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Abstract 

Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials 
for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation 
of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone 
regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we 
review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic 
mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mes-
enchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Further-
more, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages 
and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment 
that is conducive to bone formation. This review will help researchers overcome current limitations to take full advan-
tage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
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Graphical abstract

Background
The inherent self-repair capacity of bone allows fractures 
or bone defects to heal spontaneously without significant 
intervention. However, the restoration of extensive bone 
defects necessitates medical intervention [1]. The use of 
autografts, an established method for repairing extensive 
bone defects, is limited by donor scarcity and site mor-
bidity [2, 3]. Therefore, innovative biomaterials with reg-
ulatory abilities that can promote bone formation must 
be explored as substitutes for autografts in tissue repair 
and regeneration.

Rare earth elements (REEs), including cerium (Ce), 
europium (Eu), lanthanum (La), praseodymium (Pr), 
neodymium (Nd), samarium (Sa), gadolinium (Gd), 
terbium (Tb), dysprosium (Dy), holmium (Ho), erbium 
(Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), 
yttrium (Y), scandium (Sc) and promethium (Pm) [4], 
have been extensively investigated for use in the field 
of bone regeneration due to their flexible redox prop-
erties and their unique luminescence and electromag-
netic properties [5, 6]. Rare earth nanomaterials (RE 
NMs) based on REEs have been synthesized through 
hydrothermal methods [7], freeze-drying technology 
[8], wet chemical techniques [9], solvothermal methods 
[10], and other approaches. RE NMs have been inves-
tigated and utilized in various biomedical applications, 
including bone tissue engineering (Fig. 1). For instance, 
ligand-free  NaYF4:Yb/Er nanocrystals [11] and 
 NaGdF4:Yb/Er nanoparticles [12] have garnered signifi-
cant attention in the field of bone imaging applications 
due to their exceptional physicochemical properties 

for efficient conversion of weak near-infrared light into 
high-energy visible light. Lanthanum oxide nanoparti-
cles reinforced collagen ƙ-carrageenan hydroxyapatite 
(HA) biocomposite as an ideal bone filling material, 
promoting favorable osseointegration [13]. Addition-
ally, RE NMs can be employed in scaffold implantation 
[14], implant coating [15] and nanofibrous membranes 
[16]. The high porosity, high specific surface area and 
oriented structure of RE NMs allow them to effectively 
accommodate various functional cargoes, including 
drugs and growth factors, that promote bone formation 
[4]. The porous structure is also conducive to blood 
vessel growth, facilitating capillary migration into the 
bone microenvironment [13].

Previous studies have demonstrated that RE NMs pos-
sess exceptional osteogenic properties both in vitro and 
in vivo [17–20]. Cerium oxide nanoparticles (CeO NPs) 
emerged as one of the first RE NMs in medical applica-
tions, as Ce is the most abundant REE. Moreover, due to 
their remarkable antioxidant, anti-inflammatory, antibac-
terial, angiogenic, and antiapoptotic activities, CeO NPs 
have attracted significant attention for use in bone regen-
eration [21]. With further investigation, additional RE 
NMs, such as lanthanum oxide NPs [13], Gd@C82(OH)22 
NPs [22] and β-NaGdF4:Yb/Er upconversion NPs [12], 
have been found to promote osteogenesis. RE NMs not 
only regulate the functions of mesenchymal stem cells 
(MSCs) and osteoblasts but also promote bone forma-
tion by modulating the immune environment [23] and 
promoting angiogenesis [24]. However, how their inher-
ent properties affect bone regeneration and the possible 
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common osteogenic mechanisms involved have not been 
reviewed in detail.

This review presents an overview of the physicochemi-
cal properties and biological advantages of RE NMs as 
osteogenic materials, with particular emphasis on their 
capacity to regulate cellular function through multiple 
molecular mechanisms to promote osteogenesis. More-
over, we elucidate how RE NMs modulate macrophage 
differentiation and polarization to promote bone regen-
eration. Their regulation of endothelial hypoxia to modu-
late angiogenic–osteogenic coupling is also discussed. 
Finally, we summarize the crucial factors that influence 
the osteogenic effects of RE NMs. This review can serve 
as a valuable reference for studying the role of RE NMs in 
bone formation.

Physicochemical properties and biological 
advantages of RE NMs
Physicochemical properties of RE NMs
RE NMs possess unique physicochemical properties, 
including calcium  (Ca)-mimicking and electrical char-
acteristics, that endow them with osteogenic potential. 
These properties enable them to directly replace Ca in 
HA, contributing to bone deposition and activating cal-
cium channels to promote bone formation. The excel-
lent piezoelectricity and conductivity of these materials 
also allow them to accurately mimic natural bone, facil-
itating the repair of bone defects.

Fig. 1 The characteristics and biological applications of RE NMs. RE NMs principally manifest their biological effects through various forms 
such as nanoparticles, nanofibers, nanoscaffolds, nanoporous drug delivery systems, and fullerene derivatives. They are characterized by their 
luminescent, magnetic, electrical, antibacterial, anti-inflammatory, and antioxidant properties, which render them extensively applicable 
in the arenas of therapy, tissue engineering, bioimaging, and biosensing
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Calcium‑mimicking properties
RE NMs can release small amounts of RE ions during 
their slow degradation [8]. After internalization by cells, 
RE NMs localize to mitochondria [25], lysosomes [26] 
and the endoplasmic reticulum [27] and are abundant in 
both the cytoplasm [11] and the nucleus [27]. The frac-
tion of RE NMs localized within lysosomes undergoes 
acidification since their ionolysis kinetics are dependent 
on the pH [28].  Y2O3 NPs, for instance, localize to acidi-
fying intracellular lysosomes after they are taken up by 
BMSCs, and they undergo dissolution and transforma-
tion from  Y2O3 NPs to  Y3+ [29]. Most RE ions have bio-
logical properties similar to those of  Ca2+ and exhibit the 
ability to structurally or functionally replace  Ca2+ to exert 
positive or negative effects on bone regeneration [30].

The ionic radii of RE ions range from 0.0848 nm (Lu) 
to 0.1034  nm (Ce), which is similar to the Ca radius of 
0.104 nm [31]. This implies that RE ions can substitute for 
 Ca2+ in HA, thereby increasing its physical and chemical 
stability in bones [32]. When RE ions interact with cells, 
they can activate  Ca2+ receptors such as calcium-sensi-
tive receptors (CaRs), increasing intracellular  Ca2+ levels 
and promoting osteogenic differentiation [33]. However, 
the competitive binding of RE ions and  Ca2+ can partially 
block  Ca2+ channels. For example, RE ions block stretch-
activated calcium channels (SACCs) [34] and voltage-
gated calcium channels (VGCCs) [35], thereby impeding 
the modulation of bone and cartilage function by  Ca2+ 
[36, 37].

The potential positive or negative effects of the mim-
icry of  Ca2+ by RE ions have not been fully specified, as 
the effects of RE ions binding to different  Ca2+ receptors 
can vary. For instance,  Tb3+-bound cadherins exhibit a 
more elongated and less curved structure, resulting in 
the inhibition of cell adhesion [38]. Calmodulin bind-
ing sites undergo conformational and dynamic changes 
upon binding to RE ions  (Tb3+,  La3+, and  Lu3+) [39], 
potentially leading to osteoblast growth and differentia-
tion [40]. Therefore, understanding the biological effects 
of RE ions on  Ca2+-binding proteins and  Ca2+ channels 
is crucial for elucidating the physiological implications of 
the substitution of RE ions for  Ca2+.

Electrical properties
The electron configurations of [Xe]4fn (n = 0–14) and 
the abundant unpaired electrons in RE ions endow them 
with high electronic energy levels and long-lasting exci-
tation states, making them electrically active [41]. RE 
NMs exhibit diverse electrical properties, enabling broad 
applications in various fields [42], such as electronic 
transducers [43], ultrahigh-temperature electromechani-
cal engineering, ultrasensitive probes [44] and bone 
regeneration [45].

Natural bone is an electrosensitive tissue. When physi-
ological compressive loads are applied to the bone, it gen-
erates negative charges through piezoelectric potential. 
These negative charges effectively stimulate VGCC and 
SACC, leading to an increase in intracellular  Ca2+ levels 
and promoting bone regeneration [46]. Due to the piezo-
electric properties of RE materials, the use of RE ions as 
dopants can increase the piezoelectricity of a material. 
The incorporation of Eu [47] and Sm [48] dopants into 
the PMN-PT ceramic system, for instance, increases pie-
zoelectricity. RE doping generates electrostatic interac-
tions (such as H-bonding) [49] and stabilizes the crystal 
structure of NPs, which decreases their dielectric con-
stant, in turn facilitating the distribution of polarized 
electric fields on the NP surface for increased composite 
piezoelectricity [45].

