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Abstract 

Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They 
possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capa-
ble of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles 
(EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. 
These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation 
and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific func-
tions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety 
concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received 
significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this 
review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical 
conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropa-
thy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve 
regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for induc-
ing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underly-
ing mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach 
in regenerative medicine.
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Graphical Abstract

Introduction
Adipose tissue, a highly versatile, dynamic and complex 
tissue [1–3], is now recognized as a vital endocrine organ 
that plays a crucial role in maintaining systemic meta-
bolic homeostasis [4–6]. It primarily consists of mature 
adipocytes which make up the floating fraction, and the 

pelleted cellular components of the stromal vascular frac-
tion (SVF), obtained through the conventional enzymatic 
isolation protocol [7, 8]. The SVF is widely acknowl-
edged as a heterogeneous cell population composed 
of adipose-derived stem cells (ADSCs), preadipocytes, 
pericytes, endothelial precursor cells, endothelial cells, 
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smooth muscle cells, fibroblasts, hematopoietic cells, 
macrophages and other immunocytes [7–9]. ADSCs are 
multipotent mesenchymal stem cells (MSCs) derived 
from the embryonic mesoderm. Although making up 
only about 12–18% of the total adipose cell population 
[10], ADSCs are the most regeneratively active cell frac-
tion of adipose tissue, capable of renewing their popula-
tion and differentiating into multiple cell lineages, such as 
adipocytes, myocytes, chondrocytes, and osteocytes [11, 
12]. Due to their multipotency and robust proangiogenic, 
proepithelial, neurotrophic, antifibrotic, antiapoptotic, 
and immunomodulatory effects demonstrated in numer-
ous in vitro and in vivo studies, ADSCs have been exten-
sively utilized in the field of regenerative medicine and 
cell therapy [8, 11, 13, 14]. MSCs can be directly admin-
istered to the injured area in  vivo, or a novel cell-free 
approach utilizing extracellular vesicles (EVs) can replace 
live stem cells. Because  the therapeutic effect of MSCs 
primarily relies on the autocrine/paracrine action of 
growth factors, immunomodulators, cytokines, and other 
bioactive molecules secreted by the cells and enclosed 
within EVs [13, 14].

EVs are nanosized bilayer lipid membrane structures 
secreted by cells that carry various biomolecules from 
donor cells, and cannot replicate on their own [15, 16]. 
These biomolecular cargos include lipids, proteins, 
chemical compounds, multimolecular complexes, DNA, 
RNA (siRNA, miRNA, lncRNA, circRNA, etc.), and 
even intact subcellular organelles [17–20]. Revealing 
the details of the molecular composition, diverse struc-
tures, and unique sequences of these EV cargos through 
nucleic acid sequencing or mass spectrometry provides 
valuable insights into the metabolic state of the parent 
cells and positions EVs as promising clinical biomark-
ers [21, 22]. EVs can be released by most cell types and 
have been detected in a variety of solid tissues and bio-
fluids, such as blood, breast milk, saliva, urine, semen, 
bile, ascites, synovial fluid, cerebrospinal fluid, and amni-
otic fluid, making them suitable for intercellular signal 
transmission [17, 23–25]. The uptake of EVs by recipi-
ent cells initiates intercellular signaling, which forms the 
basis of their therapeutic potential [26–28]. This process 
can occur through different pathways: intact EVs enter-
ing recipient cells via endocytosis mediated by receptors, 
clathrin-coated pits, lipid rafts, caveolae, phagocytosis 
and macropinocytosis; direct ligand-receptor binding 
triggered intracellular signaling without internalization 
or content release; or the release of EV contents into the 
cytoplasm through direct membrane fusion (Fig. 1) [27]. 
EV-mediated intercellular signaling has been extensively 
investigated in most human diseases and related bio-
logical processes, including development [29], immunity 
[30–34], virus infection [35], tissue regeneration [36–39], 

obesity and diabetes mellitus [40–44], liver diseases [45–
47], cardiovascular disorders [48–54], neurodegenerative 
diseases [55–60], aging [61–63], and cancer [64–69]. In 
addition, the potential utility of EVs as diagnostic bio-
markers [70, 71] and cell-free curative agents [72, 73] for 
future clinical application has also been widely explored.

MSCs have been found to present in different tissues. 
Until now, the most employed human tissues as MSC-
EV sources for therapeutic research and clinical trials 
include adipose tissue, bone marrow, and umbilical cord 
(Table 1) [74, 75]. Adipose tissue offers substantial advan-
tages in its significant greater amount of clinical MSC 
source, resulting higher production of MSC-EVs, and the 
easier and less invasive surgical procedure to obtain the 
source tissue such as liposuction compared to other tis-
sue sources [76, 77]. In addition, adipose-derived MSCs 
are reported to possess higher stability in culture condi-
tions and lower senescence ratio by comparison [78]. 
Accumulating evidence suggests that ADSC-derived 
EVs (ADSC-EVs) possess cell therapy bioactivity similar 
to that of their parent cells while circumventing safety 
concerns associated with the administration of live stem 
cells [75, 79–81]. As a result, the number of registered 
clinical trials using ADSC-EVs as interventions is grow-
ing according to the ClinicalTrials.gov (Table  1, avail-
able online: http://​www.​clini​caltr​ials.​gov/accessed on 
23/Apr/2024). In this review, we present a concise over-
view of EV biogenesis and classification, with a primary 
emphasis on the latest advancements in tissue regenera-
tive therapeutic potential, applications, benefits, and cur-
rent limitations of ADSC-EVs in the field of regenerative 
medicine.

