional ICG. 
The augmentation of their molecular weight aids in 
diminishing blood clearance, thereby enhancing their tar-
geted delivery capacity to LNs and improving the imag-
ing capabilities for LNM [111].

Modifying ICG DDSs with polyethylene glycol (PEG) 
polymers may also mitigate the adverse effects of ICG on 
LN contraction and dilatation [111, 181]. In addition to 

advancements in imaging materials for the NIR-I win-
dow, continuous efforts are underway to develop materi-
als for the second NIR window (NIR-II) (1000–1700 nm). 
This development aims to address the shortcomings of 
NIR-I imaging, focusing on achieving superior tissue 
penetration with less signal interference from endog-
enous substances and improving imaging contrast [182, 
183].

In this regard, metal nanoclusters have piqued 
researchers’ interest due to their unique attributes. As 
nanomaterials with a particle size ranging 1–40  nm, 
they exhibit distinctive surface plasmon resonance (SPR) 
characteristics with high adjustability [184, 185]. Notably, 
gold is extensively utilized in the development of nano-
cluster-based DDSs due to its excellent biocompatibility, 
size adjustability, and surface treatment capabilities [186].

By altering the structure and composition of gold nan-
ocluster-based DDSs, the SPR position can be modified. 
If the SPR peak is situated in the 700–900  nm region, 
it can serve as a NIR-I fluorescence imaging contrast 
agent [187]. Conversely, when the SRP peak of gold 
nanocluster-based DDSs is set at 1000–1700  nm, these 
DDSs function as a NIR-II imaging agent, whose long-
wavelength, low-scattering properties permit photons to 
penetrate deep tissue [188]. Research has revealed that 
the imaging depth of NIR-II imaging using gold nano-
clusters can extend to 6.1 mm subcutaneously, a marked 
improvement from the 5  mm depth achieved by ICG 
[189]. This approach also offers high stability, sensitivity, 
and superior imaging resolution [190, 191].

Further enhancements to gold nanoclusters were made 
by incorporating targeting molecules, thus endowing the 
gold nanoclusters with specificity for SLN imaging. These 
gold nanoclusters were then modified with sulfhydryl 
ligands targeting DCs. Following injection of this DDS 
into mice, a significant accumulation in metastatic LNs 
was observed. This greatly enhanced imaging specificity 
and markedly improved the ability to identify LNM [192].

US/PA imaging
Efforts have been made by researchers to enhance the 
efficacy of acoustic imaging through the exploitation 
of the photoacoustic (PA) effect. When human tissue 
absorbs and subsequently releases pulsed lasers, this 
expansion and contraction process generates US waves. 
Since different tissues absorb light to variable extents, 
this results in the production of US waves with differing 
intensities [193].

In integrating the properties of PA and US, research-
ers have achieved PA/US dual-mode imaging, utilizing 
optical excitation and acoustic detection. This approach 
leverages the unique attributes of the nanomaterial car-
riers used DDSs [31]. For instance, the specific spatial 
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size effect of carbon NP-based DDSs allows for facilitated 
entry into the lymphatic system [23]. While macrophages 
in healthy LNs can clear these DDSs, metastatic LNs, 
infiltrated by cancer cells, exhibit a significant decrease in 
macrophages, which results in reduced DDS uptake.

Owing to these properties, carbon NP-enhanced PA/
US LN imaging offers superior SLN imaging capability, 
along with improved PA/US imaging depth, tissue con-
trast, and signal noise ratio. This technique thus dem-
onstrates higher recognition and diagnostic capabilities 
for LNM compared to conventional US imaging [194]. 
Furthermore, carbon nanomaterial-enhanced PA imag-
ing can achieve a greater penetration than NIR imaging 
based on ICG, reaching an imaging depth of over 12 mm 
[195].

Dipanjan et al. proposed an advanced strategy in which 
they mixed polystyrene and Cu-neodecanoate com-
plexes, coating the resultant mixture with phospholip-
ids to enhance imaging. This DDS exhibits a broad light 
absorption spectrum and provides exceptional PA con-
trast within NIR-I. It is noteworthy that this DDS effec-
tively circumvent to toxicity of copper when applied 
in vivo, thereby suggesting a potential role for copper as a 
cost-effective material in future LNM imaging [196].