In some cases, RE doping increases electrical conduc-
tivity, thereby simulating the cellular microenvironment 
and promoting normal cell growth [50]. The presence 
of oxygen vacancies endows RE NMs with significant 
potential [51] for increasing the electronic conductivity 
and charge mobility rate of materials [52], which facili-
tates the restoration of electrical current in bone

Biological advantages of RE NMs
Antioxidant activities
Bone defects are usually accompanied by local micro-
vascular rupture, inflammatory injury and infection, 
which poses a challenge for bone regeneration in anoxic 
microenvironments [53]. Tissue hypoxia can lead to the 
production of reactive oxygen species (ROS), which pri-
marily arise as byproducts of electron leakage from the 
mitochondrial electron transport chain [54] and nico-
tinamide adenine dinucleotide phosphate (NADPH) 
oxidase (NOX) [55]. A high concentration of ROS can 
induce osteoblast death and thus interfere with the 
osteogenic differentiation of BMSCs and osteoblast pre-
cursor MC3T3-E1 cells [53]. Therefore, the removal 
of excess ROS is highly important for promoting bone 
regeneration.

The antioxidant activity of RE NMs, such as Ce- [56], 
La- [57], Gd- [58, 59], Y- [59, 60], Eu- [61], Yb- [62] and 
Er-based [62] nanomaterials, can counteract the oxida-
tive damage caused by ROS. RE NMs are used as antioxi-
dants in treating diseases such as diabetes [60], hepatic 
failure [63], and neurodegenerative diseases [64]. CeO 
NPs [16], Gd@C82(OH)22 [65] and  Y2O3 NPs [66] can 
effectively remove intracellular ROS in bone cells, pro-
moting cell proliferation and osteogenic differentiation 
and thereby facilitating bone regeneration.

The antioxidant mechanisms of RE NMs primar-
ily involve their enzyme-like characteristics, genera-
tion of oxygen vacancies, and activation of relevant 
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signalling pathways to increase the expression of antioxi-
dant enzymes. (i) Enzyme-like characteristics. CeO NPs 
are the RE NMs most widely used for promoting bone 
regeneration. One of the key reasons for their popular-
ity is their excellent enzyme-mimicking activities, which 
make them highly stable and cost-effective alternatives to 
natural enzymes. These enzymes can mimic superoxide 
dismutase (SOD), catalase (CAT), oxidase and peroxi-
dase, phosphatase, DNase I and urease [67]. The presence 
and switching of  Ce3+ and  Ce4+ mixed valence states, 
along with the presence of oxygen vacancies in CeO, 
are the crucial factors in its enzyme-like characteristics 
[68]. SOD-like activity was dominant in CeO with a high 
 Ce3+/Ce4+ ratio [69], which is pivotal in the clearance of 
ROS [70]. This activity was found to be highly dependent 
on pH, and CeO was shown to act as an oxidase instead 
of a peroxidase at acidic pH [68]. (ii) The generation of 
oxygen vacancies. Oxygen vacancies refer to the vacan-
cies that occur in metal oxides when oxygen detaches 
from the lattice; these vacancies can reduce compounds 
and are considered to be valuable tools for eliminating 
ROS [67]. In Eu-doped yttrium oxide  (Y2O3) [71] and 
Eu-doped lutetium oxide  (Lu2O3) [72], REE doping alters 
the lattice constant, increasing the number of oxygen 
vacancies. Oxygen vacancies are an inherent defect in 
the crystal structure of CeO NPs [56] due to the imbal-
ance between  Ce3+ and  Ce4+. (iii) Upregulated expression 
of antioxidant enzymes, including superoxide dismutase 
(SOD), catalase (CAT), glutathione-s-transferase (GST) 
and hemeoxygenase-1 (HO-1). RE NMs may upregu-
late the expression of antioxidant enzymes through the 
FOXO1 pathway [73], the PI3K-AKT-mammalian target 
of rapamycin (mTOR) pathway, the ERK-MEK signalling 
pathway [74] and the nuclear factor erythroid 2-related 
factor 2 (Nrf2)-antioxidant response element (ARE) path-
way [75].

Anti‑inflammatory activities
The process of bone regeneration involves three sequen-
tial and overlapping phases: inflammation, regenera-
tion, and remodelling. In a normal bone repair scenario, 
inflammation is initiated immediately after injury and 
promptly resolved. However, persistent acute or chronic 
inflammation can impede the healing and regeneration 
of bones [76, 77]. Therefore, resolving inflammation fol-
lowing the proinflammatory phase could be an effective 
therapeutic strategy for enhancing bone regeneration.

Previous studies have shown that Ce- [78], Y- [60, 79], 
La- [23], and Gd-based [80] nanomaterials regulate the 
immune response and reduce inflammation. CeO NPs 
[9, 75] and magnetic lanthanum-doped hydroxyapatite/
chitosan (MLaHA/CS) nanoscaffolds [23] have been 

reported to reduce persistent inflammation and acceler-
ate the transition to the bone repair phase.

The anti-inflammatory mechanism of RE NMs is 
mainly attributed to promoting macrophage M2 polari-
zation [8], as observed in Ce [81, 82], Gd [83], La [84] and 
Nd:YAG laser irradiation [85, 86]. M2 macrophage polar-
ization is conducive to the regression of inflammation 
and the stability of bone repair and directly inhibits the 
production of inflammatory mediators (e.g., TNF-α, IL-6 
and iNOS) [87, 88]. For example, CeO NPs may induce 
the expression of arginase (Arg) [89], which competes 
with the inflammatory mediator iNOS for its substrates 
[90], thereby reducing inflammation in J774a [87]. Immu-
nomodulatory biomaterials have the potential to modu-
late inflammation and promote bone healing. We will 
discuss this prospect in more detail below.

Antibacterial activities
When bacterial activity occurs in a bone defect, the 
regenerative capacity of the bone can be severely com-
promised, leading to open comminuted fractures or to 
the development of severe osteomyelitis [91]. Allograft-
ing [92] and artificial bone [93] have been utilized for 
treating bone defects, but they may present challenges 
such as infection. Therefore, developing a biomaterial 
that effectively prevents bacterial adhesion and pro-
liferation is crucial for promoting bone regeneration. 
Wakabayashi [94] demonstrated that RE ions exhibit 
antibacterial activity against Staphylococcus aureus and 
Escherichia coli (E. coli). It has been reported that Ce- 
[95], La- [96, 97], Y- [98], Tb- [99], Dy- [100], Nd- [101, 
102], Yb- [103], Sm- [104] and Ho-based [105] nanoma-
terials possess extensive antibacterial properties and high 
biocompatibility, making them promising candidates for 
bone regeneration [106].

The antibacterial mechanisms of these materials 
include the following: (i) nanoscale surface topography 
induces chemical reactions at interfaces that repel bacte-
rial cells, hindering biofilm formation and resisting adhe-
sion [107]. (ii) RE NMs directly cause membrane damage 
[95] or change the morphology of the bacterial mem-
brane [108], decreasing cell viability. For example, CeO 
NPs [95] physically penetrate the membrane and destroy 
the integrity of the E. coli bacterial membrane, leading to 
the death of E. coli. iii) Some RE NMs, such as terbium 
oxide nanoparticles  (Tb4O7 NPs) [99], can disable bacte-
ria by inducing oxidative stress. This might occur because 
the antioxidant and oxidative activities of these materials 
are pH dependent, similar to those of CeO NPs. The pro-
ton motive force decreases the local pH (as low as 3.0) 
in the cytoplasm and membrane of bacterial cells [109, 
110]. The antioxidant activity of these materials is thus 
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transformed into oxidative activity under acidic condi-
tions [111]. CeO NPs [112] may exert the same antibacte-
rial effects.