Classification and biogenesis of EVs
Although the classification of EVs may vary from time 
to time, the prevailing categorization is based on the 
biogenesis and size of vesicles, resulting in two major 
classes: ectosomes and exosomes [27, 82]. Ectosomes 
or microvesicles are characterized by their direct bud-
ding outward from the plasma membrane, with a diam-
eter ranging from approximately 50 to 1000 nm (Fig. 1) 
[15, 16, 27]. The sprouting of the cell membrane is trig-
gered by phospholipid redistribution within the bilayer, 
which is initiated by activation of the phospholipid 
crawling enzyme and facilitated by calcium-dependent 
degradation of the cytoskeleton that is bound to the 
membrane [23]. The arrestin domain-containing protein 
1 (ARRDC1) plays a key role in driving cell membrane 
sprouting by acting as an anchor fusion molecule that 
facilitates the sorting of specific macromolecules into 
microvesicles [23, 83, 84]. ARRDC1 recruits endosomal 
sorting complex required for transport (ESCRT) pro-
teins, including tumor susceptibility gene 101 (TSG101) 

http://www.clinicaltrials.gov/
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and vacuolar protein sorting-associated protein 4 (VPS4), 
to the plasma membrane to promote the budding process 
[23, 83, 84].

In contrast, exosomes originate from endosomes and 
multivesicular bodies (MVBs) and are approximately 
40–200 nm in diameter [16, 27, 85]. The whole formation 
process of exosomes is highly intricate: initially, inward 
budding endocytosis gives rise to early endosomes, which 
subsequently mature into late endosomes containing 
intraluminal vesicles that accumulate in the lumen under 
communication with the Golgi complex. Eventually, 

these late endosomes transform into MVBs that fuse with 
the cell membrane and release their contents, the intra-
luminal vesicles, into the extracellular space as exosomes 
(Fig.  1) [27, 82, 86]. Recent reports suggest that both 
ESCRT-dependent and ESCRT-independent sorting 
pathways are involved in loading MVBs with cargo dur-
ing maturation [23].

Besides the two major and well-studied categories, EVs 
could be released through other cellular processes with 
different average sizes. For example, disassembly of apop-
totic cells gives rise to the apoptotic body with a diameter 

Fig. 1  Cellular biogenesis and uptake of EVs. The EV biogenesis pathways include the outward budding of plasma membrane domains to form 
ectosomes, and the development of endosomes to release exosomes. The EV uptake pathways include entry of intact EVs through endocytosis, 
direct ligand-receptor binding triggered intracellular signaling without internalization or releasing the contents, and the release of EV contents 
inward via direct membrane fusion
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of 800–5000 nm, which contains components and infor-
mation from the dying cells and are able to deliver these 
to healthy recipient cells [87]. The newly discovered 
migrasome, with a size of 500–3000 nm, plays an impor-
tant role in fields such as intercellular communication, 
homeostasis maintenance, embryonic development, and 
disease progression [88]. Their formation depends on 
cell migration and is closely associated with tetraspanins 
(TSPANs) and integrins [88]. And, the recently identified 
“large oncosome” has an atypical large size of 1–10  μm 
[89]. They are specifically originated through oncocyte 
plasma membrane budding with oncogenic materials 
carried inside, and might share biogenesis pathways with 
ectosomes [89].

Unfortunately, most EV isolation procedures do not 
separate EVs by their biogenesis mechanisms, and uni-
versal definitive molecular markers of these EV sub-
types are missing. Therefore, In this review, we use the 
term “extracellular vesicle” to encompass various types of 
secreted vesicular structures as recommended [16].

Regenerative therapeutic potential of ADSC‑EVs
The aforedescribed biogenesis pathways of EV load them 
with diverse biomolecules derived from the donor cells. 
As a result, these EVs mimic the function of their donor 
cells by initiating target signaling pathways in the recipi-
ent cells with their cargos. Substantial studies have aimed 
to elucidate the ADSC-EV-enclosed cargos, their respec-
tive molecular targets and the activated signaling cas-
cades in the recipient cells, and the resulting functions 
within the specific context of medical conditions or dis-
eases (Table  2). This knowledge serves as a prerequisite 
for designing innovative therapeutic strategies based on 
ADSC-EVs.

Wound healing
Acute wounds
The wound healing of skin is one of the most exten-
sively investigated regenerative medical conditions that 
employs ADSC-EVs as a therapeutic intervention, show-
ing highly promising curative outcomes according to 
reported findings (Table  2) [76, 128, 129]. The skin, an 
innate protective shield against the external environ-
ment, is constantly exposed to potential injuries, making 
wound healing a vital process for the survival of all higher 
organisms [130]. As a process that is conserved through-
out evolution across species, acute wound healing occurs 
in four sequential and overlapping phases [130–132] 
(Fig.  2). Hemostasis begins first when blood clotting 
occurs to control blood loss and prevent microbial inva-
sion. This process is followed by inflammation, which 
overlaps with hemostasis and involves the recruitment 
of proinflammatory immunocytes, such as neutrophils 

(initially) and then macrophages, to remove tissue 
debris and foreign pathogens at the injury site. Acti-
vated macrophages release a variety of growth factors 
and cytokines at the wound site to amplify earlier signals, 
thereby playing a crucial role in the healing process. Sub-
sequently, the proliferation phase begins concurrently 
with inflammation, which is characterized by angiogene-
sis, re-epithelialization, and fibroplasia to restore the lost 
tissue. Fibroblasts play a pivotal role in this phase by pro-
ducing important factors, including collagen, elastin, and 
extracellular matrix (ECM) proteins. Finally, remodeling 
occurs simultaneously with tissue formation through 
processes involving cell maturation, cell apoptosis, ECM 
contraction resulting from the transition of fibroblasts to 
myofibroblasts, and the conversion of type III collagen to 
type I collagen through the coordinated actions of matrix 
metalloproteinases (MMPs) and tissue inhibitors of met-
alloproteinases (TIMPs). The remodeling phase may last 
from weeks to years until the desired new tissue is ulti-
mately regenerated [131–134] (Fig. 2).

