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Abstract
Small extracellular vesicle–derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers 
for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed 
DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based 
electrode modified with a Zr-MOF–rGO–Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs 
Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer 
and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-
Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well 
as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated 
bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range 
from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent 
with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor 
with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of 
various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.

Keywords Metal–organic frameworks, Multiarmed DNA tetrahedral jumpers, Small extracellular vesicle–derived 
microRNAs, Wireless Biosensor, Point-of-care diagnosis
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Introduction
Malignant tumors pose a considerable threat to human 
health. For precision medication, proactive health man-
agement is vital for early detection, treatment, predis-
ease intervention, dynamic monitoring, and personalized 
treatment [1–3]. Liquid biopsy can identify cancer-asso-
ciated biomarkers in body fluids and is a promising 
alternative for cancer diagnosis. Liquid biopsy employs 
noninvasive sampling and overcomes tumor hetero-
geneity issues. Further, it is easy to use and has a short 
time frame and high repeatability; it also dynamically 
reflects genetic information of the tumor [4, 5]. MicroR-
NAs (miRNAs) help in regulating pathological processes, 
making them good biomarkers for diagnosing and pre-
dicting various diseases [6–8]. MiRNAs derived from 
small extracellular vesicles (sEVs, 30–150 nm) are better 
than free miRNAs in blood because they contain more 
miRNA [9–12]. Furthermore, miRNAs are naturally 
encapsulated by sEVs, enabling them to circulate sta-
bly and resist RNase degradation, multiple freeze–thaw 
cycles, and extreme pH values [13–15]. Previous stud-
ies have shown that sEV-derived miRNA (sEV-miRNA) 
is a promising candidate for lung cancer diagnosis and 
prognostic evaluation [16, 17]. More than 30 miRNAs 
are upregulated in the exosomes of lung cancer patients. 
MiR-21, miRNA-155, and let-7b can be used to diagnose 
lung cancer recurrence, assess progression-free survival, 
and diagnose diseases [18]. 

Till date, exo-miRNAs are detected mainly by quanti-
tative reverse transcription polymerase chain reactions 
(RT-qPCRs) and next-generation sequencing (NGS) 
[19–21]. However, such methods have some drawbacks, 
including high costs, false-positive amplifications, large 
sample volumes, and time-consuming processing steps, 
which have limited their onsite applications. Electro-
chemistry is a cost-effective, portable, sensitive, user-
friendly, and quick-response technique employed in 
various point-of-care (POC) sensors with exceptional 
color resistance and ease of miniaturization [22–27]. 
However, it produces thin, single-dimensional bioactive 
layers on standard electrodes, inhibiting the early detec-
tion of nucleic acids. In our previous research, we devel-
oped a portable bioelectrode that employ a paper-based 
electrochemical technology [28]. To enhance the analyti-
cal sensitivity of biosensors, it is crucial to regulate their 
interfacial properties, which are influenced by the nano-
structure of the interface and the coupling of the attached 
biomolecules [28, 29]. 

To enhance electron transport in biosensors, the elec-
trodes of the biosensors must have uniformly control-
lable interfaces. The interfaces must meet the criteria for 
controllable morphology and the uniform dispersion of 
active sites. Among the nanomaterials, metal–organic 
frameworks (MOFs) are widely used in biomedical 

sensors owing to their unique properties, including high 
surface area, porosity, biodegradability, and chemical sta-
bility, which enhance the biosensing sensitivity and per-
formance [30–34]. MOFs containing chemical moieties, 
such as amino or azide groups, enable precise biomole-
cule grafting to produce biofunctional materials [35, 36]. 
Zirconium-based MOFs (Zr-MOFs), the most promi-
nent member of the UiO family, have excellent porosi-
ties and surface areas; thus, they contain a considerable 
number of signal molecules. Zr-MOFs can selectively 
immobilize DNA molecules owing to the strong Zr–O–P 
bonds formed with phosphate groups [37–39]. However, 
the low load capacities and slow responsive processes of 
Zr-MOFs have limited their applications [40]. Recently, 
graphene-based materials have been combined with 
MOFs to enhance their conductivities and stabilities 
and prevent restacking. Such combination has several 
advantages, including guiding the MOF growth, reducing 
conductivity limitations, and minimizing coordination 
bonding and performance issues. In situ growth exploits 
the oxygen groups on graphene oxide (GO)/reduced GO 
(rGO) surfaces to achieve uniform MOF growth, thereby 
saving time and enhancing adhesion [41, 42]. 