Effects of RE NMs on osteogenesis 
and the underlying mechanisms
Due to the unique physicochemical and biological prop-
erties of RE NMs, they have been extensively investigated 
as osteogenic materials. RE NMs induce a faster healing 
with regeneration of lost bone tissue in vivo (Fig. 2). For 
instance, La-LDH nanohybrid scaffolds increase the bone 
mineral density (BMD) and the ratio of bone volume to 
tissue volume (BV/TV) after 12 weeks of implantation in 
rat cranial defect model [14]. Eu-doped  Gd2O3 nanotubes 
extremely increased the maximal load of bones [113]. 
These are attributed to their excellent osteogenic proper-
ties as we discussed in Part 2.

The calcium-mimicking of RE NMs enable them to 
replace Ca in bones and improve BMD in  vivo. Addi-
tionally, they activate  Ca2+ channels in MSCs to regu-
late intracellular  Ca2+ levels and facilitate osteogenic 
differentiation by simulating  Ca2+ and affecting elec-
tric fields. The antioxidant activities of RE NMs can 
safeguard cells and the osteogenic microenvironment 
against ROS-induced damage. Furthermore, their anti-
inflammatory and antibacterial properties effectively 
alleviate inflammation and bacterial infections at bone 
defects and surrounding implants, thus expediting 
bone repair. Studies have demonstrated the ability of 
RE NMs to promote osteogenesis, as shown in Table 1. 
We will detail the osteogenic mechanism of RE NMs 
and explore the unreported RE NMs that may have 
osteogenic effects.

Fig. 2 RE NMs promote osteogenesis in vivo. A Micro-CT images of skulls from the control, CS,  CePO4/CS, and  CePO4/CS/GO groups 3 months 
after surgery. Source: Reprinted with permission from ref. [8]. B Effect of Eu-MSNs on osteogenesis in vivo. Representative micro-CT images of new 
bone formation (the grey background represents a normal skull, the black holes represent the surgically created 5 mm diameter cranial defect, 
and the red represent the newly formed bone at the defect site, according to analysis by CTAn software for Micro-CT. (a) Corresponding statistical 
analysis. (b) VG staining of the cranial defects shows that more new bone (red) was formed at the cross section of the defect in the Eu-P groups at 6 
and 12 weeks. Source: Reprinted with permission from ref. [175]. Copyright 2024, with permission from Elsevier. C Fluorochrome-labelling analysis 
of bone mineralization by calcein (green) in La/LDH at 14 days and alizarin red (red) at 7 days before euthanasia. Source: Reprinted with permission 
from ref. [14]. CS, chitosan; GO, Graphene oxide; Eu-MSNs, europium-doped mesoporous silica nanospheres; Poly, polymer; M-P, MSNs coated 
polymer film; Eu-P, Eu-MSNs coated polymer film; La/LDH, lanthanum-substituted MgAl layered double hydroxide
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Direct osteogenic effects and mechanisms
Promotion of cell proliferation, adhesion and migration
The ability of materials to promote cell proliferation, 
adhesion and migration largely reflects the interaction 
between the materials and the cells. The stable adhesion 
and proliferation of MSCs and osteoblasts on a biomate-
rial surface are prerequisites for the promotion of bone 
repair and bone integration. Subsequently, the cells 
adhering to the material surface migrate and anchor to 
the site of bone defects, where they perform osteogenic 
functions [3].

Studies have reported that RE NMs, including Ce 
[16, 114], Gd [10, 22, 115], Eu [116], La [13], Y [66], 
 NaGdF4:Yb/Er NPs [12] and  NaYF4:Yb/Er NPs [11], have 
high biocompatibility and can promote the proliferation 
of MSCs, preosteoblasts and osteoblasts. RE NMs have 
been shown to accelerate cell cycle progression [117] and 
promote mitotic spindle formation [12]. The interactions 
of RE NMs with classical osteogenic signalling path-
ways, such as the BMP/Smad [113] and Wnt/β-catenin 
[14] pathways, as well as the activation of  Ca2+-related 
pathways through  Ca2+ substitutes, are believed to play 
pivotal roles in this process. For instance,  Gd3+ can stim-
ulate CaRs and increase intracellular  Ca2+, thereby pro-
moting mitogenic responses in MC3T3-E1 cells [33]. This 
partially elucidates the mechanism underlying the pro-
motion of cell proliferation by Gd-based nanomaterials. 
Additionally, the antioxidant properties of RE NMs, such 
as Gd@C82(OH)22 [65] and  Y2O3 NPs [66], can reduce 
intracellular ROS production, relieve oxidative stress, 
and increase the viability and proliferation of osteoblasts. 
Their antibacterial activity can also effectively mitigate 
the cell damage and death caused by bacterial-triggered 
ROS production, thereby promoting cell function [118].

RE NMs regulate cell adhesion and migration through 
modulating the cytoskeleton. (i) The formation of filo-
pods and pseudopods, such as CeO NPs [114] and 
La-substituted layered double hydroxide (La-LDH) 
nanohybrid scaffolds [14] occurs in advance of the cell 
movement, where long f-actin molecules within the cell 
protrude through the extended front line to sense nano-
topographical cues and determine the direction of migra-
tion [119]. This process is followed by the formation of 
focal adhesions (FAs) in front of the cell: the FAs are 
formed by f-actin and the ECM and provide tension to 
move the cell forward under the action of stress fibers 
[120]. (ii) The overall diffusion of actin is increased, and 
the diffusion area of MSCs is expanded [18, 54], facilitat-
ing the generation of abundant FAs and promoting rapid 
cytoskeletal rearrangement, thus accelerating the migra-
tion process.

The three-dimensional (3D) interconnected macropo-
res with pore sizes of 100–200 μm of La-LDH nanohybrid 

scaffolds facilitated the adhesion and pseudopodium 
migration of rBMSCs-OVX along the pore walls and 
promote the in-growth of the newly formed bone tis-
sues from the surfaces into the interiors [14]. This may 
be due to the fact that the nanoscale porous structures 
of RE NMs deliver mechanical signals to cells via integ-
rins [121] and Rho GTPases [122] signalling pathways, 
thereby controlling cytoskeletal reorganization and pro-
moting cell adhesion and migration. The orientation of 
the nanofibers can also directionally regulate the direc-
tion of cell migration [123]. Moreover,  Ce3+ upregulates 
stromal cell-derived factor-1 (SDF-1) mRNA expression 
(124), which plays a crucial role in the BMP2-induced 
recruitment, migration, and osteogenic differentiation 
of BMSCs [125]. These findings suggest that Ce-based 
nanomaterials promote cell migration partly through 
activation of the BMP signalling pathway and upregula-
tion of the expression of SDF-1.

Promotion of osteogenic differentiation
MSCs can differentiate into many distinct mesenchymal 
cell types, such as osteoblasts, chondrocytes and adipo-
cytes [126]. The osteogenic differentiation of bone mar-
row MSCs is a critical step in osteogenesis. RE NMs 
accelerated bone tissue formation promote MSC differ-
entiation. It is reported that cerium oxide nanoparticles-
modified bioglass (Ce-BG) scaffolds rapidly induced the 
growth of new osseous tissues and had positive effects on 
alkaline phosphatase (ALP) (an early phenotypic marker 
of osteogenesis) activity [127]. In addition, RE NMs pro-
moted high expression of ALP, runt-related transcription 
factor 2 (RUNX2), osteopontin (OPN), bone sialopro-
tein II (BSP II) and osteocalcin (OCN) in MSCs [11, 12, 
14, 65, 113, 127–129] (Fig.  3). Some RE NMs, such as 
 NaGdF4:Yb/Er NPs [12] and  NaYF4:Yb/Er nanocrystals 
[11], have also been shown to inhibit adipogenic differ-
entiation [11, 12, 22], which can indirectly increase the 
differentiation of MSCs into osteoblasts [130] (Fig.  3C). 
This process is accompanied by the activation of the 
classical transforming growth factor-beta (TGF-β)/bone 
morphogenic protein (BMP)/Smad and wingless-INT 
(Wnt)/β-catenin signalling  pathways. Additionally, they 
can activate  Ca2+ channels and exert a significant influ-
ence on bone formation (Fig. 4).