To date, ADSCs have emerged as a promising approach 
for skin regeneration and wound healing owing to their 
remarkable abundance and accessibility compared to 
MSCs from other tissue sources [135, 136]. ADSC-EVs 
have been shown to mimic the therapeutic activity of 
ADSCs while offering advantages such as greater stabil-
ity, easier storage, and fewer safety and ethical concerns 
[128]. Extensive evidence supports the role of ADSC-
EVs in accelerating tissue regeneration and suppress-
ing inflammation when it is time to move on to the next 
phase of wound healing at the site of injury [137] (Fig. 2). 
In vitro studies have demonstrated that ADSC-EVs pro-
mote cell proliferation, migration, angiogenesis, and col-
lagen production in human dermal fibroblasts (HDFs), 
human umbilical vein endothelial cells (HUVECs), and 
human epidermal keratinocytes (HaCaT cells) through 
regulating signaling pathways that control these pro-
cesses [113, 138, 139]. Note that in a study, the ADSC-
EV-treated HDF proliferation shows an average of a 120% 
increase compared to the control [138]. Animal experi-
ments consistently exhibit improved healing efficiency 
characterized by increased re-epithelialization, thicker 
tissue layers, elevated vascularization, myofibroblast 
infiltration, and deposition of type III collagen, conse-
quently leading to accelerated acute wound healing [113, 
138, 139]. Despite the high variability, the ADSC-EVs 
display an approximately 10% increase in wound closure 
rate compared to the control [138]. Mechanistic studies 
have revealed the crucial roles of the Wnt/β-catenin, the 
phosphatidylinositol 3-kinase (PI3K)/AKT, and the extra-
cellular signal-regulated kinase (ERK) signaling path-
ways, which are canonical regulators of stem cell potency, 
cell proliferation, survival, and growth, in mediating the 
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ADSC-EV-driven healing process across multiple dermal 
cell lines [113, 139, 140]. In addition to their efficacy in 
excisional and incisional wounds, ADSC-EVs have shown 
potential in mitigating ultraviolet B (UVB)-induced skin 
photoaging [141]. In  vivo administration of ADSC-EVs 
reduces skin wrinkles caused by UVB-induced photo-
aging in mice while increasing epidermal cell prolifera-
tion and decreasing macrophage infiltration and reactive 
oxygen species (ROS) levels. In  vitro studies also reveal 
increased levels of antioxidant enzymes and decreased 
production of intracellular ROS in HDFs after ADSC-EV 
administration. This treatment enhances HDF activity, 
protects HDFs from UVB-induced senescence, induces 
HDF cell cycle arrest, and attenuates M1 macrophage 
polarization of RAW 264.7 cells [141]. Furthermore, 
ADSC-EVs have shown potential in the regeneration of 
skin appendages such as hair follicles, exhibiting vali-
dated phenotypes and the gene expression profile that 
supports the outcomes [142]. In summary, the multifac-
eted effects of ADSC-EVs on skin tissue repair and regen-
eration, similar to those of their donor cells, have been 
extensively acknowledged, and ongoing efforts are being 
made to develop optimal clinical therapies based on these 
effects [136, 143, 144].

Given the globally acknowledged therapeutic potential 
of ADSC-EVs in acute wound healing, researchers have 

been actively exploring strategies to enhance their bio-
activity, reduce dosage frequency, and optimize clinical 
practice. Compared with negative control ADSC-EVs, 
miR-126-3p-overexpressing ADSC-EVs exhibit enhanced 
potential for the proliferation and migration of HDFs as 
well as angiogenesis in HUVECs [90]. Conversely, inhi-
bition of either ADSC-EVs or miR-126-3p or phosphoi-
nositide-3-kinase regulatory subunit 2 (PIK3R2), which is 
a regulatory subunit of PI3K and the intracellular target 
of miR-126-3p, results in the opposite effects. The poten-
tial of miR-126-3p-overexpressing ADSC-EVs is further 
verified through improvements in the wound healing 
rate, increased collagen deposition, and enhanced angio-
genesis in a rat model [90]. In addition to bioengineer-
ing strategies, small molecules has been employed to 
enhance the therapeutic potential of ADSC-EVs [145]. 
Compared with control EVs from normal ADSCs, EVs 
derived from selenium-treated ADSCs lead to increased 
cell proliferation, migration, angiogenesis, and inflamma-
tory suppression both in vitro and in vivo [145]. However, 
further investigation is needed to elucidate the under-
lying mechanism responsible for such improvements. 
Apart from their tunable therapeutic potential, as an 
excreted agent, EVs are rapidly eliminated by the circu-
lation system, thus showing limited duration of efficacy 
at specific sites for tissue repair. Hydrogels are highly 

Fig. 2  Preparation of ADSC-EVs, the four sequential phases of wound healing, and ADSC-EV-induced promotion of wound healing. ADSC-EVs 
promote wound healing by enhancing cell proliferation and migration, stimulating angiogenesis, facilitating myofibroblast infiltration, promoting 
collagen production and deposition, accelerating re-epithelialization and tissue layer growth, as well as suppressing inflammation when it is time 
to move on to the next phase. Created with MedPeer (medpeer.cn)
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porous and loosely structured synthesized materials with 
excellent biocompatibility, making them an ideal choice 
as carriers for EVs to achieve a controlled release rate 
and prolonged retention time when needed [146]. For 
instance, the administration of Pluronic F-127 hydrogel-
encapsulated human ADSC-EVs results in a reduction 
in dosage frequency without compromising therapeutic 
efficacy [147]. Compared to either subcomponent alone, 
the hydrogel/ADSC-EV complex enhances healing effi-
cacy by promoting skin wound healing and re-epitheli-
alization, stimulating collagen production, and elevating 
the expression of Ki67, α-smooth muscle actin (α-SMA), 
CD31, and skin barrier proteins while suppressing the 
expression of inflammatory factors [147]. To enhance the 
biocompatibility, a separate group of researchers employ 
a three-dimensional scaffold composed solely of type I 
collagen and platelet-rich plasma [148]. This scaffold pro-
vides natural support for cell adhesion, migration, and 
proliferation of keratinocytes and fibroblasts and serves 
as a carrier and release controller for EVs. Notably, their 
data demonstrate that the combination of ADSC-EVs and 
the scaffold effectively reduces inflammation levels and 
promotes cell proliferation and angiogenesis, ultimately 
leading to accelerated wound healing in a mouse model 
of full-thickness skin defects [148]. These findings have 
been further validated through proteomic analysis. In 
general, researchers’ endeavors to enhance the therapeu-
tic efficacy and mitigate the adverse effects of ADSC-EVs 
through engineering approaches will significantly con-
tribute to their global clinical application.