The sensitivity of nucleic acid detection can also be 
influenced by the coupling of different biomolecules on 
the sensing interface. It can be enhanced using a three-
dimensional (3D) DNA tetrahedron (DNA-T) structure, 
which allows for better spatial control and probe acces-
sibility compared to one-layered DNA probes, which may 
entangle at high concentrations or long strands [43–45]. 
Additionally, DNA-Ts undergo favorable self-assembly 
and exhibit mechanical rigidity and structural stability, 
which facilitate the accurate identification of units and 
specific orientations, improving the selectivity and repro-
ducibility of trace nucleic acid detection [46, 47]. 

Owing to the highly sensitive and accurate detection of 
sEV-miRNAs by the synergistic effects of the Zr-MOF/
rGO nanocomplex and multiarmed DNA tetrahedral 
jumper (mDNA-J), herein, we developed a Zr-MOF-
rGO-Au (ZrGA)/mDNA-J portable bioplatform. In this 
bioplatform, the ZrGA nanocomplex was modified on 
the surface of a screen-printed carbon electrode (SPCE), 
which efficiently enhances conductivity and provides 
a large specific surface area for immobilizing mDNA-Js 
probes. The mDNA-J-assisted DNAzyme activated by 
Na+ binding hybridization chain reaction (HCR) pro-
motes effective signal amplification, and owing to the 
specific recognition ability of ZrGA and mDNA-Js, the 
developed biosensor can accurately detect tumor-derived 
sEV-miRNA with high sensitivity and selectivity. Com-
bined with a finger-sized U-disk wireless electrochemical 
analyzer (WEA) (plug and play), the proposed bioplat-
form is portable and relatively cheap (costs below $2 per 
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test), making it promising for applications in areas with 
limited resources.

Results and discussion
Design of SPCE/ZrGA/mDNA-J bioplatform
Figure  1 shows the assembly of the Zr-MOF-rGO-Au 
(ZrGA) (Fig.  1a), the isolation and extraction of human 
blood sEV-miRNAs and the detection mechanism of 
sEV-miRNAs using the proposed portable SPCE/ZrGA/
mDNA-J bioplatform (Fig.  1b). Combined with the fin-
ger-sized U-disk WEA (plug and play), reliable 2.4-G 
data transmission and up to 20-m transmission distance 

can be achieved (Figure S1). We prepared GO tightly 
packed Zr-MOF (Zr-MOF-rGO) via a one-step method, 
and the nanocomplex was modified on the SPCE sur-
face. The synthesized graphene contacts all the faces of 
the MOF octahedron, which effectively accelerates the 
space charge separation and inhibits the recombination 
of electron–hole (e−–h+) pairs, affording accelerated 
interfacial electron transfer. After the electrodeposition 
of Au nanoparticles (NPs) to form SPCE/ZrGA, the DNA 
tetrahedron with three “robotic arms” (mDNA-J) was 
attached to SPCE/ZrGA by Au–S bonds.

Fig. 1 (a) Assembly of Zr-MOF-rGO-Au (ZrGA) and (b) schematic of small extracellular vesicle–derived microRNA (sEV-miRNAs) analysis for lung cancer 
diagnosis
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As shown in the left enlarged part of Fig. 1b, mDNA-
J comprises three pendulum-arm chains and a locus 
chain. The lower end of the pendulum-arm chains can 
closely bond with the three faces of the DNA tetrahe-
dron and firmly attach to SPCE/ZrGA, and the upper 
end is the DNAzyme activated by Na+ and the LOCK 
chain domain. In the absence of target miRNA (miR-
21, model), the substrate-cleaving ability of Na+-specific 
DNAzyme is locked owing to the hybridization between 
and their locking strands. However, in the presence of 
target miRNA, the locking strands sense and hybridize 
with the target miRNAs, release enzyme strands to open 
the hairpin structure, and then cleave their correspond-
ing substrates, leaving a sticky end, which triggers HCR. 
The activated arm cuts the “rA” site on the lateral side 
of the mDNA-J (trace chain) skip by skip. The cut resi-
dues can be used as a “toehold” for HCR to form a sta-
ble dsDNA polymer in situ until the supply of H1 or H2 
hairpins modified with “Fc” signal tags is exhausted. The 
redox signals from Fc are ultrasensitively measured to 
quantify and qualify the miRNA electrochemically owing 
to the excellent redox properties of Fc and the redox-sig-
nal-enhancing effect of SPCE/ZrGA/mDNA-J (detailed 
description, Figure S2).