TGF‑β/BMP/Smad signalling  pathway TGF-βs and 
BMPs, which act on a tetrameric receptor complex, trans-
duce signals to the canonical Smad-dependent signalling 
pathway to regulate osteogenic differentiation, bone for-
mation and bone homeostasis [131]. RE NMs, includ-
ing graphene-modified  CePO4 nanorods [8], Eu-doped 
 Gd2O3 nanotubes [113] and [Gd@C82(OH)22]n NPs [22], 
can activate the BMP signalling pathway and thereby pro-
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mote osteogenic differentiation (Fig.  4A). They activate 
the TGF-β/BMP/Smad signalling pathway by interact-
ing with BMP receptors (BMPRs) on the cell membrane 
[132], activating integrin-mediated TGF-β signalling 
[133] or indirectly increasing BMP expression. Smad1/5/8 
are then phosphorylated and regulate the expression of 
genes related to osteogenic differentiation. The ability of 
RE NMs to inhibit adipogenic differentiation and thereby 
promote osteogenesis may also be attributed to the BMP/
Smad1/5 signalling pathway [22]. This process may involve 
the downregulation of the adipogenic differentiation-
related transcription factors C/EBP-α and PPARγ [132, 
134]. Additionally, CeO NPs can increase endochondral 
osteogenesis, thereby promoting angiogenesis and facili-
tating bone regeneration [114]. This effect is potentially 
mediated by BMP2, which has the inherent capability to 
induce chondrogenic differentiation and stimulate endo-
chondral bone formation [135].

In addition, the Smad ubiquitination regulatory fac-
tors Smurf 1 and Smurf 2 regulate BMP signalling via 
ubiquitination, thereby preventing excessive activation 
of TGF-β/BMP signalling [136].  Ce3+ and  Tb3+ [124, 
134] reduce the expression of Smurf 1 and Smurf 2 while 
inhibiting the subsequent degradation of Smad and BMP. 
This may enable RE NMs to further activate the TGF-β/
BMP/Smad signalling pathway to promote osteogenic 
differentiation and inhibit adipogenic differentiation.

Wnt/β‑catenin signalling  pathway The Wnt/β-catenin 
signalling pathway is extensively involved in fundamental 
processes of bone metabolism, including osteoblast pro-
liferation, differentiation, and apoptosis [137]. The Wnt/
β-catenin pathway suppresses the expression and transac-
tivation of PPARγ mRNA by inducing histone H3 lysine 9 
(H3K9) methylation on the target gene, thereby inhibiting 
MSC adipogenic differentiation [138].

Fig. 3 RE NMs promote osteogenesis in vitro. A (a) ALP staining and (b) alizarin red staining images of hBMSCs cultivated with control medium 
and extraction solution of HA/CS and CeHA/CS scaffolds for 7 and 20 days. Source: Reprinted with permission from ref. [164]. B RT-PCR analysis 
of ALP, RUNX2, BMP-2 and OCN expression in MC3T3-E1 cells. Source: Reprinted with permission from ref. [8]. C Adipogenic differentiation 
of the rBMSCs after 7 days of treatment with NaYF4: Yb/Er at different concentrations. Source: Reprinted from ref. [189]. Copyright 2024, 
with permission from Elsevier. D Nucleation of collagen fibrillation by nanoparticles; CeO NPs, yellow. Source: Reprinted with permission from ref. 
[151]. HA, hydroxyapatite; CS, chitosan; CeHA/CS, nacre-mimetic cerium-doped layered hydroxyapatite/chitosan; GO, Graphene oxide; ALP, Alkaline 
Phosphatase; RUNX2, runt-related transcription factor 2; BMP-2, bone morphogenetic protein2; OCN, osteocalcin
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According to previous reports, RE NMs, including La-
LDH nanohybrid scaffolds [14] and CeO NPs [139], can 
activate the Wnt/β-catenin signalling pathway, thereby 
promoting the proliferation and osteogenic differen-
tiation of MSCs. However, these materials activate the 
pathway in different ways. La-LDH nanohybrid scaffolds 
increase p-GSK-3β levels and promote the accumulation 

of β-catenin [14], while CeO NPs activate the Wnt path-
way by facilitating the nuclear translocation of β-catenin 
through Fam53B [139]. In addition, Gd-based nanoma-
terials may promote the activation of the Wnt/β-catenin 
signalling pathway by a mechanism similar to that of 
La-based nanomaterials, as  Gd3+ has been shown to 
upregulate Akt/GSK3β expression [140], which increases 

Fig. 4 Direct osteogenic effects and mechanisms of RE NMs. RE NMs activate the TGF-β/BMP/Smad (A) and Wnt/β-catenin signalling pathways 
(B) to promote osteogenic differentiation, cell proliferation and migration and inhibit the lipogenic differentiation of MSCs. C RE NMs activate  Ca2+ 
channels, increase intracellular  Ca2+ levels, and promote cell proliferation and osteogenic differentiation. D RE NMs promote collagen secretion 
and the formation of collagen nucleation sites to promote collagen calcification. BMP, bone morphogenetic protein; BMPR, bone morphogenetic 
protein receptor; TGF β, transforming growth factor-β; Smad, small mothers against decapentaplegic; Wnt, wingless-type MMTV integration site 
family; CaR, calcium-sensitive receptors; VGCC, voltage-gated calcium channels; Calm, calmodulin; Cn, calcineurin; IP, inositol triphosphate; IPR 
inositol triphosphate receptor; COL I, type I collagen
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osteogenic capacity via the Wnt/β-catenin signalling 
pathway [141] (Fig. 4B).

The activation of the Wnt/β-catenin pathway by RE 
NMs promotes cell proliferation and osteogenic differen-
tiation, thereby accelerating bone regeneration. However, 
whether RE NMs inhibit the adipogenic differentiation of 
MSCs through this signalling pathway and further pro-
mote osteogenic differentiation requires further study.

Activation of calcium channels Cytosolic  Ca2+ homeo-
stasis is essential for multiple physiological functions, 
such as stem cell viability, cell proliferation and osteogenic 
differentiation [142]. RE NMs promote osteogenic differ-
entiation by increasing intracellular  Ca2+, mainly through 
the activation of CaRs and VGCCs, which is attributed 
to their calcium-mimicking and electrical properties 
(Fig. 4C).

The dissolution and degradation of RE NMs produce 
RE ions, which mimic  Ca2+ and simulate CaRs, leading 
to an increase in intracellular  Ca2+.  Gd3+, for instance, 
activates ERK1/2 and p38 MAPKs and promotes osteo-
genesis via CaRs [33]. Similarly,  La3+ has been shown 
to promote osteogenic differentiation by activating the 
ERK1/2 signalling pathway through the increase in intra-
cellular  Ca2+ [143]. The mechanism involves pertussis 
toxin (PTx)-sensitive Gi protein signalling [143], which 
indicates that these proteins are associated with Gi pro-
tein-coupled CaRs [144]. The activation of G protein-
coupled receptors generates inositol triphosphate (IP3), 
which, upon binding to inositol triphosphate receptors 
(IP3Rs) in the ER, leads to ER  Ca2+ release and potenti-
ates the SOCE mechanism [142], thereby further pro-
moting osteogenesis. Furthermore, CeO NPs have been 
reported to activate osteogenic differentiation by upreg-
ulating the ERK1/2 [127] and DHX15/p38 MAPK [114] 
pathways. This effect may be achieved through the activa-
tion of CaRs.

RE NMs have excellent electrical properties. Gd-doped 
barium titanate nanoparticles (Gd-BTO NPs) generate 
a negative surface potential and can cause oscillation of 
intracellular  Ca2+ concentrations via VGCCs, activating 
the calcineurin (Cn)/nuclear factor of activated T cells 
(NFAT) signalling pathway and promoting osteogenic 
differentiation [40, 145]. However, studies have demon-
strated that the majority of RE ions block VGCCs, which 
is the opposite of the effect of Gd-BTO NPs. In fact, the 
blocking effect of RE ions on VGCCs is voltage independ-
ent, as the mechanism involves occlusion of the channel 
pore through the binding of RE ions to a  Ca2+/M3+ bind-
ing site [35]. Since Gd-BTO NPs are applied as nanocom-
posites, their release of  Gd3+ is slower and less abundant 
than that of  GdCl3. This finding increases the likelihood 
that VGCCs will be activated by electrical sites.

Therefore, when applying RE NMs in osteogenesis, it is 
crucial to consider the distinct effects of RE ions on dif-
ferent  Ca2+ channels, as well as the diverse impacts of 
both RE NMs with electrical properties and different RE 
ions on  Ca2+ channels.