Skin wound healing commonly leads to scar formation, 
which is characterized by the absence of skin appendages 
and incomplete restoration of skin functionality (approx-
imately 80% of intact skin strength), thereby causing sig-
nificant aesthetic and psychological concerns [130, 132, 
149]. The aberrant remodeling of the ECM and excessive 
collagen deposition are recognized as immediate fac-
tors contributing to scar development [149, 150]. Recent 
studies have indicated that ADSC-EVs play a supportive 
role in facilitating scarless cutaneous repair. Intravenous 
injection of ADSC-EVs has been shown to reduce scar 
size, suppress fibroblast differentiation into myofibro-
blasts, and increase the ratio of collagen III to collagen 
I, as well as the ratio of transforming growth factor-β3 
(TGF-β3) to TGF-β1, in a mouse incisional wound model 
[151]. Furthermore, in vitro experiments on HDFs reveal 
that ADSC-EVs promote MMP3 expression and increase 
the MMP3/TIMP1 ratio by activating the ERK pathway, 
thereby modulating ECM remodeling [151]. Considering 
that myofibroblasts are the primary cell type responsi-
ble for ECM accumulation, with TGF-β signaling being a 
key pathway involved [150] and MMPs serving as major 
endopeptidases responsible for ECM degradation [152], 

it has been demonstrated that ADSC-EVs effectively 
mitigate scar formation by modulating ECM remod-
eling, as anticipated [151]. Moreover, scars can progress 
pathologically into hypertrophic scars and keloids char-
acterized by uncontrolled fibroproliferation, the continu-
ous accumulation of ECM and cells, and, in the case of 
keloids, invasion of adjacent healthy skin [150, 153, 154]. 
Fortunately, ADSC-EVs have also shown efficacy under 
both conditions. Treatment with ADSC-EVs results 
in reduced cell proliferation and migration in hyper-
trophic scar fibroblasts (HSFs), along with decreased 
expression of collagen proteins, interleukin-17 recep-
tor A (IL-17RA), phosphorylated small mothers against 
decapentaplegic protein 2/3 (p-SMAD2/3), and increased 
levels of SMAD interacting protein-1 (SIP1) [95]. These 
effects are consistent with the accelerated wound heal-
ing and reduced hypertrophic collagen deposition 
observed in a mouse model. The mechanism underlying 
the effects of ADSC-EVs has been verified to involve the 
miR-192-5p/IL-17RA/SMAD axis through both overex-
pression and knockdown of IL-17RA [95]. In the case of 
keloids, ADSC-EVs have been shown to suppress colla-
gen production and disrupt angiogenesis in keloid tissue 
explants [155]. In  vitro tests utilizing keloid fibroblasts 
(KFs) demonstrate that the administration of ADSC-EVs 
effectively suppresses the expression of collagen I, col-
lagen III, fibronectin, and α-SMA, as well as subsequent 
ECM production [155]. The leading molecular mecha-
nisms underlying these effects are believed to involve 
the downregulation of the Notch 1 and TGF-β2/SMAD3 
signaling pathways, concomitant with the upregulation 
of TGF-β3. Despite the increasing number of reports on 
ADSC-EV-induced attenuation of scar formation, further 
comprehensive investigations are imperative to elucidate 
the underlying mechanisms by which ADSC-EVs facili-
tate wound healing while inhibiting scar formation. Note 
that scar formation refers to the overprogression of heal-
ing process out of its physiological range, particularly the 
subprocesses of inflammation, cell proliferation and col-
lagen deposition.

Chronic diabetic wounds
The fast-growing prevalence of type 2 diabetes (T2D) in 
recent decades has rendered this disease a formidable 
global health threat, afflicting approximately 537 million 
adults (estimated 6.7 million deaths) in 2021 and pro-
jected to increase to around 643 million by 2030 [156, 
157]. The current surge entails enormous economic loss 
due to combined medical expenses and diminished work 
productivity [158]. Moreover, the occurrence of comor-
bidities is common in T2D patients and contributes sub-
stantially to the disease burden [159]. Taking diabetic 
wounds as an example, it is estimated that approximately 
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20% to more than 30% of patients with diabetes will 
develop chronic nonhealing wounds, such as diabetic 
foot ulcers (DFUs), during their lifespan. These wounds 
exhibit considerable recurrence rates of up to 40% within 
one year and 65% within five years, with no reliable pre-
dictive methods currently available [158]. Additionally, 
more than 70% of DFU patients will ultimately require 
lower limb amputation, imposing a heavy financial bur-
den and severe impairment to patients’ quality of life 
[160].

