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Abstract 

Although gene expression signatures offer tremendous potential in diseases diagnostic and prognostic, but massive 
gene expression signatures caused challenges for experimental detection and computational analysis in clinical set-
ting. Here, we introduce a universal DNA-based molecular classifier for profiling gene expression signatures and gen-
erating immediate diagnostic outcomes. The molecular classifier begins with feature transformation, a modular 
and programmable strategy was used to capture relative relationships of low-concentration RNAs and convert them 
to general coding inputs. Then, competitive inhibition of the DNA catalytic reaction enables strict weight assignment 
for different inputs according to their importance, followed by summation, annihilation and reporting to accurately 
implement the mathematical model of the classifier. We validated the entire workflow by utilizing miRNA expres-
sion levels for the diagnosis of hepatocellular carcinoma (HCC) in clinical samples with an accuracy 85.7%. The results 
demonstrate the molecular classifier provides a universal solution to explore the correlation between gene expression 
patterns and disease diagnostics, monitoring, and prognosis, and supports personalized healthcare in primary care.

Inroduction
Gene expression signatures hold the key to understand-
ing various diseases and open the door to patient-specific 
personalized medicine [1–5]. With the rapid advance-
ment of techniques for the quantification of gene expres-
sion, such as quantitative reverse transcription PCR 

(RT-qPCR), microarrays and RNA sequencing, the iden-
tification of gene expression signatures allows clinicians 
to better evaluate patient conditions, predict patient 
prognosis, and optimize clinical diagnosis and treat-
ment plans [6, 7]. However, the time of clinicians, who 
are expected to utilize these signatures, is too precious 
to be wasted in evaluating the relevance and significance 
of gene expression signatures. A promising direction is 
involvs the analysis and identification of gene expres-
sion signatures by scientists to ensure that robust and 
comprehensible results can be delivered to clinicians [8, 
9]. In addition, current profiling techniques are gener-
ally requires costly equipment, lengthy protocols, skilled 
technicians, and complex bioanalysis pipelines to accu-
rately quantify each of these markers independently and 
interpret the result. It is necessary to develop a flexible, 
interpretable, and accurate approach to enable profiling 
of gene expression signatures in low-resource conditions.

Over the past few decades, with progress in sequenc-
ing methods and information analysis, a growing number 
of coding or non-coding RNAs have been identified, and 
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many of them exhibit highly tissue-specific expression 
patterns and play crucial roles in biological processes 
associated with diseases [10–13]. The expression profiles 
of these RNAs exhibit great potential to serve as nonin-
vasive biomarkers for the diagnosis, progression, and 
prognosis of cancers and other diseases. For instance, a 
set of three genes (GBP5, DUSP3, and KLF2) signature in 
whole blood was identified to discriminate active tuber-
culosis from latent tuberculosis (global area under the 
ROC curve (AUC) 0.88 [95% CI 0.84–0.92]) [14]. Fur-
thermore, hundreds of studies have proved that circulat-
ing miRNAs are potential ideal biomarkers for treatment 
management, and a substantial increase in the number of 
clinical trials focused on different cancer types and dis-
ease stages also indicates the ongoing trends [15–17]. 
Nevertheless, new technologies generate increasingly 
large databases that will be more and more difficult to 
analyze, gene expression signatures remain a certain dis-
tance from clinical practice [8]. Further standardization 
and improvement of current technologies potentially 
promote this process [18]. Moreover, the application 
of machine learning and new technologies for fast and 
robust profiling methods at the point of care could 
ensure effective transition of gene expression signatures 
into clinics, thus substantially improving patient manage-
ment and outcome [19, 20].

With the inherent stability, flexibility, and program-
mability of DNA, DNA nanotechnology is perfectly 
fitted for building molecular classifiers to integrate mul-
tiple chemical inputs into a low dimensional output (e.g., 
“healthy”/“disease”). Recent advances in DNA-based 
molecular computation have demonstrated the feasibility 
and validity of interpretable molecular profiling methods 
[21–26]. For example, Seelig and coworkers designed a 
molecular multi-gene classifier for analysing gene expres-
sion signatures, and the classification results were inter-
preted by the corresponding fluorescent signals [21]. 
Similarly, Fan and coworkers introduced a DNA-encoded 
molecular classifier to process multidimensional molecu-
lar clinical data, classes of molecules were translated to 
unified electrochemical sensor signals [25]. These stud-
ies implemented proof-of-concept of machine learning 
algorithms, such as logistic regression and support vec-
tor machine (SVM), in the application of interpretable 
classifiers by assigning a numerical weight to the target 
molecule to capture its importance. However, most of the 
current DNA computation systems include the discrete 
integers as weights in diagnostic applications, which are 
not well matched to continuous optimization process of 
machine learning and result in a loss of accuracy [27]. 
Furthermore, input sequences can be highly heteroge-
neous, intricately designed DNA circuits are tailored to 
specific sequences, as their performance is influenced by 