Characterization of SPCE/ZrGA bioplatform
Figure 2a shows the assembly of the ZrGA. The particle 
size of Zr-MOF was observed using field-emission scan-
ning electron microscopy (FE-SEM), which revealed that 
Zr-MOF has a uniform particle size (400 ± 50 nm) and a 
typical octahedral shape (Fig.  2b). Its morphology was 
further observed using transmission electron microscopy 
(TEM), and the obtained images are shown in Fig. 2c and 
d. Figure  2e and f show the morphologies of Zr-MOF-
rGO with a graphene layer wrapping the Zr-MOF octa-
hedron. High-resolution TEM (HR-TEM) revealed the 
edges of Zr-MOF and rGO (Fig. 2f ), showing the lattice 
structure of rGO with a crystal plane spacing of 0.34 nm. 
Figure  2g and h show that Au NPs were successfully 
deposited on the Zr-MOF-rGO surface. The size of the 
Au NPs was 15 ± 5 nm, and the interplanar spacing was 
0.238  nm, as revealed by HR-TEM (Fig.  2h). Further, 
energy-dispersive spectroscopy (EDS) showed that C, N, 
O, Zr, and Au were uniformly distributed on the ZrGA 
surface (Fig. 2i and j).

The XRD patterns of Zr-MOF (black), Zr-MOF-rGO 
(red) and ZrGA (blue) showed sharp diffraction peaks 
(Fig. 2k), which are consistent with the simulated data for 
the single crystal, indicating high purity and crystallinity 
[28, 42]. Figure 2l and S3a show full X-ray photoelectron 
spectroscopy (XPS) images of Zr-MOF, Zr-MOF-rGO, 
and ZrGA. Zr MOF-rGO-Au showed six characteristic 
peaks of O 1s, N 1s, C 1s, Zr 3p, Zr 3d, and Au 4 f. High-
resolution XPS of C 1s for ZrGA showed a strong peak 

at the binding energies of 284.99 eV (Figure S3b), which 
is attributed to the sp2-hybridized C–C/C–H bond, and 
the peaks at 286.40 and 289.20  eV are attributed to the 
C–N and O–C = O bonds, respectively. The sample also 
showed two peaks ascribed to Zr 3d3/2 and Zr 3d5/2 (Fig-
ure S3c), and the peaks at the binding energies of 84.54 
and 88.20 eV (Figure S3d) are attributed to the Au 4f7/2 
and Au 4f5/2 chemical binding states of Au 4f, respec-
tively, indicating that Au NPs were successfully synthe-
sized on Zr-MOF-rGO.

Characterization of the mDNA-J assembly
Native polyacrylamide gel electrophoresis (PAGE) and 
atomic force microscopy (AFM) were employed to eval-
uate the construction and reaction mechanism of the 
mDNA-J. As shown in lanes 1–13 (Fig.  3a, Table S1), 
with the addition of new strands, the migration distance 
decreased owing to the increase in molecular mass and 
the more complex spatial structure, and the Sw of a single 
chain showed a smaller migration distance owing to its 
long sequence (Fig. 3a, lane 4). mDNA-J migrated more 
slowly than other assemblies constructed by sequences 
of fewer than nine strands, and the clear bright band on 
the gel confirms the successful assembly and high yield of 
mDNA-Js (Fig. 3a, lane 13). AFM confirmed that the pre-
pared mDNA-J has a tetrahedral structure with a diam-
eter of ~ 5.8 nm (Fig. 3b).