Multimodality imaging
Although each of the above-mentioned imaging methods 
has unique advantages, they also possess certain defects 
that limit the ability to obtain reliable and accurate infor-
mation. Combining two or more imaging modes into 
one system can produce more accurate imaging details 
than traditional imaging methods. An ideal strategy to 
enhance the accuracy and specificity of cancer diagnosis 
has emerged by coupling various LN imaging modalities, 
such as NIR fluorescence imaging, US imaging, and PA 
imaging. This multimodal imaging strategy yields a more 
comprehensive representation of the lymphatic system, 
facilitating the detection of a greater number of anoma-
lies. Consequently, doctors can devise more efficacious 
treatment plans for cancer patients by integrating multi-
ple imaging technologies.

The aforementioned enhancement of PA/US imag-
ing through the utilization of carbon NP-based DDSs 
exemplifies this integrated imaging approach. Certain 
researchers have amalgamated the high specificity of PA 
imaging with the high sensitivity of fluorescence imaging 
to counteract the limited imaging depth of fluorescence 
imaging and the reduced sensitivity of PA imaging [197]. 
Serving as a “bridge” between two distinct imaging tech-
niques, the gold nanocluster with PEGylated chitosan 
coating and ICG mixture (GC-AuNCs/ICG) in the DDS 
plays a role in the combined imaging technology, oper-
ating synergistically and without mutual interference, 

thereby leveraging the benefits of both imaging tech-
niques [198].

In another study, researchers employed a DDS to 
deliver PA and fluorescence dual-modal nanoprobes for 
experimental studies on mouse models of breast can-
cer [199]. The high spatial resolution and depth of 3D 
information supplied by preoperative PA imaging were 
utilized to locate the primary lesion and guide tumor 
excision. During the procedure, the high sensitivity of 
NIR fluorescence imaging was harnessed to map sus-
pected residual lesions and metastatic LNs in the vicinity 
of the surgical area for secondary resection [200]. Path-
ological analysis post-surgery revealed that over 70% of 
the secondary resection specimens confirmed the pres-
ence of tumor cells with the aid of fluorescence imaging. 
Following surgery guided by PA/fluorescence combined 
imaging technology, the local recurrence rate in the 
mouse model was 0 after 30 days, significantly lower than 
the 33.3% local recurrence rate observed in the control 
group.

Apart from PA/fluorescence combined imaging, Yang 
et al. coupled iron oxide with amino-terminal fragments 
(ATFs) to formulate a DDS for NIR/PA/MR combined 
imaging in mouse models of pancreatic cancer [201]. This 
DDS was capable of specifically delivering its contents to 
the target LN. In  vivo combined imaging demonstrated 
that optical imaging can accurately locate the primary 
tumor and multiple metastases, and MRI providing high-
resolution imaging of the lesions following localization, 
offering rich anatomical details [202]. Such high-reso-
lution imaging data prove advantageous for surgeons, 
allowing for a detailed understanding of the lesions 
and avoidance of damage to adjacent tissues. The spe-
cific binding of the targeted multimodal imaging mode 
enhances the selective accumulation of the imaging agent 
at the target, making the diagnosis more accurate. The 
evolution and advancement of DDS-based multimodal 
imaging modes have significantly contributed to the 
localization of LN metastases, reduced surgical trauma, 
and generated novel insights for the future progression of 
LN imaging technology [203].

Integration of diagnosis and treatment in DDSs
Post precise diagnosis, surgical resection stands as the 
primary treatment modality for cancer and LNM, with 
radiotherapy and chemotherapy acting as supplementary 
or adjunctive therapies during the treatment process. 
Traditional radiotherapy and chemotherapy, however, 
lack specificity and may engender adverse effects on 
normal tissues, thereby impacting overall health [204]. 
Substantial research has indicated that DDSs, owing to 
their high targeting and customization capabilities, are 
efficacious in delivering imaging agents or therapeutics 
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[164, 205–210]. Hence, researchers have endeavored to 
amalgamate the diagnostic and therapeutic functions of 
DDSs.

Among the multitude of integrated diagnosis-treat-
ment approaches, photothermal therapy (PTT) has been 
garnering considerable attention. Given that tumor cells 
exhibit lower heat tolerance than normal cells, PTT 
capitalizes on this property to eradicate cancer cells by 
generating heat energy through the photothermal con-
version of photothermal agents under irradiation at spe-
cific wavelengths [211]. Prussian blue DDSs, with their 
excellent biocompatibility, photothermal conversion 
efficiency, and absorption range within the NIR window, 
prove to be an optimal choice for PTT and PA imaging. 
Upon laser exposure, Prussian blue DDSs convert light 
energy into PA signals for PA imaging, while concur-
rently releasing the thermal energy converted from light 
absorption to exterminate tumor cells [212]. Neverthe-
less, this thermal ablation treatment modality lacks tar-
geted capability towards lesion areas, and may induce 
damage to adjacent tissues if the temperature is exces-
sively high [213], thereby diminishing patients’ quality 
of life. This shortcoming limits the clinical application 