thermodynamics and dynamics [28–30]. To realize the 
application and expansion of DNA computing in person-
alized medicine, it is thus necessary to explore a universal 
molecular classification workflow that processes various 
inputs and generates accurate and intelligible results [31].

Herein, a general workflow was constructed based on a 
DNA-based molecular classifier for the interpretation of 
gene expression signatures (Fig. 1A). To ensure universal-
ity of the molecular classifier, we first designed a highly 
modular and programmable transformation strategy to 
capture the relative relationships of low-concentration 
RNAs and convert them to general coding inputs. Next, 
we demonstrate the precision of multi-input line classi-
fier. Competitive inhibition of DNA catalytic reaction 
enables strict weight assignment for different inputs, 
followed by summation, annihilation and reporting 
as winner-take-all game to experimentally implement 
the mathematical model of classifier [32]. Based on the 
above, we validated the entire workflow by utilizing the 
miRNA expression levels for the diagnosis of hepatocel-
lular carcinoma (HCC). Publicly available serum miRNA 
profile data corresponding to 345 HCC and 958 healthy 
individuals from Gene Expression Omnibus (GEO) were 
used to construct a linear classifier in silico. The trained 
classifier is subsequently decoded into transformational 
and computational circuits at the molecular level. Finally, 
synthetic and clinical samples were used to verify the per-
formance of our workflow in gene expression profiling.

Experiment section
DNA and RNA oligonucleotides
All DNA and RNA oligonucleotides were synthesized 
and purified by Sangon Biotech (Shanghai) Co., Ltd. All 
DNA and RNA sequences are listed in Additional file 1: 
Table S1-3. Individual DNA was suspended to 100 µM in 
1×  TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). 
RNAs were stored in RNase-free ddH2O at − 80 ◦ C until 
needed.

DNA probe preparation for molecular classifier
Single-stranded species were diluted to 10 µM in 1× TE 
buffer with 12.5 mM Mg2+ . DNA probes (converters, 
competitive inhibition systems and annihilators) consist 
of two or three distinct strands were mixed stoichio-
metrically with 20% excess of the target binding strand, 
and thermally annealed by heating to 95 ◦ C for 1 min, fol-
lowed by cooling from 95 to 25 ◦ C over the course of 60 
min (Bio-rad T100). Annealed probes were purified with 
12% non-denaturing PAGE gel. Gel bands were visualized 
using ultraviolet light, and then cut out and extracted by 
a spin column PAGE gel DNA extraction kit (Sangon Bio-
tech, B610357). Finally, purified probes were eluted into 
1× TE buffer with 12.5 mM Mg2+ .
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RNA extraction, reverse transcription and asymmetric PCR
miRNAs in plasma samples were extracted using a 
plasma miRNA isolation kit (TIANGEN Biotech, 
DP503) according to the manufacturer’s instructions. 
The isolated miRNAs were stored in nuclease-free 
water at − 80 ◦ C until needed. Synthetic or extracted 
miRNAs were first reverse transcribed into first strand 
cDNA using a miRNA first strand cDNA synthesis kit 
(Tailing Reaction) (Sangon Biotech, B432451). Reverse 
transcription was carried out with a total 20  µL  vol-
ume containing 10  µL 2× miRNA P-RT Solution mix, 