Diabetes impedes the healing process by disrupting 
each phase of wound healing mentioned earlier (Fig. 2). 
The intricate underlying etiology involves hyperglyce-
mia, hemoglobin glycation, impaired neutrophil func-
tion, dysregulated macrophage polarization and function, 
sustained production of proinflammatory cytokines, 
impaired angiogenesis, reduced fibroblast and keratino-
cyte proliferation and migration, compromised growth 
factor production, decreased cytokine production, down-
regulated MMPs production, neuropathy, and nitrous 
oxide blockade [133, 158, 160]. These factors orchestrate 
the delay of healing process, thereby making diabetes a 
typical condition of chronic wounds, which generally fail 
to progress through the normal healing process and show 
no signs of healing in four weeks [131, 133]. In contrast 
to the acute wounds described above, which typically 
show signs of healing in less than four weeks follow-
ing the normal progression of wound healing, chronic 
wounds are generally characterized by elevated bacterial 
levels caused by hyperglycemia along with high inflam-
matory cytokine levels, increased protease and ROS lev-
els, a degraded nonfunctional ECM, reduced mitogenic 
activity, and enhanced cell senescence [131, 132, 158]. 
Despite these challenges posed by the complex pathol-
ogy of chronic diabetic wounds, accumulating evidence 
suggests that ADSC-EVs have the potential to improve 
chronic diabetic wound healing through mechanisms 
similar to those in acute wounds [157].

The effects of ADSC-EVs on chronic diabetic wounds 
include facilitating cell proliferation and migration, 
inhibiting apoptosis, enhancing re-epithelialization and 
angiogenesis, reducing ROS levels, and suppressing 
inflammation, as evidenced by recent studies [116, 121, 
161–164] (Fig. 2). Multiple molecular signaling pathways 
responsible for these beneficial effects have been iden-
tified since ADSC-EVs are essentially a heterogeneous 
collection of diverse biomolecules encapsulated within 
a lipid membrane that can activate versatile signaling 
cascades. Moreover, different research groups may focus 
on distinct aspects of this treatment. The depicted sign-
aling pathways include: the PI3K/AKT pathway as a key 
regulator of cell proliferation and survival [121, 164], 
the Fas/Fas ligand (FasL) pathway as an initiator of cell 

death [161], the sirtuin 3 (SIRT3)/superoxide dismutase 
2 (SOD2) axis as a scavenger of ROS [162], the TGF-β1/
SMAD3 pathway as a crucial mediator of tissue repair 
and immune response [163], and the hypoxia-induci-
ble factor-1α (HIF-1α) as a key factor in angiogenesis 
and immunomodulation [116]. These ongoing efforts to 
explore the efficacy and molecular mechanisms underly-
ing ADSC-EV treatment for chronic diabetic wounds will 
serve as the cornerstone for potential medical interven-
tion against this intractable condition.

Similar to acute wounds, bioengineered ADSC-EVs 
have gained popularity and reliability in addressing 
refractory chronic diabetic wounds with enhanced effi-
cacy. Compared with control EVs, HIF-1α-overexpressing 
ADSC-EVs improve the wound healing rate and quality 
in a diabetic nude mouse model [122]. In  vitro experi-
ments in HDFs demonstrate increased expression of mul-
tiple growth factors and collagen proteins, which appears 
to be induced by the upregulation of PI3K/AKT pathway, 
which is crucial for cell proliferation and survival [122]. 
In diabetes, elevated oxidative stress plays a key role in 
the progression of complications and impairs the healing 
process of diabetic wounds [133]. Nuclear factor eryth-
roid 2-related factor 2 (NRF2) effectively eliminates ROS 
and protects cells against oxidative stress by inducing 
the transcription of numerous antioxidants and cyto-
protective genes through activation of the NRF2/anti-
oxidant response element (ARE) complex. Therefore, EVs 
derived from ADSCs overexpressing NRF2 significantly 
improve diabetic wound healing by reducing the ulcer-
ated area and inflammation, promoting cell prolifera-
tion, granulation tissue formation and angiogenesis, and 
upregulating growth factor expression while attenuating 
oxidative stress-related protein expression [123, 165]. In 
addition to protein-coding genes, microRNAs (miRNAs) 
are extensively employed for engineering ADSC-EVs to 
enhance their therapeutic activity. MiRNAs can be trans-
fected as DNA constructs, overexpressed in ADSC cells 
and loaded into ADSC-EVs by the donor cells themselves 
[96], or directly electroporated into isolated ADSC-
EVs as miRNA mimics [166]. Both strategies have been 
validated to yield positive outcomes in the treatment 
of chronic diabetic wounds. EVs secreted from miR-
132-overexpressing ADSCs promote diabetic wound 
healing by upregulating angiogenesis, collagen deposi-
tion, and ECM fibronectin accumulation and attenuating 
local inflammation through nuclear factor-κB (NF-κB) 
signaling-mediated M2 macrophage polarization [96]. 
ADSC-EVs loaded with miR-21-5p via electroporation 
show similar accelerated healing rate in diabetes-asso-
ciated wound models [166]. Circular RNAs (circRNAs), 
another type of noncoding RNA with significant biologi-
cal functions, often act as sponges for miRNAs to prevent 
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them from binding to their downstream target mRNAs 
[167]. This machinery has been utilized to enhance the 
therapeutic potential of ADSC-EVs. Circ_0001052-over-
expressing ADSC-EVs promote angiogenesis in DFUs 
by sequestering miR-106a-5p, thereby disinhibiting the 
translation of its downstream target fibroblast growth 
factor-4 (FGF4), which is known to be involved in embry-
onic development, cell proliferation and differentiation 
[119]. As expected, published data have confirmed the 
improved therapeutic effects of these modified EVs on 
DFUs [119]. A similar approach has been reported for 
another circRNA, circ_0000250 [120]. The overexpres-
sion of circ_0000250 in ADSC-EVs results in enhanced 
healing in diabetic mice through the induction of 
autophagy mediated by the miR-128-3p/SIRT1 axis since 
epidermal SIRT1 is responsible for the modulation of 
inflammation, wound healing and cell migration [120]. In 
general, the application of bioengineering techniques to 
modify ADSC-EVs has demonstrated remarkable acces-
sibility and potency in the treatment of chronic wounds 
associated with diabetes, thereby enabling robust and 
personalized therapy in future clinical settings.