As shown in Fig.  3c, the catalytic active core of the 
Na+-specific DNAzyme was separated into two halves 
by a locking strand (Lock), inhibiting its catalytic activ-
ity. The susceptibility of ribonucleotide to hydrolytic 
cleavage was 100,000-fold higher than that of its deoxy-
ribonucleotide, a DNA-RNA chimeric sequence com-
prising an adenosine ribonucleotide (rA) flanked by two 
DNA domains of the hairpin substrate strand, which can 
hybridize to two arms of the enzyme strand. To avoid 
the steric interference of the DNA tetrahedron with the 
DNA hybridization and increase the accessibility of the 
hairpin substrate strand to the walking enzyme strand, 
we incorporated a poly-T spacer between the DNA tet-
rahedron and the enzyme strand. The DNA tetrahedrons 
could be anchored on the SPCE/ZrGA electrodes with a 
highly desirable orientation via Au–S chemical conjuga-
tion, and the unique pyramidal structure with three hair-
pin substrate strands shows that all immobilized hairpin 
substrate strands were distributed at fixed distances to 
the DNA tetrahedron, thereby maintaining spatial ori-
entation for the effective assembly of the Na+-specific 
DNAzyme. The DNA tetrahedron was adopted as the 
foundation because a DNA tetrahedron of this size can 
be defined as a nanostructure, effectively decreasing the 
hindrance effect and maintaining spatial orientation for 
improved miRNA recognition.
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Fig. 2 Characterization of the prepared electrodes: (a) assembly of Zr-MOF-rGO-Au (ZrGA). Transmission electron microscopy (TEM) images of (b–d) 
Zr-MOF, (e-f) Zr-MOF-rGO, and (g–h) ZrGA nanoparticles (NPs). (i) Energy-dispersive spectroscopy (EDS) elemental mapping and (j) spectrum of the 
elemental distribution of Zr-MOF-rGO-Au. (k) X-ray diffraction (XRD) and (l) X-ray photoelectron spectroscopy (XPS) images of Zr-MOF, Zr-MOF-rGO, and 
ZrGA
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Electrochemical properties of SPCE/ZrGA/mDNA-J 
bioplatform
The properties of the raw materials for the bioplatform 
are vital. Thus, cyclic voltammetry (CV) was employed to 
evaluate the electrochemical performance of the SPCE/
ZrGA bioplatform at different scan rates (10–295 mV s− 1) 
in 5 mM [Fe(CN)6]3−/4− containing 0.1  M KCl (Fig.  4a). 
Figure 4b shows the variation of peak currents with the 
square of the scan rate. Both the anode and cathode 
peak currents showed linear relationships with the equa-
tions Ip.a.(µA) = 293.34v1/2(V s− 1)1/2 +9.97 (R2 = 0.997) and 
Ipc(µA) = − 262.69v1/2(V s− 1)1/2-12.26 (R2 = 0.998), respec-
tively. This oxidation–reduction reaction of SPCE/ZrGA 
indicates a diffusion-controlled process. Furthermore, 
the electroactive surface area (A) of the three electrodes 
was calculated using the Randles–Sevcik equation: [28]

 Ip = 2.69× 105n
3
2AD

1
2ν

1
2C0  (1)

where Ip is the peak current (A), n (= 1) is the number of 
electronic transfers, D (= 6.7 ± 0.02 × 10–6 cm2 s− 1) is the 
diffusion coefficient, υ = 0.05  V s− 1, and C0 (= 5 × 10− 6 
mol cm–3) is the [Fe(CN)6]3−/4−concentration. According 
to Eq. (1), SPCE/ZrGA has an electroactive surface area 
of 0.191 cm2, which is 1.3 times that of SPCE/Zr-MOF-
rGO (0.148 cm2) and 2.5 times that of SPCE (0.076 cm2). 
In addition, Fig. 4c shows the variation of the anode and 
cathode peak potentials with the logarithm of the scan 
rate (lg(v)). The equation of line for the anode peak poten-
tial is Ep.a.(V) = 0.0582 lgv (V s− 1) + 0.277 (R2 = 0.988), and 
that of the cathode is Epc(V) = -0.0698 lgv (V s− 1) + 0.011 
(R2 = 0.981). Based on the Laviron theory: [44]

 
lg
ka
kc

= lg
α

1− α
,  (2)