2 µL miRNA P-RT Enzyme mix, 100 ng Extracted miR-
NAs, and add RNase-free water to 20  µL. The reverse 
transcription reactions were kept at 37 ◦ C for 60 min, 
and then at 85 ◦ C for 5 min on a Bio-rad CFX96 sys-
tem. Asymmetric PCR was performed in a 20  µL  sys-
tem including 10  µL  2× AceQ qPCR Probe Master 
Mix (Vazyme, Q112), 2 µL cDNA, 1 µM excess primer 
(specific to miRNAs), 25 nM limiting primer (univer-
sal primer), 200 nM Taqman probe (if needed), and add 
RNase-free water to 20 µL. The suitable cycling condi-
tion was 95 ◦ C for 5 min, 10 cycles of 95 ◦ C for 10 s and 
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Fig. 1 DNA-based molecular classifier for profiling of gene expression signatures. A Universal workflow for DNA-based molecular classifier 
to interpretation of gene expression signatures. B Process of asymmetric PCR and associative strand displacement to capture relative relationship 
of low-concentration RNAs and convert them to general coding input. C Asymmetric PCR for different concentrations of miRNAs. D Plot 
of fluorescence at cycle 52 versus logarithm base 2 of initial miRNA concentrations. R2 = 0.9974. E Native PAGE performed to analyze PCR 
products derived from different initial concentrations of miRNA. F Fluorescence kinetics experiments for various concentrations of ssDNA are 
transformed into programmable inputs. G Plots of Steady-state fluorescence intensity versus initial ssDNA concentrations. R2 = 0.9938. H miRNAs 
are transformed into programmable inputs by asymmetric PCR and associative strand displacement. As expected, we observed a linear relationship 
between logarithm base 2 of initial miRNA concentrations and concentration of input. R2 = 0.9913
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55 ◦ C for 30 s, followed by 42 cycles of 10 s at 95 ◦ C 
and 30 s at 50 ◦C.

SVM training and validation in silico
To build a SVM model for molecular classifier, the clas-
sification problem was simplified by distinguishing only 
between HCC and healthy individuals. A publicly avail-
able serum microRNA profiles data (NCBI GSE113740) 
corresponding to 345 HCC and 958 healthy individu-
als were used for classifier training. Firstly, differen-
tial expression analysis was used to identify miRNAs 
that were differentially expressed between cancer and 
healthy groups. Then, a random-forest based algorithm 
was applied to assess the relevance of each signature by 
ranking them based on their predictive importance. We 
subsequently trained an SVM classifier (with a linear ker-
nel) consisting of 1 to 10 prominently ranked miRNAs. 
Finally, we selected the classifier with the highest AUC 
value for experimental implementation. Please refer to 
Additional file 1: Text S4 for detailed processes.

Fluorescence kinetic measurements
Fluorescence kinetics data were collected by using a Cary 
Eclipse Fluorescence Spectrophotometer (Agilent) for 
single measurements and a Rotor-Gene Q (QIAGEN) for 
high-throughput measurements. All the measurements 
were repeated at least three times. The reactions were 
carried out in 1× TE buffer with 12.5 mM Mg2+.

Fluorescence normalization
Arbitrary fluorescence units were normalized to con-
centrations using a standard curve of each reporter 
complex. To establish the standard curve, the annealed 
reporter complex was suspended in 1× TE buffer with 
12.5 mM Mg2+ , and an initial baseline fluorescence sig-
nal was measured. Subsequently, a range of known con-
centrations of reporter initiator strands were added. The 
steady-state fluorescence of various reporter concentra-
tions was utilized to construct a linear standard curve 
(Additional file 1: Fig. S11).

Results and discussion
Modular and programmable transformation of signatures
The substantial heterogeneity and intricate secondary 
structures of RNAs significantly restrict the commonal-
ity of DNA-based computation in gene expression sig-
nature profiling. Moreover, RNAs are typically found at 
concentrations ranging from attomolar to femtomolar 
in tissue and blood samples, necessitating a pre-ampli-
fication step for observable computation reactions. 
Herein, we developed a strategy based on asymmetric 
PCR and associative strand displacement, to modularly 

amplify and transform gene expression signatures into 
programmable inputs (Fig. 1B).

Asymmetric PCR was employed to achieve nearly lin-
ear amplification of RNAs, relative to their logarithmic 
initial concentrations. Using miRNA-21 as an example, 
we first employed a commercial kit that enables simul-
taneous poly(A) tailing reaction and reverse transcrip-
tion to generate first strand cDNA. Subsequently, the 
generated cDNA was amplified by a specific primer and 
a universal primer, where the specific primer acts as an 
excess primer and the universal primer functions as a 
limiting primer. By adjusting the melting temperature 
(Tm) and stoichiometric ratio of the limiting and excess 
primer, the initial exponential phase of the reaction 
generates double-stranded amplicons until the limit-
ing primers are exhausted, and the reaction switches 
to synthesis of only excess primer single strand DNA 
(ssDNA) [33]. At a specific cycle number, the ratio of 
generated ssDNA is consistent with that of the loga-
rithmic initial concentrations of the RNAs (details of 
the proof process are provided in Additional file 1: Text 
S1). Fig.  1C–E showed the generated ssDNA from a 
series of initial miRNA concentrations ranging from 0.1 
to 10 pM. The results demonstrated a linear relation-
ship between the initial logarithmic concentrations of 
the miRNAs and the ssDNA produced by asymmetric 
PCR, confirming the feasibility of this method for sub-
sequent molecular classifier.