and therapeutic efficacy of PTT; hence, it is necessary to 
improve the targeting of PTT and reduce the side effects 
of treatment [214]. Building on the high expression of 
the CD44 molecule in cancer cells [77], researchers have 
coated the CD44 ligand, hyaluronic acid (HA), onto 
DDSs loaded with chemotherapeutic drugs. This strategy 
actively transports diagnostic and therapeutic agents by 
targeting cancer cells rich in CD44, thereby significantly 
enhancing the targeting of imaging agents and decreas-
ing the damage of PTT to the surrounding tissue [214]. 
Such a DDS achieves the integration of diagnosis and 
treatment for LNM by concurrently enabling imaging, 
PTT, and targeted transport of chemotherapeutic drugs 
under 1000–1700  nm second NIR window laser expo-
sure. Initial drug delivery by DDSs is marked by a clear 
and stable NIR imaging signal; as PTT and chemotherapy 
drugs gradually inflict damage to tumor cells, the NIR 
signal significantly diminishes, which further confirmed 
its effect (Fig. 4).

Apart from PTT and the delivery of conventional chem-
otherapy drugs, DDSs can also actualize diagnostic and 
therapeutic effects in other ways. For instance, Yang et al. 

Fig. 4  The dual role of drug delivery systems (DDSs) in diagnosis and treatment, demonstrating the application of DDSs in delivering photothermal 
agents. These agents convert light energy into photoacoustic signals for imaging, while simultaneously releasing thermal energy, derived from light 
absorption, to annihilate tumor cells. Created with BioRender.com
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synthesized a high-affinity ligand for the urokinase plas-
minogen activator receptor. When coupled with a car-
rier, this ligand can inhibit tumor growth by competitively 
blocking the binding of natural ligands to receptors while 
also imaging regional LNM in pancreatic cancer [201]. 
Additionally, research on nano-microbubbles-based 
DDSs in integrated diagnosis-treatment approaches has 
also garnered interest. Utilizing US waves, microbubble 
oscillation is induced to enhance the ultrasonic contrast 
of the target site. Gases present in microbubbles, such as 
dioxygen, NO, and CO, can modify the tumor microen-
vironment, thereby generating therapeutic effects [215–
217]. There is no doubt that although surgery is the main 

treatment for LNM, the concept of integrating diagnosis 
and treatment through DDSs provides a new idea for the 
minimally invasive and precise treatment of LNM. The 
diagnostic and therapeutic model based on DDSs harbors 
immense potential for clinical application.

Challenges and prospects
As previously delineated, LN imaging predicated on 
DDSs may alleviate the toxic side effects of traditional 
contrast agents and enable the targeted transport of 
chemotherapy drugs within an integrated diagnosis 
and treatment model, thus reducing damage to normal 
cells [106, 122, 218]. The development and research of 

Fig. 5  The potential risks associated with drug delivery systems (DDSs) in the context of lymph node metastasis imaging. Nanoparticle (NP)-based 
DDSs are not devoid of safety concerns. For instance, DDSs containing Gd may precipitate gadolinium deposition disease, causing symptoms such 
as fatigue and brain fog. Quantum dot-based DDSs may induce the production of reactive oxygen species (ROS) via the release of metal ions, such 
as the Cd ion, resulting in epigenetic modifications. Despite its initial status as an ideal, safe coating to mitigate DDS side effects, polyethylene glycol 
(PEG) might still instigate hypersensitivity reactions. Created with BioRender.com
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DDSs have advanced significantly; however, the poten-
tial for clinical transformation of DDSs remains limited. 
Although the global nanomedicine market was valued 
at $242.6 billion, with 563 nano-based DDS products in 
various stages of clinical trials or development in 2021 
[219], only about 100 nanomedicines have actually been 
commercialized. Factors such as toxicity, high costs, and 
unclear regulatory guidelines have emerged as substantial 
barriers to their clinical application [220]. The risks asso-
ciated with DDSs predominantly pertain to metabolic 
and toxicity factors, as well as a lack of standardization, 
presenting challenges for the application and transforma-
tion of DDSs (Fig. 5).