Promotion of collagen secretion and calcification
Bone protein consists of 85% to 90% collagen. The colla-
gen matrix plays a critical role in bone mineral deposi-
tion [146]. RE NMs can promote collagen secretion and 
calcification in vivo and in vitro. For instance, the La-[14] 
and Ce-[127] doped scaffolds were observed to augment 
the formation of both collagenous and non-collagenous 
organic matrix, as well as accelerate the deposition of col-
lagenous fibers. The bone matrix consists mainly of type 
I collagen (COL I) [146]. COL I promotes osteogenic 
differentiation [147], and COL II promotes chondro-
genic differentiation [148]. Eu-[116, 129], Gd-[10], and 
Tb-[129] doped nanomaterials significantly increased 
COL I secretion. Gd-[10] doped nanobunches promoted 
the secretion of COL I and COL II, which mediated oste-
ogenic differentiation [147] and chondrogenesis [10].

Previous studies have shown that RE NMs can ensure 
stable collagen production by inhibiting collagenase 
activity [149] and decreasing the proteolytic sensitiv-
ity of collagen [150]. In addition, RE NMs promote col-
lagen calcification in MSCs [22] and osteoblasts [25]. 
The porous structures significantly enhance the surface 
areas of RE NMs, thereby providing numerous func-
tional groups on their surfaces. These functional groups 
serve as active sites for in vivo deposition of apatite and 
collagen, such as OH and O–Si–O [127]. They can form 
nucleation sites for protein fibrillation [151] (Fig.  3D), 
increase the rate of collagen polymerization [152], stabi-
lize collagen structure [153], and increase the strength of 
collagen structure [154] (Fig. 4D). RE NMs can effectively 
induce collagen secretion and calcification, creating a 
favourable microenvironment for tissue and bone regen-
eration [150, 155].

Indirect osteogenic effects and mechanisms
In addition to the direct regulation of MSCs and osteo-
blasts, many immune cells in the bone microenviron-
ment, such as macrophages, participate in immune 
regulation, and many newly formed blood vessels provide 
nutrition to new bone. This indirect regulatory effect can 
also effectively promote bone formation. Osteogenesis 
can be promoted indirectly by eliminating adverse fac-
tors, for example, inhibiting OC formation to limit bone 
absorption, regulating inflammatory responses to pro-
vide a suitable microenvironment for osteogenesis, and 
promoting tissue vascularization.
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Inhibition of osteoclastogenesis and reduction in mature 
osteoclasts (mOCs)
Maintaining balance between bone formation and bone 
resorption is essential in bone metabolism [156]. Exces-
sive OC activation causes bone loss and hinders bone 
regeneration. Accordingly, decreasing osteoclastogenesis 
or osteoclast function is a task of interest in bone regen-
eration research. RE NMs can block osteoclast-mediated 
bone resorption by inhibiting osteoclastogenesis [14, 25] 
and destroying mature osteoclasts (mOCs) [157, 158], 
thereby reducing bone loss and promoting osteogenesis 
(Fig. 5).

Inhibition of osteoclastogenesis
Within the bone marrow, macrophages proliferate and 
fuse into giant multinucleated mOCs, which are respon-
sible for bone resorption [159]. This process involves 

several stages of differentiation, including preosteoclasts 
(pOCs), fused multinucleated osteoclasts, and ultimately 
mOCs [160]. Receptor activator of nuclear factor kappa-
B ligand (RANKL) is a homotrimeric transmembrane 
protein [161]. Receptor activator of nuclear kappa-B 
(RANK) binds to RANKL and subsequently promotes 
osteoclastogenesis. This process involves activation of 
the NF-κB pathway, leading to the expression of NFATc1 
and c-Fos, which play crucial roles in the regulation of 
osteoclast fusion [14, 162]. Osteoprotegerin (OPG) is a 
competitive inhibitor of RANKL. The OPG/RANKL ratio 
critically affects osteoclastogenesis [163]. RE NMs (e.g., 
La-LDH nanohybrids [14] and CeO NPs [70, 78, 164]) 
were found to decrease RANKL expression and increase 
the OPG/RANKL ratio in MSCs, thereby suppressing 
RANKL-induced osteoclastogenesis (Fig.  5). In addi-
tion,  Gd3+ increased the OPG/RANKL ratio in murine 

Fig. 5 RE NMs inhibit osteoclasts to promote osteogenesis. A Schematic diagram of the mechanism through which CNS functions 
as a pro-anabolic therapy in OVX mice. B Annexin-V/PI staining was analysed via FCM to quantify the percentage of apoptotic early BMMs. Source: 
Reprinted with permission from ref. [157]. Copyright 2024, with permission from Elsevier. C Western blot results for t-GSK-3β, p-GSK-3β, β-catenin, 
Runx-2, OPG and RANKL expression in rBMSCs-OVX cultured with La-LDH and LDH scaffolds for 14 days. β-actin was used as an internal reference. D 
TRAP staining images of bone marrow macrophages cells cultured with La-LDH and LDH scaffolds in the presence of M-CSF (30 ng/mL) and RANKL 
(50 ng/mL) for 7 days. Source: Reprinted with permission from ref. [14]. Copyright 2024, with permission from Ivyspring International. CNS, cerium 
nano-system; RANKL, receptor activator of nuclear factor-κ B Ligand; GSK-3β, glycogen synthase kinase-3β; RUNX2, runt-related transcription factor 
2; OPG, osteoprotegerin; La/LDH, lanthanum-substituted MgAl layered double hydroxide
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osteocytes [165], indicating that Gd-based nanomaterials 
may prevent bone loss by a similar mechanism to that of 
La-LDH nanohybrids and CeO NPs (Fig. 6B).

Moreover, CeO NPs have been reported to imme-
diately acquire oxidase activity at pH = 4.0 [166] due 
to the inhibition of redox cycling from  Ce3+ to  Ce4+ 
by protons [167]. mOCs or macrophages then show a 

high number of lysosomes and an increase in ATPase 
 H+-transporting V0 subunit D2 (ATP6v0d2), and the 
pH of the resorption lacuna reaches 3–4 [166]. Exces-
sive ROS produced by CeO NPs can inhibit the NF-κB 
and MAPK signalling pathway-mediated activation of 
osteoclastogenesis [158].

Fig. 6 Indirect osteogenic effects and mechanisms of RE NMs. A RE NMs indirectly promote osteogenesis by regulating macrophages 
and endothelial cells. B RE NMs inhibit osteoclast differentiation through the NF-κB and MAPK signaling pathways in macrophages and may 
promote M2 polarization through the PI3K/Akt and MAPK signaling pathways to promote bone repair. C RE NMs induce hypoxia in ECs, leading 
to the upregulation of HIF1α and ROS and promoting angiogenesis and bone formation. HIF1α, hypoxia-inducible factor 1 alpha; ROS, reactive 
oxygen species
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Reduction in mOCs
CeO NPs dose-dependently increased intracellular ROS 
levels in mOCs, but excessive ROS may decrease the 
resorptive function [158] and lead to direct cell destruc-
tion [112]. Excessive ROS can further sensitize endoplas-
mic reticulum (ER)-based  Ca2+ channels, leading to the 
release of  Ca2+ from the ER and increasing the concen-
tration of  Ca2+ in inner mitochondria [157, 168], which 
results in the uncontrolled release of both  Ca2+ and ROS 
[169] (Fig.  6B). Consequently, significant cellular struc-
tural damage occurs, along with eventual apoptosis [158]. 
Tb [170] may have the same effect, as it acts as an oxi-
dase within acidic bacteria. Notably, this oxidase activity 
of RE NMs does not affect pOCs [157], which promotes 
H-vessel formation and angiogenic–osteogenic coupling. 
This lack of effect on pOCs may be due to the relatively 
neutral pH in the cellular microenvironment.

Regulation of the immune microenvironment
The immune response associated with bone healing con-
sists of an early acute inflammatory phase and a longer 
repair phase, and the transition is regulated mainly by 
macrophages [76]. In the acute inflammatory phase, the 
immune response is activated, leading to the secretion of 
inflammatory cytokines and chemokines by M1 (proin-
flammatory) macrophages to recruit MSCs. Upon polari-
zation to the M2 phenotype (anti-inflammatory), these 
macrophages secrete anti-inflammatory cytokines along 
with osteogenic cytokines such as BMP2 and TGF-β 
[171, 172], thereby promoting new bone formation [76, 
173].