Next, we designed associative strand displacement 
to modularly decouple sequence constraints between 
RNAs and subsequent DNA-based molecular classi-
fiers. As shown in Fig.  1B, the two splitting modules 
partially complement to the generated ssDNA, and the 
remaining parts form a complete strand to trigger fol-
lowing strand displacement. Through the process of 
associative strand displacement, heterogeneous RNAs 
were transformed into a programmable sequence for 
universality. We first investigated the effect of hybrid-
ization length with ssDNA on the yield of strand 
replacement, each module was designed with at least 13 
bases complementary to ssDNA to ensure a high yield 
(Additional file 1: Fig. S12). In addition, the split posi-
tion and length of junction were optimized to minimize 
leakage during the process of conversion. According to 
the results shown in Additional file 1: Figs. S13 and S14, 
we strategically placed the split position 4 nt away from 
the toehold region and eliminated junction between 
two modules. Under optimal conditions, ssDNA were 
efficiently translated to programmable input for subse-
quent molecular classification (Fig.  1F, G). In general, 
these processing steps transform signatures into pro-
grammable inputs while preserving their original con-
centration relationship (Fig. 1H).
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Arbitrary weight assignment to signatures
In molecular classifiers, various gene expression signa-
tures hold their contributions to state of disease respec-
tively, and a corresponding numerical weight is assigned 
to each signature in the machine learning model in silico. 
To implement arbitrary weight assignment at the molec-
ular level, we designed a DNA catalytic system with an 
inhibitor as shown in Fig.  2A. Similar to the irrevers-
ible competitive inhibition model of enzymatic reactions 
(Fig. 2B):

In an ideal situation, the final concentration of Output 
can be computed by integrating the corresponding differ-
ential equations:

As a consequence, we can exactly weight signatures by 
adjusting the initial concentration of the Amplifier and 
Inhibitor (see Additional file 1: Text S2 for details).

To experimentally validate this strategy, we designed 
an entropy driven catalytic system, namely, Amplifier, 
and a cascade reaction as corresponding Inhibitor main-
tained a consistent reaction rate [34, 35]. Amplifier can 
be catalyzed by inputs and release output strands, which 
then interact with double-stranded fluorescent reporters 
to determine their concentration. We first implemented 
weights (W) = 2.5, 3.5 or 4.5 for a series of concentra-
tions of input ([Input] = 1, 2, 3 or 4 nM). Kinetic fluores-
cence measurements were performed after adding inputs 
to the competitive inhibition system, and we found that 
the final signal was linearly proportional to the stoichi-
ometric ratio of Amplifier0 and Inhibitor0 for all con-
centrations of the inputs (Fig.  2C, D). The relationship 
between concentration of input and normalized signal 
was fitted to the linear equation [Signal] = W × [Input] , 
the coefficients of determination ( R2 ) were greater than 
0.98 for all the weights.

To further demonstrate that this mechanism can be 
used to assign an arbitrary weight to varying concentra-
tions of input, we simulated the competitive inhibition 
system using ordinary differential equations (ODEs) (see 
Additional file 1: Text S3 for details). As shown in Fig. 2E, 
different weights were achieved by adjusting the con-
centration of inhibitor, and the performance remained 
consistent across various input concentrations. Then, 
we experimentally verified the simulated results, and the 
concentrations of Output and weights corresponding to 

(1)Input + Amplifier
k
−→ Input + Output

(2)Input + Inhibitor
k
−→ Waste

(3)lim
t→∞

[Output](t) = [Input]0
[Amplifier]0

[Inhibitor]0

different input concentrations demonstrated the precise 
weighting of input by the DNA-based competitive inhibi-
tion system (Fig. 2F, G).