Fig. 3 Characterization of the multiarmed DNA tetrahedral jumper (mDNA-J) assembly. (a) Polyacrylamide gel electrophoresis (PAGE) image of mDNA-Js. 
Lane M: 20 bp ladder; lane 1: S4; lane 2: S1-a-SH; lane 3: S1-r-b; lane 4: SW; lane 5: Lock; lane 6: S4 + S1-a-SH; lane 7: S4 + S1-a-SH + S2-a-SH; lane 8: S4 + S1-a-SH + S2-a-SH 
+ S3-a-SH; lane 9: S4 + S1-a-SH + S2-a-SH + S3-a-SH + S1-r-b; lane 10: S4 + S1-a-SH + S2-a-SH + S3-a-SH + S1-r-b + S2-r-b; lane 11: S4 + S1-a-SH + S2-a-SH + S3-a-SH + S1-r-b + S2-r-b 
+ S3-r-b; lane 12: S4 + S1-a-SH + S2-a-SH + S3-a-SH + S1-r-b + S2-r-b + S3-r-b + SW; lane 13: S4 + S1-a-SH + S2-a-SH + S3-a-SH + S1-r-b + S2-r-b + S3-r-b + SW + Lock (the detailed 
sequence is shown in Table S1 of the Supporting Information). (b) Atomic force microscopy (AFM) image of mDNA-Js and the corresponding 3D model. 
Scale bars, 5 nm. (c) Functional domains of the mDNA-Js
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Fig. 4 Electrochemical performance of the SPCE/ZrGA/mDNA-J bioplatform: (a) Cyclic voltammetry (CV) curves of SPCE/ZrGA at different scan rates 
in 5 mM [Fe (CN)6]3−/4− containing 0.1 M KCl. (b) Variation of anodic and cathodic peak currents with scan rate. (c) Curve fitting of the logarithm of the 
scan rate (lgv) versus anode/cathode potential. (d) Flow diagram of miRNA detection by the proposed SPCE/ZrGA/mDNA-J bioplatform. (e) CV curves 
of bare SPCE, SPCE/Zr-MOF-rGO, SPCE/ZrGA, SPCE/ZrGA/mDNA-J, and SPCE/ZrGA/mDNA-J/miRNA/H1-H2 in 5 mM [Fe (CN)6]3−/4− containing 0.1 M KCl. 
Feasibility study: (f) Flow diagram of miRNA detection by mDNA jumpers. (g) Square wave voltammetry (SWV) responses of the prepared electrode in 
the presence of 200-nM miR-21 and 60-mM Na+ (0.01 M PBS solution; scan rate: 50 mV s− 1)
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Fig. 5 (a) Schematic of the SPCE/ZrGA/mDNA-J bioplatform for the detection of miR-21. (b) SWV responses to different concentrations of miR-21: (a) 0 M, 
(b) 100 aM, (c) 1 fM, (d) 100 fM, (e) 10 pM, (f ) 1 nM, (g) 100 nM, and (h) 200 nM. (c) Calibration plots of (b). (d) Current responses of the SPCE/ZrGA/mDNA-J 
electrode with the target (miR-21), interfering miRNAs (miR-155, miR-26a, miR-192, miR-10b, single-base mismatch (SM) miR-21, three-base mismatch 
(TM) miR-21), and different cofactors (K+, Zn2+, Mg2+, and Fe3+). Error bars: SD; n = 3. (e) Reproducibility of the proposed SPCE/ZrGA/mDNA-J biosensor 
(n = 8). The error bars indicate standard deviations for five measurements
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lgks = α lg (1− α) + (1− α) l gα− l g

RT

nFν
− 2.3RTα

(1− α)nF � Ep
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where ka and kc are the slopes of Ep.a.–lg(v) and Epc–lg(v) 
lines, respectively, R is the gas constant (8.314  J·(mol·K) 
−1), T is the absolute temperature (298 k), F is the Far-
aday’s constant (96,493  C·mol− 1), and n is the num-
ber of electronic transfers (= 1). From Eqs.  (2) and (3), 
α = 0.455, which is the charge transfer coefficient, and ks 
= 1.243 s− 1, which is the apparent electron transfer rate 
constant. The electron transfer rate ks obtained here is 
higher or comparable to the values reported in the litera-
ture (Table S3), indicating that ZrGA exhibits accelerated 
electron transfer.