RE NMs generate an appropriate immune response 
in macrophages [174, 175] and increase macrophage 
expression of osteogenic and angiogenic factors [175]. 
For example, Eu-doped mesoporous silica nanospheres 
(Eu-MSNs) (Fig.  7A) [175] modulate osteoimmunol-
ogy and can enable vascularized osseointegration in 
bone regeneration. Moreover, Gd@C82(OH)22 modu-
lates the inflammation-induced differentiation of MSCs 
through the c-Jun N-terminal kinase (JNK)/transcription 
3 (STAT3) pathway [65] (Fig. 7C). The immunomodula-
tory effect of RE NMs helps promote stem osteogenic 
differentiation and increase the therapeutic efficacy of 
stem cell-based agents for biomedical regeneration in an 
inflammatory microenvironment.

On the other hand, the anti-inflammatory activity of 
RE NMs offers significant advantages in bone regenera-
tion. These compounds reduce the levels of inflammatory 
factors, such as iNOS, within the bone microenviron-
ment and facilitate the M2 polarization of macrophages 
[15]. CeO NPs [9, 15, 75], MLaHA/CS nanoscaffolds [23] 
and hydrated  GdPO4 nanorods [7] have been reported 
to induce the M2 switch in macrophages (Fig.  6A, B). 

The mechanism involves inhibition of the PI3K-AKT 
signalling axis [15]. One study demonstrated that the 
inhibition of M1 polarization in osteoarthritis synovial 
macrophages by nintedanib is mediated by the MAPK/
PI3K-AKT pathway, resulting in reduced articular carti-
lage degeneration [176]. The inhibitory effect of CeO NPs 
on ROS-induced MAPK production in macrophages may 
also contribute to the M2 polarization of macrophages. 
In addition, the effects of RE NMs may occur in part by 
activating CaRs and thus increasing sensitivity to  Ca2+ 
[144].  Ca2+ can promote CaR-mediated M2 macrophage 
polarization, leading to osteoinduction [177]. How-
ever, whether immune cells other than macrophages are 
involved in the immunomodulation of osteogenesis by 
RE NMs remains to be studied.

Promotion of angiogenesis
Increasing the number of capillaries can facilitate the 
delivery of growth factors, nutrients, and oxygen to expe-
dite bone repair [4]. RE NMs can promote angiogenesis 
and enhance vascularized osteogenesis. On the one hand, 
the porous structures facilitate blood vessels ingrowth 
into the scaffold to provide nutrients to the nascent bone 
tissue [178]. Pore size, porosity, and pore interconnectiv-
ity [179] dictate the contact area of endothelial cells with 
the scaffold, which is promoted by mechanical signals to 
extend multiple thin filopodia increasing their adhesion 
and growth [180]. On the other hand, RE NMs induce 
macrophages to secrete anti-inflammatory cytokines and 
angiogenic factors (e.g., CD31, MMP9 and VEGFR1/2) 
[175], which immunomodulate angiogenesis in the bone 
microenvironment. Angiogenesis can also be regulated 
by tissue-localized oxygen concentrations. RE NMs effec-
tively promote angiogenesis by decreasing the intracel-
lular oxygen concentration, prompting various cellular 
mechanisms to adapt to a low-oxygen environment 
(Figs. 8, 9).

Hypoxia-inducible factor-1α (HIF1α) is activated by 
hypoxia and serves as the key mediator of adaptation 
to hypoxia [181]. It can promote VEGF expression and 
thus the formation of new blood vessels to increase oxy-
gen delivery [182]. RE NMs induce transient hypoxia in 
ECs, leading to the upregulation of HIF1α (Fig.  6A, C). 
Das [182] observed low  O2 levels immediately after CeO 
NPs treatment for up to 1 h; however,  O2 levels returned 
to normal after 2 h of CeO NPs treatment. The reason is 
that the oxygen vacancies in RE NMs can bind oxygen 
from inside the cell [182]. Additionally, CeO NPs not 
only increase the expression of HIF-1α but also stabilize 
HIF-1α through activating the  Ca2+ channel of MSCs and 
increasing  Ca2+ levels [183], highlighting their impor-
tance in angiogenesis regulation. Given the crucial role of 
 Ca2+ in stabilizing HIF-1α within ECs [184–186], further 
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investigation is warranted to explore whether other RE 
NMs can also induce angiogenesis in hypoxic endothelial 
cells by activating  Ca2+ channels such as CaRs.

Another mechanism involved in the response to 
hypoxia is the formation of ROS [181]. They induce the 
activity of matrix proteases, which is one of the initial 

characteristics of angiogenesis and can provide space for 
EC migration. ROS can also interact with HIF1α to pro-
mote angiogenesis [178]. Some RE NMs (e.g., europium 
hydroxide [Eu(OH)3] nanorods [24, 187] and terbium 
hydroxide [Tb(OH)3] nanorods [188]) promote angiogen-
esis by releasing controlled amounts of ROS (primarily 

Fig. 7 RE NMs regulate the immune environment to promote osteogenesis. A The prepared Eu-MSNs stimulated the polarization of macrophages 
to the inflammatory form, which further induced the osteogenic differentiation of BMSCs and induced the angiogenic differentiation 
of HUVECs. Source: Reprinted with permission from ref. [175]. Copyright 2024, with permission from Elsevier. B qRT‒PCR analysis of the gene 
expression of pro- and anti-inflammatory markers in 0, 1, 10 and 20 μg/mL CeO NPs after 3 days. Source: Reprinted with permission from ref. 
[9]. Copyright 2024, with permission from Elsevier. C Scheme of the mechanism by which Gd@C82(OH)22 modulates the osteogenesis of hMSCs 
through the JNK/STAT3 signalling pathway in the inflammatory microenvironment. Source: Reprinted with permission from ref. [65]. Republished 
with permission of Royal Society of Chemistry, 2024, permission conveyed through Copyright Clearance Center, Inc. D (a–h) Detection of M1 
and M2 polarization by flow cytometry with macrophages labelled according to CCR6 and CD206 expression. Source: Reprinted with permission 
from ref. [23]. E (a) Van Gieson staining. (b) CD206 immunohistochemical staining of craniums with three cranial defects implanted with HA/
CS, LaHA/CS, or MLaHA/CS scaffolds. Source: Reprinted from ref. [23] with permission of Royal Society of Chemistry, 2024, permission conveyed 
through Copyright Clearance Center, Inc. Eu-MSN, europium-doped mesoporous silica nanospheres; iNOS, inducible nitric oxide synthase; CD163, 
cluster of differentiation 163; IL-10, Interleukin-10; TGF β, transforming growth factor-β; CCR7, Recombinant Chemokine C–C-Motif Receptor 7; 
CD206, Macrophage mannose receptor 1; LaHA/CS, lanthanum-doped hydroxyapatite (HA)/chitosan (CS); MLaHA/CS, magnetic M-type hexagonal 
ferrite  (SrFe12O19) nanoparticles incorporated LaHA/CS
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Fig. 8 RE NMs promote angiogenesis to regulate osteogenesis. A CeO NP-induced angiogenesis was measured by a chick chorioallantoic 
membrane (CAM) assay (A–D). Source: Reprinted with permission from ref. [182], copyright 2024, with permission from Elsevier. B 
Microfil-perfused μCT angiography of OVX mouse femurs treated with Ald or CNS and quantification of vessel volume and surface area. Images 
are representative of 5 independent experiments. Source: Reprinted with permission from ref. [157]. C The in vivo angiogenic property of Nd 
nanopolymorphs was assessed by using a chick egg CAM model. Source: Reprinted from ref. [189], copyright 2024, with permission from Elsevier. 
D Microphotographs of the aortic arch sprout area. Source: Reprinted from ref. [13], copyright 2024, from WILEY. E (a) Zebrafish embryos at 72 h. 
(i) Blank control, (ii) 100 μg/mL Eu rods, (iii) 100 μg/mL Eu spheres, (iv) 100 μg/mL Tb rods, (v) 100 μg/mL Tb spheres. Compared with those 
in the blank control group, vessel sprouts were found in the ISV region and head under nanoparticle treatment. (b) Graph showing the numbers 
of ISV-recovered embryos. (c) Graph showing the average ISV sprouts per embryo. The number of ISV sprouts increased at different levels 
after nanoparticle treatment. Source: Reprinted from ref. [188], copyright 2024, with permission from WILEY. VEGF, vascular endothelial growth 
factor; CNP, cerium oxide nanoparticles; OVX, ovariectomized; Ald, alendronate; CNS, cerium nano-system; PC, positive control; NC, negative 
control; NHH, Nd nanoparticles, NBA, Nd nanocubes; NBC, Nd nanorod; Native Col, native collagen; Col-LO, collagen–lanthanum oxide; Col-KA, 
collagen-ƙ-carrageena; Col-KA-LO, collagen-ƙ-carrageenan-lanthanum oxide nanoparticle