Mathematical operations for the molecular classifier
To construct a comprehensive linear classifier, it is essen-
tial to employ mathematical operations that sum the 
weights and compare the resulting summation to the 
predefined threshold value, thereby obtaining the desired 
logistic response [36] (Fig.  3A). In DNA computation, 
the process of arithmetic summation can be naturally 
implemented through the production of identical output 
strands. Herein, we designed output strands that contain 
the same domain, allowing them to react with fluorescent 
reporters, for each input. The final fluorescence signal 
thus indicates the summation of weighted inputs:

Two-input and three-input summation systems were 
designed to verify the summation of weighted inputs, and 
the response signals were found to be consistent with the 
results of mathematical calculations (Fig. 3B, C). Simulta-
neously, another class of inputs, which exhibit a negative 
correlation with the outcome, yielded outputs contain-
ing distinct sequences for the negative reporters. The 
concentrations of different output strands individually 
represent the cumulative contributions of positive and 
negative inputs.

Then, a comparison between the output strands was 
implemented to generate the final result. It is conveni-
ent to accomplish the comparison by an annihilation 
reaction, summed output strands for positive and nega-
tive inputs were consumed at a stoichiometric ratio of 
1:1 (Additional file 1: Figs. S15, S16). We carried out the 
annihilation reaction based on DNA cooperative hybridi-
zation mechanism [37]. As shown in Fig. 3D, one of the 
output strands is reversibly incorporated into the anni-
hilator through the binding of a toehold. In the presence 
of another output strand, two outputs and an annihilator 
will irreversibly collapse into two waste molecules. The 
annihilation efficiency is highly dependent on the length 
of the toehold on the annihilator, toeholds with sufficient 
length have been intentionally designed to ensure the 
complete consumption of all minority species. In prac-
tice, HEX and ROX labeled reporters are designed to 
report the corresponding outputs associated with posi-
tive and negative weights in our system. Annihilation 
reactions with series of output concentrations ranging 
from 0 to 50 nM illustrate the successful implementation 
of subtraction.

We experimentally tested the main mathematical oper-
ations of the molecular classifier. Taking a simple linear 

(4)lim
t→∞

[Signal](t) =
∑

i

Wi × [Inputi]
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classifier [Signal] = 1.5× [Input1] − 2× [Input4] as 
an example, we combined a range of concentrations of 
each input to characterize the response. The fluorescence 
signals of 36 various input combinations were recorded 
fluorescence signal after they were added to the corre-
sponding molecular computing system. Fig.  3E, F illus-
trate the endpoint fluorescence measurements captured 
from the HEX and ROX channels. Notably, a significant 
increase in fluorescence was observed in the HEX chan-
nel only when the value of weighted Input1 surpassed that 
of Input4 , while no fluorescence signal was detected in 
the ROX channel, and vice versa. Among the experiments 

for which the weighted input was the same, both fluores-
cent signals were low (Fig. 3G), and were located on the 
diagonal. These observations suggest that the proposed 
design has credible mathematical operations.

Validation of the HCC diagnosis using synthetic miRNAs
To develop an effective classifier model for the in silico 
diagnosis of HCC, publicly available serum miRNA 
expression data corresponding to 345 HCC patients and 
958 healthy individuals from GEO were used for classi-
fier construction (details of the results are provided in 
Additional file  1: Text S4). First, differential expression 
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analysis was used to identify miRNAs that were dif-
ferentially expressed between the cancer and healthy 
groups. A total of 67 up-regulated and 174 down-regu-
lated miRNA candidates exhibited expression level dis-
parities that surpassed a fourfold magnitude. Then, a 
random-forest based algorithm was applied to assess the 
relevance of each signature by ranking them based on 
their predictive importance, and miRNAs were ranked 
by Mean Decrease Accuracy and Mean Decrease Gini. 
We subsequently designed a comprehensive SVM classi-
fier consisting of 1 to 10 prominently ranked miRNAs in 
the training set, and selected a minimal set of miRNAs 
while maintaining classifier accuracy. It should be noted 
that the weights for each miRNA remained at one deci-
mal place. In addition, the misclassification penalty for 

HCC samples was set to twice as high as that for healthy 
individuals, because an early diagnosis of HCC is crucial 
for improving its prognosis. Finally, we selected a clas-
sifier including five miRNAs with weights ranging from 
− 2.6 to 2.4 (Fig. 4C). The classifier discriminates between 
HCC and healthy samples with an area under the curve 
(AUC) of 0.9904 in the training dataset (171 HCC and 
479 healthy samples) (Fig. 4A). The classifier model was 
further validated using an additional 174 HCC and 479 
healthy samples, resulting in an AUC of 0.9871 (Fig. 4B). 
The classifier demonstrated excellent specificity and sen-
sitivity, and allowed the implementation at the molecular 
level.