In addition to their application in acute wounds, hydro-
gels and other scaffolds have also been combined with 
ADSC-EVs for localized and sustained release in treat-
ing chronic diabetic wounds. Hydrogels can serve as 
carriers for ADSC-EVs only, exerting therapeutic effects 
through the hypoxia-induced circ-Snhg11/miR-144-3p/
NRF2/HIF-1α axis [117], which is identical by mecha-
nism to that achieved by administering ADSC-EVs 
alone [116]. Alternatively, it can be dual-loaded with 
ADSC-EVs and an additional small chemical compound 
such as metformin to achieve synergistic efficacy [168]. 
Extensive efforts have been devoted to developing hydro-
gels into versatile platforms with multifunctional capa-
bilities beyond mere EV delivery, including injectability, 
self-healing properties, antibacterial activity, and pH-
responsive EV release, among others [169, 170]. These 
studies explicitly demonstrate significantly enhanced 
healing efficiency of multifunctional hydrogel-incorpo-
rated ADSC-EVs in full-thickness cutaneous wounds of 
diabetic models compared to those treated with either 
EVs or hydrogels alone [169, 170]. In addition to conven-
tional hydrogels, alternative scaffolds, such as cell sheets 
and acellular fibers or membranes, have been applied as 
carriers of ADSC-EVs for combating chronic diabetic 
wounds. Studies have demonstrated that transplanta-
tion of ADSC sheets derived from rat epididymal adipose 
tissue enhances wound healing in diabetic rats [171]. 
Then, further studies have combined IRF1-overexpress-
ing ADSC-EVs with ADSC sheets, resulting in further 
improvements in wound healing via the IRF1/miR-16-5p/
SP5 axis [124]. Moreover, acellular amniotic membranes 

and functional micro/nanofibers composed of phosphoe-
thanolamine phospholipid-grafted poly-L-lactic acid 
have been assessed as delivery platforms for ADSC-EVs 
in diabetic wound therapy. Both exhibit enhanced heal-
ing potential in diabetic models, characterized by aug-
mented cell proliferation and migration, angiogenesis, 
collagen production and deposition, M2 macrophage 
polarization, and reduced inflammation, accompanied by 
the modulation of associated marker genes [172, 173]. As 
evidenced by these studies and similar ones, the continu-
ous development and application of novel biomaterials 
will strongly facilitate the realization of ADSC-EV-based 
cell-free stem cell therapy.

Chronic limb ischemia
Lower extremity peripheral arterial disease (PAD) can 
progress into chronic critical limb ischemia, which is 
characterized by intractable rest foot pain, gangrene, and 
tissue necrosis [174]. Chronic limb ischemia is a preva-
lent comorbidity in diabetic patients and frequently leads 
to chronic diabetic wounds (ulcers) and limb amputa-
tion due to inadequate tissue perfusion and dysfunctional 
revascularization [175].

The cornerstone of chronic limb ischemia treatment 
lies in revascularization or angiogenesis [174], which 
is supported by ADSC-EV administration (Fig.  2, 3). 
One study shows that ADSC-EVs promote cell prolif-
eration, migration, and tube formation while reducing 
cell apoptosis in high glucose-conditioned HUVECs 
[125]. Additionally, they enhance blood perfusion, 
microvessel density, and muscle structural integrity 
in diabetic mice. The healing potential may be attrib-
uted to the upregulation of endothelial nitric oxide 
synthase (eNOS)/AKT/ERK/P-38 signaling pathways, 
along with the downregulation of activator protein-1 
(AP-1)/ROS/NACHT-, leucine-rich repeat (LRR)- and 
pyrin domain (PYD)-containing protein 3 (NLRP3)/
apoptosis-associated speck-like protein containing a 
CARD (ASC)/caspase-1/interleukin-1β (IL-1β) [125]. 
Furthermore, glyoxalase-1 (GLO-1) overexpression in 
ADSC-EVs further enhances their therapeutic poten-
tial [125]. Another study reveals that ADSC-EVs can 
polarize M1 macrophages toward an M2-like phe-
notype, characterized by reduced secretion of proin-
flammatory cytokines and increased production of 
proangiogenic factors [176]. This M2-like polarization 
promotes endothelial cell proliferation, migration, and 
tube formation. These effects have been verified in 
mouse hindlimb ischemia models with a Matrigel plug 
assay. Moreover, EVs from hypoxia-treated ADSCs 
exhibit even greater M2-like polarization and thera-
peutic potential [176]. Elevated levels of miR-21 and 
colony stimulating factor-1 (CSF-1)/CSF-1 receptor 
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(CSF-1R) appear to play a pivotal role in initiating 
these beneficial effects [176]. These studies highlight 
the healing efficacy of ADSC-EVs on chronic limb 
ischemia while revealing their clinical potential for 
angiogenic therapy.

Angiogenesis
Angiogenesis plays a critical role in wound healing and 
is essential for the treatment of ischemia and other tis-
sue regeneration failures. Conventional cytokine-based 
angiogenic therapies utilizing growth factors such as vas-
cular endothelial growth factors (VEGFs) and FGFs have 

Fig. 3  Regenerative medical conditions that are affected by ADSC-EVs and the major mechanisms of tissue regenerative efficacy. The recent 
advances in the regenerative medical use of ADSC-EVs focus mainly on these listed conditions. And, the most common primary mechanisms 
of tissue regenerative effects involve stimulated cell proliferation, migration and angiogenesis, and suppressed inflammation. Created with MedPeer 
(medpeer.cn)
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demonstrated limited efficacy in clinical practice [177, 
178]. Consequently, researchers have recently shifted 
their focus toward ADSC-based stem cell therapy and 
more advantageous ADSC-EV-based cell-free approach 
due to the ability of ADSCs to differentiate into endothe-
lial cells or pericyte-like cells and to secrete proangio-
genic growth factors and EVs [177].