Page 19 of 28Chen et al. Journal of Nanobiotechnology          (2024) 22:185  

Fig. 9 Mechanism by which RE NMs promote angiogenesis.A Atomistic models and (oxygen) electrostatic energy surfaces for CeO NPs. Sphere 
model representation of the atomic positions comprising (a) the unreduced CeO NPs and (b) the reduced CeO NPs. Oxygen is coloured red,  Ce4+ 
is white, and  Ce3+ is blue. (c) and (d) show the electrostatic energy surface maps of the unreduced and reduced CeO NPs, respectively, and enlarged 
views are shown in (e) and (f ), respectively. (g) and (h) show an area of a CeO NP with a high concentration of  Ce3+ (yellow spheres) on the surface. 
Domains near  Ce3+ are red, indicating labile oxygen; conversely, domains relatively devoid of surface  Ce3+ are blue, indicating reduced oxygen 
extraction reactivity. Source: Reprinted from ref. [182] , copyright 2024, with permission from Elsevier. B (a) Primary cell culture with 1 μg/mL 
nanoparticles and 1000 units/mL catalase. (i) Blank control, (ii) 1000 units/mL catalase, (iii) 20 ng/mL VEGF, (iv) 20 ng/mL VEGF and 1000 units/
ml catalase, (v) 1 μg/mL Eu rods, (vi) 1 μg/mL Eu rods and 1000 units/mL catalase. (b) Quantitative analysis showing that catalase can abolish 
proangiogenic activities induced by nanoparticles but not by VEGF. Source: Reprinted from ref. [188] , copyright 2024, with permission from WILEY. C 
Western blot analysis showing greater levels of Ref-1/APE1, HIF-1α, and VEGFA in the 0.6 mg CNP group than in the PBS-only group at days 3 and 7. 
Source: Reprinted with permission from ref D Enhanced NO production by EHNs. Fluorescence imaging of nitric oxide production in EA: hy926 cells 
incubated with (a, a1) nothing (control) or (b, b1) EHNs (5 μg/mL). Source: Reprinted from ref with permission of the Royal Society of Chemistry, 
2024; permission conveyed through the Copyright Clearance Center, Inc. Ref-1/APE1, apurinic/apyrimidimic endonuclease 1/ redox factor 1; HIF-1α, 
hypoxia-inducible factor 1 alpha; VEGFA, vascular endothelial growth factor A; CNP, cerium oxide nanoparticles; EHNs, europium hydroxide Eu(OH)3 
nanorods
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 H2O2) into the cytoplasm [187, 188] (Fig.  9B). The 
ROS produced by Eu(OH)3 nanorods can also activate 
endothelial NOS (eNOS) in a PI3K/AMPK/Akt-depend-
ent manner [24, 187, 189], which further promotes angio-
genesis [178] (Fig.  9D). Nd nanopolymorphs achieved a 
combined angiogenic effect of increasing HIF-1α and 
ROS [189] (Fig. 6C).

RE NMs regulate HIF-1α and ROS-mediated angio-
genesis effectively accelerates bone regeneration, espe-
cially the development of H-type vessels [114, 157, 190, 
191], which participate in endochondral angiogenesis 
and osteogenesis [192]. Biocompatible cerium nano-
system (CNS) also induced an increase in vessel volume 
and surface area of femurs in mice, as well as the forma-
tion of H-shaped blood vessels, resulting in a reduction 
of bone loss in vivo [157] (Fig. 8B). These findings suggest 
that RE NMs are an ideal material for vascularized bone 
regeneration.

Factors that influence the effects of RE NMs
Nanoforms of REEs
Here, we discuss the osteogenic properties of RE NMs, 
which exhibit advantages over RE ions in bone regenera-
tion. First, RE NMs exhibit lower cytotoxicity [193] and 
possess larger surface areas for binding with bone tissue 
[194] than RE ions. The nanomechanical signals on the 
surfaces of RE NMs are transmitted to cells through inte-
grins and mechanosensitive ion channels [173]. Aligned 
nanofibers also facilitate orderly cell arrangement, pro-
mote migration and stimulate cell proliferation dur-
ing bone healing [195]. Second, because of  their crystal 
structures contain oxygen vacancies (e.g., Eu-doped  Y2O3 
NPs [71]) and elemental valence transitions (e.g., CeO 
NPs [56]), RE NMs exhibit stronger antioxidant and angi-
ogenic effects in bone regeneration. Third, RE NMs have 
been used in a wider range of applications in clinical set-
tings. The rough and porous surface of RE NMs provides 
a disordered pore system that facilitates the loading and 
sustained release of osteogenic drugs [194]. RE NMs pos-
sess structural advantages that lack ions, making them 
more suitable for bone implants than either RE ions or 
micron-sized materials.

Particle size
NP size has significant effects on the proliferation, dif-
ferentiation, mineralization, and angiogenesis of osteo-
blasts [182]. The cellular response mediated by NPs is 
determined by their size, with a particle size of 40–60 nm 
exhibiting the greatest effect [22]. Studies have dem-
onstrated that the impact of RE NMs on osteogenesis 
depends on their size [12, 196]. The uptake of NPs by 
cells plays a crucial role in determining osteogenesis, 
and size influences cellular uptake due to its influence 

on the enthalpic and entropic properties that govern the 
strength of adhesion between NPs and cellular recep-
tors [197]. Specifically, 40  nm CeO NPs promote better 
osteogenic differentiation and mineralized matrix nod-
ule formation than 60 nm particles [196]. This difference 
might be due to the higher surface-to-volume ratio of 
smaller RE NMs. In general, smaller CeO  NP sizes are 
associated with higher surface  Ce3+/Ce4+ ratios [198] and 
stronger osteogenic effects. However, NPs larger than 
60  nm in diameter lead to receptor shortages, resulting 
in decreased uptake due to an increasing entropic penalty 
[199]. On the other hand, very small NPs cannot occupy 
multiple receptor binding sites before undergoing phago-
cytosis; they can, however, physically block pore struc-
tures in the plasma membrane, such as ion channels, and 
thus hinder ion exchange processes [200]. Furthermore, 
BMSCs were found to take up 30  nm βNaGdF4: Yb/Er 
nanocrystals more efficiently than 15  nm nanocrystals. 
This experiment demonstrated that larger βNaGdF4: Yb/
Er nanocrystals promote osteogenic differentiation while 
slightly inhibiting adipogenic differentiation [12]. When 
utilizing RE NMs to promote bone formation, it is essen-
tial to design suitable NP sizes. Although the toxicity of 
NPs is lower than that of particles of other sizes, this tox-
icity should not be ignored in developing bone regenera-
tion applications.

Concentration and dose
The concentration and dose of RE NMs influence their 
biological effects, including their effects on the prolifera-
tion, differentiation, adipocyte transdifferentiation and 
mineralization of primary osteoblasts and BMSCs [196]. 
The osteogenic effects of these agents exhibit a “low-
promotion, high-inhibition” hormesis pattern. In other 
words, a low concentration or dose of RE NMs promotes 
one formation by rBMSCs and inhibits lipogenesis, 
while a high concentration or dose inhibits bone forma-
tion [70, 141]. Furthermore, Gd@C82(OH)22 (< 1  μM) 
markedly upregulated the osteogenic differentiation of 
hMSCs. In contrast, a higher concentration (> 2  μM) of 
Gd@C82(OH)22 significantly suppressed osteogenesis, 
and 5 μM and 10 μM Gd@C82(OH)22 promoted the adi-
pogenic differentiation of hMSCs [65].  NaYF4:Yb/Er 
nanocrystals [11], CeO NPs [9, 114] and Tb/MBG nano-
spheres [201] had similar effects. Due to the concentra-
tion-dependent effects of RE NMs on osteogenesis, the 
controlled release of RE NPs or RE ions is a challenge that 
must be considered when designing rare earth-doped 
materials. Xu [202] developed poly(lactide coglycolide) 
(PLGA)-based microsphere-based 3D porous scaffolds 
as  La3+ storage and release systems to promote osteogen-
esis. RE NMs with sustained release properties are ideal 
bone implant materials.
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Surface topography
The surface topography is the most important feature of 
cell-modulating scaffolds, which control the early bio-
logical responses of cells, including adhesion, spreading 
and migration, and subsequently alter their phenotype 
to regulate bone regeneration [10]. An increase in the 
surface roughness of RE NMs can increase the efficiency 
of bone formation, matrix mineralization and calcium 
deposition [203]. The 3D pore structures [14, 127] and 
narrow mesopore size distribution [201] on the surfaces 
of RE NMs promote cell adhesion and pseudopodium 
migration and increase scaffold osteoconductivity. Hol-
low cores and mesopore shells provide additional active 
sites for bone formation [127]. In response to these mor-
phological properties of material surfaces, stem cells 
and osteoblasts change shape and tension, modulate 
downstream pathways, and attach to nanofibers to pro-
mote bone formation [204]. The organization of CeO 
NPs within the biopolymer into self-assembled line-
like patterns at multiple scales enables MSCs to grow 
in a way that aligns with the NP pattern [205]. The effi-
ciency of bone regeneration can be further enhanced by 
designing and applying RE NMs with different surface 
morphologies.