Figure  4d shows the assembly process of the SPCE/
ZrGA/mDNA-J bioplatform, and CV was employed to 
characterize the electrochemical behavior of the elec-
trode during its modification on WEA. The CV curves of 
different modified electrodes in a 5 mM [Fe (CN)6]3−/4− 
detection solution containing 0.1  M KCl are shown in 
Fig.  4e. After the Zr-MOF-rGO nanocomposite was 
modified on the surface of the SPCE electrode (red 
curve), the current response was significantly higher 
than that of the bare SPCE electrode (black curve). This 
is because, in addition to the good conductivity of the 
Zr-MOF-rGO nanocomposite, it greatly increased the 
specific surface area of the electrode. Notably, the cur-
rent signal response of ZrGA (blue curve) was approxi-
mately three times that of Zr-MOF-rGO, indicating that 
Zr-MOF-rGO provided a large specific surface area to 
support Au NPs and could immobilize numerous cap-
ture probes. When the tentacles of mDNA-Js were fixed 
on the electrode surface by Au–S bonds (SPCE/ZrGA/
mDNA-J, purple curve), the current response signifi-
cantly decreased. This is attributed to the electrostatic 
repulsion between the self-negatively-charged phosphate 
skeleton and Fe2+/3+ in the solution, which hindered cur-
rent diffusion between [Fe(CN)6]3−/4− and the electrode 
surface, thereby decreasing the redox peak current. Due 
to the hybridization and polymerization of more non-
electroactive DNA chains, the current response further 
decreased after HCR (SPCE/ZrGA/mDNA-J/miRNA/
H1-H2, green curve). This is because the DNA hybrid-
ization double chains formed on the electrode surface 
further hinder current diffusion from [Fe(CN)6]3−/4− to 
the electrode surface, thereby decreasing the current 
response signal.

A feasibility study was conducted by measuring the 
change in the target miRNA-induced electrochemical 
signal in the presence of 200 nM miR-21 (target) and 
60 mM Na+ in a 0.01  M PBS solution. The detection 
procedure is depicted in Fig.  4f g. miR-21 was selected 
herein to demonstrate the performance of the proposed 

platform because it is a prevalent circulating miRNA 
biomarker overexpressed in lung cancer. The target miR-
21 serves as a “toehold” to initiate interactions with the 
blue domain of Lock. Subsequently, the complemen-
tary double chain (△Genzyme strand: Lock = − 26.62  kcal 
mol− 1) formed partly by enzyme strands and partly 
by Lock is opened and forms an miR-21–Lock com-
plex (△GmiR-21: Lock = − 33.35  kcal mol− 1). Thus, the red 
domain of the enzyme strand is no longer occluded and 
can bind to the red domain of the hairpin substrate strand 
(△Gsubstrate strand = − 5.76  kcal mol− 1), then opens the 
hairpin substrate strand and forms a Na+-specific DNA-
zyme (△Genzyme strand: substrate strand = − 34.06  kcal mol− 1). 
With the addition of Na+, DNAzyme is activated to spe-
cially cut the substrate strand. The leaving sticky end 
opens hairpin H1 (△GH1 = − 3.75 kcal mol− 1) and forms a 
sticky-end–H1 double chain (△Gsticky end: H1 = − 25.10 kcal 
mol− 1), at which a new sticky end opens hairpin H2 
(△GH2 = − 6.19 kcal mol− 1) and forms a sticky-end–H1–
H2 double chain (△Gsticky end: H1:H2 = − 43.97 kcal mol− 1). 
The constant existence of sticky ends induces HCR (H1 
and H2 structures, Figure S4).

Figure  4  g shows square wave voltammetry (SWV) 
curves of the SPCE/ZrGA/mDNA-J bioplatform under 
different detection conditions. There was almost no cur-
rent response for the SPCE/ZrGA/mDNA-J bioplatform 
in the presence of only 60 mM Na+ (black curve) or 
miR-21 (target, blue curve), indicating that HCR was not 
induced. A significant SWV response peak (Fc, 0.52  V) 
was observed in the presence of miR-21 and Na+ (red 
curve), indicating that HCR was induced and DNA hair-
pins with Fc (H1-Fc and H2-Fc) were opened to hybridize 
with each other.