Metabolism of DDSs
Typically, upon systemic introduction, DDSs accu-
mulate, albeit to a certain extent, in various anatomi-
cal structures such as LNs, heart, spleen, and kidneys 
via fluid distribution, and are subsequently excreted 
through diverse pathways, thus avoiding significant 
bodily accumulation [221–223]. Contrarily, certain 
studies have found that some DDSs may persist within 
the body and prove challenging to effectively eliminate, 
thereby engendering side effects [224, 225]. Not only 
in the brain, but studies have also found that NPs can 
pass through biological barriers, deposit in the repro-
ductive system, and cause damage to germ cells [226–
228]. Studies have shown that plasma proteins adsorb 
onto the surface of NPs, altering their properties (such 
as size, shape, surface charge) and leading to abnor-
mal protein aggregation and folding. This subsequently 
causes the NPs to off-target, reducing drug utilization, 
and leading to accumulation [229]. The development 
and use of modified coatings, such as PEG, will be very 
helpful. In addition, the metabolic characteristics of 
common abnormal accumulation organs such as the 
kidneys, liver, and brain need to be further studied, and 
the interactions between DDSs and these organs need 
to be explored.

Toxicity of DDSs
Despite the great strides made in biosafety, DDSs still 
pose hidden dangers of toxicity [230]. DDSs based on 
quantum dots can stimulate the production of reactive 
oxygen species (ROS) through the release of metal ions, 
such as Cd ions [231]. This process can disrupt cellular 
metabolism [232], inflict DNA damage [233], and ulti-
mately precipitate cell apoptosis [234]. Furthermore, 
the pro-oxidation properties of DDSs may elicit epige-
netic alterations by interfering with RNA and chromatin 
remodeling [235]. Examples of such interactions include 
gold NPs influencing the activity of histone deacetylase 

[236] and superparamagnetic iron inducing high acetyla-
tion of core histones [237].

To imbue DDSs with safety, inertness, and stability, the 
carrier portion can be modified via PEGylation. PEG is 
considered a non-immunogenic material, which not only 
mitigates the interaction between the DDS core and the 
biological milieu, thereby enhancing safety [171, 238], but 
also bestows DDSs with stealth effects, diminishes pro-
tein adsorption, and precludes cellular ingestion, thus 
extending circulation time. Therefore, PEG was once 
widely considered an ideal and safe strategy to reduce the 
toxicity of DDSs [239–242]. Regrettably, a small amount 
of evidence suggests that PEG can trigger hypersensitivity 
reactions [243–245], manifesting symptoms such as res-
piratory distress, hypothermia, hypotension, rashes, and 
even mortality [246], thereby jeopardizing patient safety. 
Furthermore, it has been proven that the combination of 
PEG with protein or lipid NP materials can induce the 
body to produce anti-PEG antibodies, which often affect 
the distribution of PEGylated products and enhance 
their clearance rate, thus affecting the realization of the 
expected efficacy [247–250]. With the increasing applica-
tion of PEG in cosmetics, food, medicine, vaccines, and 
other fields, the incidence of hypersensitivity reactions 
and the reduction of the efficacy of PEGylated drugs may 
increase [251]. At present, the mechanism of PEG-based 
DDS-induced hypersensitivity and anti-PEG antibodies 
is still uncertain. However, due to the widespread use of 
PEG, understanding its mechanism and solving adverse 
reactions is very important to obtain more effective pre-
ventive measures. Further development of modified 
coatings with low or no immunogenicity without com-
promising performance is warranted.

Delivery mechanism of DDSs
To achieve superior image quality, DDSs must rapidly 
infiltrate and accumulate in metastatic LNs. Despite 
ongoing research and innovation, the delivery efficiency 
of extant DDSs remains suboptimal. A retrospective anal-
ysis showed that only 0.7% (median) of the administered 
dose was delivered to solid tumors [252]. Previous studies 
have suggested that the tumor accumulation of DDSs is 
highly dependent on their size, based on the EPR effect 
[155, 253, 254]. As previously noted, excessively large 
DDS particle sizes impede LN entry, while exceedingly 
small particle sizes limit metastatic LN retention [154]. 
However, some studies have questioned the effectiveness 
of the EPR effect in the human body [255, 256]. Currently, 
there is no consensus on whether the EPR effect exists in 
the human body or the appropriate size range for DDS 
carriers [159, 257]. In the future, it is necessary to verify 
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the effect of EPR, focusing on exploring the accumula-
tion, isolation, and clearance mechanisms of DDSs in the 
human body, as well as the interaction between DDSs 
and tumors, in order to further improve the delivery effi-
ciency of DDSs.