Next, we implemented the classifier by designing trans-
formational and computational DNA circuits for miRNA 
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inputs, and using synthetic miRNAs to evaluate the 
performance of well-designed molecular classifier. Ten 
patients each of HCC and healthy individuals correctly 
classified by the classifier in silico were selected and rep-
licated in vitro. After transformation and DNA computa-
tion as illustrated before, fluorescence signals in the HEX 
and ROX channels were measured for each sample. The 
results showed that the expected signal was observed in 
the intended channel, while the signal remained near the 
background in the other channel (Fig. 4D). Moreover, we 
observed a robust correlation between the normalized 
signal intensity and the corresponding classifier output 
estimated in silico for each sample, indicating that our 
molecular classifier reproduced the SVM model (Addi-
tional file 1: Fig. S17).

Profiling clinical samples by molecular classifier
Finally, we verified the effectiveness of the molecular clas-
sifier for profiling HCC clinical samples. A general work-
flow is shown in Fig.  5A, miRNAs were first extracted 
from the plasma of each sample by a commercial kit, and 
reverse transcription and asymmetric PCR were subse-
quently performed to generate ssDNA, which was fur-
ther transformed to corresponding inputs and processed 
by an established molecular classifier. The discrimina-
tion between HCC patients and healthy individuals was 
accomplished by monitoring the fluorescence signals in 

the HEX and ROX channels. The entire procedure takes 
approximately 3–4 h to complete.

The profiling results for 17 patients with HCC and 18 
healthy individuals are shown in Fig. 5B and Additional 
file 1: Fig. S18. 15 out of 17 patients with HCC were diag-
nosed correctly with a sensitivity of 88.2%, 3 of 18 healthy 
individuals were misdiagnosed with a specificity of 83.3%. 
The total accuracy of the classifier for HCC diagnosis in 
clinical samples was 85.7% (Fig. 5C). Indeed, the results 
demonstrate the tremendous potential of our method in 
clinical diagnosis.

In our approach, some improvements were developed 
to drive the adoption and implementation of molecular 
classifiers in clinical settings. First, asymmetric PCR fol-
lowed by subsequent associative strand displacement 
was used to modularly decouple sequence constraints 
between RNAs and molecular classifiers, which enables 
the extensive use of molecular classifiers across various 
gene expression signatures. Furthermore, for RNA tran-
scripts with intricate secondary structures, associative 
strand displacement can be accomplished by hybrid-
izing helper strands adjacent to the targeted region on 
ssDNA [21]. Second, the competitive inhibition system 
enables precise weight assignment for different inputs, 
which better aligns with the continuous optimization 
process of machine learning and accurately captures 
the importance of RNAs. The molecular implementa-
tion will accelerate more application of machine learning 
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models in personalized diagnostics. Finally, by adjusting 
the sequence of DNA domains to control the reaction 
rate and orthogonality for different inputs, the molecular 
classifier could in principle be scaled to dozens or even 
hundreds of gene expression signatures. Overall, with the 
decreasing cost of synthetic DNA and advancements in 
microfluidics technology, an effective diagnostic model 
and a powerful DNA-based molecular classifier can be 
integrated into a completely automated classification 
workflow, this integration may facilitate a standardized 
testing process in low-resource settings.

Nevertheless, more efforts are needed to propel molec-
ular classifiers from research settings to routine clinical 
practice. For instance, the introduction of an automated 
system could shorten the turnaround time of experi-
ments and minimize human errors [38]. More testing 
of the classifier in large and diverse patient populations 
should be performed to ensure its robustness and gen-
eralizability. Optimization of the classifier’s parameters 
and algorithms may also be performed to enhance its 
predictive power. We believe future highly integrated 
DNA-based molecular classifiers may offer universal-
ity and scalability by allowing for the encoding of higher 
valence numbers and hence the detection of larger panels 
of biomarkers.

Conclusions
In summary, we developed a systematic workflow, based 
on DNA molecular classifiers, to translate gene expres-
sion signatures into clinical interpretations. This method 
accurately classified HCC patients and healthy individu-
als with five miRNAs from blood samples. Given the 
exciting results, we envision that DNA-based molecular 
classifiers will advance clinical studies that explore the 
correlation between gene expression patterns and dis-
ease diagnostics, monitoring, and prognosis. Moreover, 
this progress will support advocacy for personalized 
medicine.
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