Extensive efforts have been made to elucidate the cor-
relation between angiogenesis and ADSC-EV adminis-
tration, as well as the underlying mechanisms involved. 
Numerous studies have validated the positive impact of 
ADSC-EVs on angiogenesis [94, 98, 99, 101, 179–181] 
(Fig.  2, 3). Specifically, ADSC-EVs have been demon-
strated to enhance endothelial cell proliferation, migra-
tion, and tube formation, as evidenced by increased 
vessel length and number of junctions and branches. 
These effects are attributed to the upregulation of growth 
factors and receptors such as VEGFs and their receptors, 
epidermal growth factor (EGF), platelet-derived growth 
factors (PDGFs), and FGFs, as well as proliferation mark-
ers, including cyclin proteins. In vivo studies in rodents 
have consistently shown improved neovascularization or 
angiogenesis along with accelerated wound closure due 
to enhanced re-epithelialization and collagen deposition. 
The therapeutic effects are mediated through exosomal 
miRNA-initiated signaling pathways involving axes of the 
miR-486-5p/SP5/cyclin D2 [94], the miR-126/sprouty-
related EVH1 domain containing 1 (SPRED1)/ERK1/2 
[98], the miR-125a/Drosophila delta-like 4 homolog 
(DLL4) [99], and the miR-31/factor-inhibiting HIF-1 
(FIH1)/HIF-1α [101]. Interestingly, both hypoxia and 
metabolic conditions of ADSCs have been shown to influ-
ence the proangiogenic potential of derived EVs [98, 181]. 
Notably, compared with normoxic ADSC-EVs, hypoxic 
ADSC-EVs exhibit enhanced proliferation, migration 
and tube formation in HUVECs and improved neovas-
cularization in a mouse model [181]. These therapeutic 
benefits are attributed to increased levels of growth fac-
tors and receptors, such as VEGF, EGF, FGF, VEGF-R2, 
and VEGF-R3, and chemokines, including monocyte 
chemotactic protein 2 (MCP-2) and MCP-4 [181]. How-
ever, obesity or hypertrophy can impair the proangio-
genic potential of ADSC-EVs. Compared with those from 
lean individuals, EVs derived from ADSCs isolated from 
individuals with obesity exhibit attenuated potential for 
inducing endothelial cell proliferation, migration, and 
overall angiogenesis [98]. This impairment is associated 
with a reduction in exosomal miR-126 [98]. Moreover, 
treatment with palmitic acid induces ADSCs to gener-
ate EVs that recapitulate the cargo of obesity-associated 
ADSC-EVs. Additionally, high glucose-treatment fur-
ther decreases the miR-126 level enclosed in ADSC-EVs, 
along with attenuated angiogenic potential [98]. Note 

that the angiogenic potential of ADSC-EVs is influenced 
not only by the composition of the culture media but 
also by the type of cell culture. It has been reported that 
EVs derived from 3D-spheroid-cultured ADSCs exhibit 
superior potency in promoting angiogenesis in HUVECs 
compared to those obtained from 2D monolayer-cul-
tured cells [180]. Because the 3D-culturing resembles the 
natural local microenvironment of tissue in  vivo, hope-
fully EVs directly extracted from adipose tissue may dis-
play higher regenerative potency [182]. Reported data 
have demonstrated the therapeutic efficacy of adipose 
tissue-derived EVs (AT-EVs) [183, 184]. However, AT-
EVs cannot be strictly termed as ADSC-EVs, since the 
adipose tissue is composed of multiple cell types includ-
ing ADSCs and others such as mature adipocytes and 
macrophages. And, ADSCs make up only around 12–18% 
but the most regeneratively active fraction of the total 
adipose cell population [10]. Therefore, further investi-
gation is needed to compare the therapeutic potency of 
these two kinds of EVs. In conclusion, recent research has 
highlighted the potential of ADSC-EVs for future clinical 
applications in treating diseases related to ischemia and 
angiogenic failure, which are the leading causes of limb 
disability, necrosis, and amputation.

Myocardial infarction
Myocardial infarction (MI), commonly referred to as 
heart attack, is a severe medical condition character-
ized by the damage or death of myocardial tissue due to 
prolonged blockage of blood flow to that specific area 
of heart [185]. The pathology underlying this occlusion 
involves atherosclerosis, an inflammatory process lead-
ing to the narrowing and hardening of arteries with the 
buildup of plaque, thereby impeding blood circulation 
[186]. This progression arises from chronic inflammation 
and manifests as the accumulation of cholesterol, lipids, 
and other substances on the vascular wall [187]. Plaque 
rupture triggers clot formation, obstructing blood supply 
to cardiac muscle. Immediate management strategies for 
MI aim at promptly restoring blood flow through inva-
sive procedures such as percutaneous coronary interven-
tion (PCI) and coronary artery bypass grafting (CABG) 
or pharmacological interventions. Long-term manage-
ment encompasses lifestyle modifications and medica-
tions targeting risk reduction for future cardiovascular 
events while promoting tissue repair following MI dam-
age; herein lies the potential role of ADSC-EVs.

According to the available references, the therapeutic 
potential of ADSC-EVs has been demonstrated in ame-
liorating MI injury by promoting cardiac angiogenesis, 
inhibiting cardiomyocyte apoptosis, and improving myo-
cardial function [102, 188, 189] (Fig. 3). ADSC-EVs have 
shown efficacy in reducing obesity, enhancing insulin 
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sensitivity, and maintaining metabolic homeostasis in 
obese mice, indicating their potential for alleviating met-
abolic disorders associated with MI [137]. Moreover, the 
aforementioned promotion of wound healing and vas-
cularization by ADSC-EVs suggests their potential for 
addressing tissue damage related to MI [123]. Various 
signaling pathways are involved in mediating these thera-
peutic effects. It has been reported that ADSC-EVs pro-
mote cardiac regeneration and inhibit post-MI adverse 
remodeling through activation of the PI3K/AKT path-
way. The PI3K/STAT3 pathway has also been implicated 
in modulating macrophage polarization to ameliorate 
cardiac fibrosis in infarcted hearts [190]. Additionally, 
EV-encapsulated miR-205, miR-196a-5p, miR-425-5p, 
and miR-31 (via the miR-31/FIH1/HIF-1α axis) have 
been identified as crucial initiators of cardiac angiogenic 
pathways underlying the attenuation of MI injury and the 
promotion of cardiac function recovery by ADSC-EVs 
[102, 188, 189]. Furthermore, miR-146a-overexpressing 
ADSC-EVs effectively attenuate acute MI-induced myo-
cardial damage through downregulation of early growth 
response factor 1 (EGR1) and subsequent reversal of 
Toll-like receptor 4 (TLR4)/NF-κB signal activation [191, 
192]. Collectively, these studies suggest that ADSC-EVs 
could be a valuable therapeutic tool for addressing the 
aftermath of MI, offering potential benefits in promoting 
cardiac regeneration, attenuating MI injury, and improv-
ing myocardial function.