Detection of sEV-miR-21
Optimization of conditions: To further optimize the 
SPCE/ZrGA bioplatform, we first optimized the mDNA-
J concentration and incubation time immobilized on 
the sensing surface of SPCE/ZrGA. When a parameter 
is optimized, other parameters would be optimal. The 
detection sensitivity of the SPCE/ZrGA bioplatform for 
biomolecules largely depends on the number of fixed 
mDNA-Js. Figure S5 shows that the SWV current signal 
detected by 0.2 µM miR-21 at an mDNA-J concentration 
range of 0.2–1.2 µM rapidly increased at the beginning 
and reached a maximum at 1.0 µM and then remained 
constant. As the incubation time increased from 30 to 
150  min, the generated current signal increased almost 
linearly within the first 120 min and then remained con-
stant afterward (Figure S6). In addition, the time for H1–
H2 HCR contributed considerably to the total detection 
time (Figure S7). In the time range of 30–150  min, the 
SWV response signal increased almost linearly within 
the first 60  min and then stabilized, indicating that the 
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reaction reached a steady state. Therefore, for an mDNA-
J concentration of 1.0 µM, an mDNA-J incubation time 
of 150 min and an HCR time of 60 min were selected for 
subsequent experiments.

Figure  5a shows the response of the SPCE/ZrGA/
mDNA-J bioplatform for the detection of miR-21 in the 
presence of 200 nM miR-21 (target) and 60 mM Na+. 
Under optimal experimental conditions, the current 
responses of the SPCE/ZrGA/mDNA-J bioplatform to 
the target miR-21 at various concentrations (0–0.2 µM) 
were examined using the SWV method (Fig. 5b). With an 
increase in the concentration of the target miR-21, the Fc 
signals gradually increased. The relationship between the 
concentration and the current signal was fitted to a lin-
ear function (Fig. 5c). For the concentration range of 100 
aM–0.2 µM, the equation for the linear fitting is y = 5.84 
logC miR-21 + 95.54 (R2 = 0.997), where C is the concentra-
tion of the targeted miR-21. The calculated LOD for miR-
21 is 34.6 aM (S/N = 3). Considering the detection range 
and LOD, the performance of the SPCE/ZrGA/mDNA-J 
bioplatform is comparable to or better than that of pre-
viously reported biosensors (Table S4). Notably, this bio-
platform is promising for POC applications because it 
does not require target amplification, making it less time-
consuming and easy to operate (it can be operated by 
merely dropping 10 µL of a reactive solution).

Specificity and reproducibility of the proposed SPCE/ZrGA/
mDNA-J bioplatform
To further investigate the selectivity of the SPCE/ZrGA/
mDNA-J bioplatform, we introduced a variety of control 
targets including mismatched targets based on bind-
ing free energy changes via the NUPACK and different 
cofactors (K+, Zn2+, Mg2+, and Fe3+) to conduct anti-
interference experiments. As shown in Fig. 5d, the peak 
current change (△I) was highest after the hybridization 
of the complementary target (miR-21) with 60 mM Na+, 
whereas other interfering miRNAs and different cofactors 
produced very weak current signals. This is attributed 
to the high specificity of chain substitution reactions. 
The reproducibility of the electrode was further studied 
(Fig. 5e). We measured the SWV current response of 0.2 
µM miR-21 in eight ZrGA biosensors, and the calculated 
relative standard deviation is 2.49% (miR-21), indicating 
good repeatability.

sEV-miR-21 clinical sample detection and comparison
The morphology, characteristic proteins, and particle-
size distribution of the extracted sEVs were analyzed. 
TEM revealed that the sEVs have a cup-shaped mem-
brane structure (Fig. 6a and S8), which is consistent with 
previous reports [48, 49]. For the protein expression, 
western blot (WB) experiments confirmed the presence 
of characteristic protein markers, CD63, CD81, and CD9, 

on the sEVs membrane (Fig. 6b), corresponding to the 32, 
20, and 23  kDa bands, respectively, which is consistent 
with previous reports. Furthermore, NP tracking analysis 
(NTA) revealed that about 98% of the sEVs from serum 
specimens have a particle size of 30–250 nm with a mean 
of 105.2 nm (Fig. 6c). Therefore, the extracted sEVs main-
tained a good membrane structure and significant distri-
bution of specific proteins, demonstrating the effective 
extraction of sEVs from serum specimens.