Specificity of DDSs
To minimize side effects and extraneous organ distribu-
tion, DDSs should exhibit enhanced targeting of tumors 
and metastatic LNs. The existing targets for tumors and 
LNM do not fully meet the needs of accurate imaging, 
posing a hindrance to the clinical application of DDSs. 
The development of additional immune targets to aug-
ment the specificity of LN imaging, based on tumor char-
acteristics and the metastatic LN microenvironment, 
might emerge as a prominent future direction [258–260]. 
With advancements in sequencing technology, clini-
cal precision medicine has been greatly promoted [261]. 
Multi-omics analyses, such as genomics, metabolomics, 
and transcriptomics, are important means to identify 
therapeutic targets and molecular biomarkers currently 
and in the future, and to realize the personalization of 
cancer treatment [261–263]. In addition, the deep learn-
ing model based on radiomics and digital pathology also 
holds far-reaching significance for the mining of immune 
targets and imaging diagnosis [264].

Integration of diagnosis and treatment of DDSs
DDSs represent a method of administering imaging 
agents imbued with boundless potential. In the medical 
realm, DDSs have robustly validated their value in both 
imaging and drug delivery. Concurrent with the evolu-
tion of nanotechnology, the concept of “diagnosis-treat-
ment integration” through DDSs has been proposed. This 
concept is capable of executing therapeutic functions 
while accurately locating lesions or metastatic LNs. The 
previously mentioned PA/PTT technology constitutes 
an initial realization of this concept. Nevertheless, it is 
important to note that multimodal imaging still has many 
shortcomings that need to be addressed by technologi-
cal development, such as high cost, cumbersome imag-
ing procedures, and the burden of high doses of imaging 
agents on the patient. Looking forward, we anticipate that 
DDSs can fully actualize their highly customized poten-
tial, achieving multifunctionality not only for diagnosis-
treatment integration but also in becoming a “universal 
imaging agent and delivery system.” As a conduit link-
ing various imaging technologies with their respective 
advantages, DDSs can enable the synergistic functioning 
of imaging technologies without burdening patients with 
the risk of multiple imaging agent injections.

Standardized risk assessment protocols
The dearth of standardized risk assessment protocols 
for DDSs constitutes a significant issue warranting col-
lective attention, which may lead to patients receiving 
inappropriate treatment or missing the best treatment 
opportunity [265]. Regarding risks, researchers and cli-
nicians may need to comprehensively explore the poten-
tial risks of DDSs applied to LN imaging, stratify these 
risks according to their likelihood and severity, and then 
establish a standardized treatment plan based on the cor-
responding risk stratification. Only by addressing these 
fundamental problems can we effectively promote the 
development and clinical transformation of DDSs. It is 
important to note that the Cancer Nanomedicine Reposi-
tory provides a database that can determine the relation-
ship between the physical and chemical properties of 
biological systems and NPs in real time, and analyze the 
delivery efficiency of DDSs [266]. Sharing and continu-
ously analyzing experimental data is of positive signifi-
cance for the clinical transformation of DDSs.

Such issues have considerably impeded the clinical 
adoption of DDSs. There is a need to promote the devel-
opment of research, overcome the limitations of exist-
ing technologies, and develop DDSs that can effectively 
achieve the dual goals of reducing toxicity and increas-
ing efficiency. Then, multi-stage preclinical and clinical 
trials should be performed. On the premise of ensuring 
biosafety, reducing costs and improving availability are 
necessary. The clinical transformation of the technology 
can ultimately be realized through the approval of rele-
vant regulatory authorities.

Conclusions
The use of DDSs for imaging LNs presents an innova-
tive approach in diagnosing LNM. The application of 
DDSs in LN targeting addresses several drawbacks 
associated with traditional, non-targeted drug deliv-
ery methods, notably by enabling precise localization 
within LNs. This precision enhances both the effec-
tiveness and control of imaging agent delivery through 
multiple pathways. Consequently, it not only elevates 
the concentration of therapeutic agents in affected tis-
sues but also significantly enhances the diagnostic 
accuracy for metastatic LNs. At the same time, this 
method allows for a reduction in the required effective 
drug dosage, thereby diminishing potential side effects 
[220]. Moreover, the coatings of DDSs can encapsu-
late imaging agents within their cores, thus precluding 
reactions with the biological environment and amelio-
rating biological distribution. This reduces bodily accu-
mulation and consequently diminishes the toxicity of 
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imaging agents. Hence, employing DDSs to target LNs 
for imaging represents a nascent, promising technol-
ogy. Although it necessitates further refinement and 
development for utilization in LNM diagnosis, the 
application of DDSs significantly enhances the accu-
racy of diagnosis, improves the success rate of sur-
gery, reduces the incidence of surgical complications, 
and improves the quality of life of patients. There is no 
doubt that employing DDSs is an ideal LNM imaging.
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