Others
The shape, surface modification, and valence state of 
REEs are also influential factors in the osteogenesis of 
RE NMs. (i) Manipulating the morphology of RE NMs 
can impact cellular uptake [189]. Short CeO NPs (NPs 
and nanorods) undergo rapid internalization by cells 
and suppress ROS production, whereas long CeO NPs 
(nanowires) exhibit slower internalization kinetics [206]. 
(ii) Surface modification plays a crucial role in increas-
ing cell–material interactions while reducing material 
cytotoxicity [10]. Compared with materials without sur-
face modifications, polymer PBLG-modified  GdPO4·H2O 
nanobubbles significantly increase COL I and COL II 
expression levels by at least threefold, thus promoting 
bone regeneration [10]. iii) For CeO NPs, which are the 
most extensively studied among all RE NMs, the sur-
face valence state of Ce regulates osteoblast activity and 
proliferation. Elevated levels of  Ce4+ promote osteoblast 
proliferation, whereas increased concentrations of  Ce3+ 
hinder MSC activity [207]. These observations may be 
attributed to the SOD and CAT mimetic activities of 
CeO NPs [208].

Prospects and limitations
From a broad perspective, RE NMs may exhibit similar 
properties in the field of promoting bone regeneration, 
allowing us to gain insights into new RE NMs by com-
parison to other RE NMs that have been extensively 

studied in osteogenesis research, such as CeO NPs [17, 
208]. Although not directly reported to promote osteo-
genesis, some RE NMs may improve the material prop-
erties of bone implants. For instance, Dy can optimize 
the mechanical strength and degradation rates of zinc-
based alloys while conferring excellent antibacterial abil-
ity and cytocompatibility towards MC3T3-E1 cells [209]. 
We review the osteogenic properties of RE NMs and 
their direct or indirect regulatory effects on MSCs and 
osteoblasts, as well as macrophage- and endothelial cell-
mediated osteogenesis. Nevertheless, numerous novel 
challenges have arisen.

Design of novel RE NMs biocomposites
The future design of RE NMs for promoting osteogen-
esis will combine direct and indirect osteogenic effects to 
obtain multifunctional bio-nanocomposites with optimal 
regulatory effects on various cells within the osteogenic 
microenvironment. Ge [8] demonstrated a bioactive scaf-
fold composed of graphene-modified  CePO4  (CePO4/
CS/GO) nanorods that promoted angiogenesis and mac-
rophage polarization and induced bone formation by 
activating the BMP2/Smad signalling pathway. However, 
the fact is that most of the current studies on the bone 
immunomodulation by RE NMs focus on macrophages, 
as we mentioned above. Given the intricate nature of 
the immune system and the interplay among multiple 
immune cells, it is plausible that RE NMs may exert regu-
latory effects on various types of immune cells within 
the bone immune milieu. Studies have shown that RE 
NMs have regulatory effects on lymphocytes, monocytes 
[210], T cells and leukocytes [65]. Whether RE NMs reg-
ulate other immune cells in the osteogenic microenviron-
ment is worthy of further discussion. Developing novel 
biocomposites of RE NMs that regulate multiple immune 
cells for potential osteogenesis applications will be the 
focus of future research.

In addition, the luminescence and magnetism of RE 
NMs can enable the visualization of bone implant [129]. 
For example, in vivo MRI and X-Ray bifunctional imaging 
of  GdPO4·H2O nanobundles were designed for tracing 
bone implant and bone regeneration [128]. The utiliza-
tion of RE NMs in the development of multifunctional 
biomaterials for osteogenesis holds significant potential.

Toxicity of RE NMs for biological applications and potential 
solutions
Despite the low cytotoxicity of RE NMs, the toxicity 
caused by excessive deposition of them still requires 
special attention. RE NMs can enter the human body 
through inhalation, oral ingestion, and dermal contact 
[211–215]. They accumulate mainly in bone, liver, and 
spleen [29, 216, 217], giving rise to various toxic effects 
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such as neurodegeneration [218, 219], damage to the 
reproductive system [220] and hemolysis [193].

The primary mechanism of toxicity for RE NMs can 
be summarized as follows: (i) Impairment of mitochon-
drial function. Prolonged exposure to RE NMs leads to 
mitochondrial dysfunction, resulting in the generation 
of ROS [218, 221]. Under acidic conditions, CeO NPs as 
oxidase also induce cytotoxicity by promoting ROS pro-
duction. (ii) Disruption of lysosomal integrity. RE NMs 
with high aspect ratios can act as fiber-like substances 
that damage lysosomes. For instance, CeO nanorods 
cause progressive pro-inflammatory effects and cyto-
toxicity at lengths ≥ 200  nm and aspect ratios ≥ 22 
[222]. Additionally,  Y2O3 NPs dissolve and transform 
into  YPO4 within acidifying intracellular lysosomes of 
BMSCs, leading to an imbalance in phosphate levels 
and inducing lysosomal- and mitochondrial-dependent 
apoptosis pathways [29]. (iii) Inhibition of  Ca2+ chan-
nels in the cell membrane. RE ions possess properties 
similar to  Ca2+, which disrupt normal cellular function 
by blocking  Ca2+ channels and disturbing intracellu-
lar  Ca2+ homeostasis [36, 37]. The neurotoxicity of La 
has received considerable attention due to its ability to 
block  Ca2+ channels within the nervous system [223]. 
Similar to other metal nanoparticles, the toxicity of 
RE NMs is influenced by various factors, including ion 
release, synthesis method [224], particle size and shape 
[225], surface charge, cell type, dose and exposure route 
[226].

Previous studies have employed various methods to 
mitigate toxicity, including the design of biocompos-
ite materials with sustained release properties [202] 
or of RE NMs coated with other materials [227]. For 
instance, PLGA-based microsphere-incorporated La-
doped 3D porous scaffolds has demonstrated slow-
release properties of  La3+, reducing the toxicity of 
scaffolds and remaining within a safe range for 28 days 
[202]. Increasing the crystallinity of RE NMs can serve 
as an alternative approach for sustained release of RE 
ions [8]. Furthermore, the reduction of toxicity is facili-
tated by the coating or functionalization of RE NMs 
with other materials [10, 227]. Studies have shown 
that dextran-coated CeO NPs [207, 208] and polymer 
PBLG-functionalized  GdPO4·H2O nanobunches [10] as 
effective methods for mitigating undesired effects and 
enhancing bioavailability. The phosphate imbalance of 
BMSCs induced by  Y2O3 NPs can be effectively miti-
gated through the coating of  YPO4 [29]. It is important 
to evaluate the accumulation and clearance mecha-
nisms of RE NMs. Addressing these issues will aid in 
designing convenient and efficient RE NMs for clinical 
application.

Conclusion
Because of their unique physicochemical properties and 
biological advantages, RE NMs have demonstrated sig-
nificant potential for bone regeneration. They not only 
directly enhance bone regeneration but also modulate 
the immune microenvironment and promote angiogen-
esis, thereby indirectly facilitating osteogenesis. RE NMs 
effectively promote cell proliferation, adhesion, migra-
tion, and osteogenic differentiation. Additionally, they 
stimulate collagen secretion and deposition. Further-
more, RE NMs inhibit osteoclast formation, induce the 
M2 polarization of macrophages, and promote vasculari-
zation to establish a microenvironment that is conducive 
to bone regeneration. We discuss the factors influenc-
ing the osteogenic effects of RE NMs, as well as future 
research directions and their potential applications in 
bone regeneration. This review provides researchers with 
valuable insights into maximizing the utilization of RE 
NMs in osteogenesis.
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