To confirm the applicability of the proposed SPCE/
ZrGA/mDNA-J portable bioplatform to clinical samples, 
we explored its response to sEV-miR-21 in total RNA 
extracted from sEVs of clinical plasma samples. We ana-
lyzed 26 clinical blood samples (10 samples from healthy 
individuals and 16 samples from non-small-cell lung can-
cer (NSCLC) patients) using the proposed bioplatform 
and quantitative real-time PCR (qRT-PCR), and both 
techniques showed similar results (Fig. 6d and e). The sig-
nal of the proposed SPCE/ZrGA/mDNA-J bioplatform in 
the clinical sample tests increased proportionally with 
NSCLC staging in the samples collected from NSCLC 
patients. Furthermore, a much higher expression of miR-
21 was observed in stage IV patients compared with that 
of healthy individuals, which is consistent with previous 
reports [28, 50]. Moreover, the proposed bioplatform and 
classic qRT-PCR showed similar results in differentiating 
samples from NSCLC patients (Fig. 6f ), indicating good 
consistency between the proposed bioplatform and qRT-
PCR (R2 = 0.988) (Fig.  6g). These results show that the 
proposed bioplatform has high accuracy and applicabil-
ity and can accurately reflect NSCLC staging in clinical 
samples.

Conclusions
Herein, we developed a SPCE/ZrGA/mDNA-J bio-
platform for detecting trace miRNA by combining the 
ZrGA nanocomplex and mDNA-J assisted DNAzyme 
activated by Na+. The developed portable biosensor 
can detect miR-21 with high sensitivity (LOD as low as 
34.6 aM), which is better than that of conventional tech-
niques. Thus, the proposed biosensor is promising for 
POC applications. Furthermore, the biosensor can detect 
mutations, which is important worldwide. Additionally, 
the signal of the biosensor increases proportionally with 
NSCLC staging in clinical samples. The proposed bio-
platform and classical qRT-PCR showed similar results 
(R2 = 0.988) in distinguishing NSCLC samples.

The exceptional sensing performance of the proposed 
SPCE/ZrGA/mDNA-J bioplatform is attributed mainly 
to the synergistic effects of the following. (1) The tightly 
graphene-wrapped Zr-MOF octahedral complex accel-
erates space charge separation and inhibits photogenic 
e−–h+ pair recombination, affording an ultrahigh con-
ductivity of the bioplatform and a large surface area of 
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Fig. 6 (a) TEM image of isolated sEVs derived from clinical blood samples. The scale bar is 100 nm. (b) Western blot bands of CD63, CD81, and CD9 on the 
sEV membrane, NC: PBS. (c) Nanoparticle tracking analysis (NTA) result of sEVs. (d) and (e) Validation of clinical differentiation for sEVs miR-21 in clinical 
samples from healthy individuals (10 samples as a control) and non-small-cell lung cancer (NSCLC) patients (16 samples) who were in the tumor stage 
using qRT-PCR and our platform, respectively. The results were analyzed by an unpaired, two-tailed Student’s t-test (two groups) or ANOVA (three or more 
groups) followed by Bonferroni’s correction if needed. ***: p < 0.001, ****: p < 0.0001. (f) Comparison between our platform and qRT-PCR towards sEVs 
miR-21 detection. (g) Correlation between the results of sEVs miR-21 detection measured using the proposed sensor and qRT-PCR
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ZrGA, providing numerous fixed sites for mDNA-J and 
increasing the sensitivity; (2) the precise and controllable 
3D nanostructure and multiarm structure of mDNA-J 
probes ensure the rigidity and orientation of the probe 
array at the sensing interface, which aids precise identi-
fication units and enhances the selectivity and detection 
efficiency; (3) the ZrGA-modified paper-based biosensor 
was fabricated along with a commercial SPE and a wire-
less USB-type electrochemical device (plug and play) 
that generates local molecular constraints through the 
3D nanostructure, increasing the collision probability of 
trace target molecules in a microreaction system (~ 10 
µL) and making the sensor suitable and sensitive for POC 
diagnosis in areas with limited resources. In summary, 
the proposed electrochemical biosensor is promising for 
monitoring diverse tumor biomarkers in POC biosensing 
through a simple, accuracy, low-cost (costs below $2 per 
test) and less time-demanding approach.
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