Diabetic nephropathy
Diabetic nephropathy is a severe complication of diabe-
tes characterized by persistent albuminuria, a decrease 
in renal function, and increased cardiovascular morbid-
ity and mortality [193]. It is the primary cause of chronic 
kidney disease in patients who are receiving renal 
replacement therapy [193]. The incidence of diabetic 
nephropathy is increasing concomitantly with the global 
surge in cases of diabetes mellitus [194].

Recent investigations have revealed that ADSC-EVs 
can mitigate pathological symptoms such as increased 
urine protein levels, serum creatinine (Scr) levels, blood 
urea nitrogen (BUN) levels, and podocyte apoptosis. 
This is achieved through the promotion of autophagy 
flux, reduction of inflammation, and attenuation of ROS 
levels [103, 105, 195]. The underlying signaling path-
ways responsible for these effects have been identified 
as the Kelch-like ECH-associated protein 1 (KEAP1)/
NRF2/family with sequence similarity 129, member 
B (FAM129B) pathway [195] and the exosomal miR-
26a-5p/TLR4/NF-κB pathway [105], leading to inflam-
matory inhibition. Additionally, the exosomal miR-486/
SMAD1/mammalian target of rapamycin (mTOR) path-
way [103] functions to activate autophagy. In conclusion, 

the therapeutic potential of ADSC-EVs in diabetic 
nephropathy is promising as a novel therapeutic strategy 
(Fig. 3).

Fat graft survival
Autologous fat grafting is a procedure in which adipose 
tissue is removed from one anatomical site and subse-
quently transplanted to another area within the same 
individual, with the aim of augmenting or restoring soft 
tissue volume [196]. This technique has garnered con-
siderable attention in both aesthetic and reconstructive 
medicine due to its extensive applicability in facial and 
hand rejuvenation, breast augmentation and reconstruc-
tion, and body contouring [197–199]. Nevertheless, the 
primary obstacle impeding further advance and wide-
spread adoption of fat grafting lies in the unpredictable 
resorption rates and low survival rates of the transplanted 
fat [197]. These challenges are believed to stem primarily 
from inadequate neovascularization post-transplantation 
[199]. Addressing these issues is crucial for enhancing the 
predictability and success rates of autologous fat grafting.

ADSCs have been demonstrated to play a regenerative 
role and facilitate the proliferation, migration, and secre-
tion of fibroblasts and keratinocytes, thereby contribut-
ing to the replenishment and augmentation of soft tissues 
[200]. Co-transplantation of autologous adipose tissue 
with human ADSCs has been shown to enhance fat graft 
retention by promoting neovascularization and angio-
genesis primarily through paracrine mechanisms [201, 
202]. Considering that ADSC-EVs retain the therapeutic 
properties of ADSCs while offering certain advantages 
over live cells, as previously mentioned, researchers have 
investigated the effects of administering ADSC-EVs in 
fat grafting procedures and accumulated evidence sup-
porting their significant involvement in promoting fat 
graft survival and adipose tissue regeneration (Fig.  3). 
When introduced into fat grafts, these EVs are capable of 
increasing neovascularization and graft retention, inhib-
iting fibrosis and necrosis, and inducing M2 polarization 
while suppressing M1 polarization and graft inflamma-
tion [198]. Further studies have indicated that ADSC-
EVs can enhance fat graft retention rates by stimulating 
endothelial cell angiogenesis and facilitating ADSC adi-
pogenesis through enhanced cell proliferation and migra-
tion, along with modulating the expression of marker 
genes [197, 199, 203, 204]. The underlying mechanisms 
responsible for these effects involve the modulation of 
various signaling pathways, such as the Wnt/β-catenin 
pathway [197, 204]. These findings underscore the 
potential utility of ADSC-EVs as a promising strat-
egy for enhancing fat graft survival and adipose tissue 
regeneration.
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Bone regeneration
The skeletal system plays a fundamental role in provid-
ing structural support, safeguarding vital organs, and 
facilitating movement. Bone regeneration and repair are 
indispensable for maintaining skeletal integrity, mobility, 
and overall physiological function following traumatic 
injuries, degenerative diseases or surgical interventions. 
This intricate biological process involves numerous cel-
lular and molecular events that are critical for addressing 
medical conditions such as fractures, osteoporosis, bone 
defects, and orthopedic surgeries [205].

According to recent publications, researchers have 
demonstrated the crucial role of ADSC-EVs in promot-
ing bone regeneration (Fig.  3). ADSC-EVs activate the 
proliferation, migration and osteogenesis of bone mar-
row-derived mesenchymal stem cells (BMSCs), stimulate 
angiogenesis in HUVECs, and induce M2 polarization 
while inhibiting the osteoclastogenesis of RAW264.7 
macrophages [107, 206, 207]. Enhanced bone forma-
tion in animal models of bone defects has validated the 
osteogenic effect of these EVs [106, 107, 206]. The thera-
peutic potential of ADSC-EVs in bone regeneration and 
repair is mediated via various signaling pathways. One 
critical pathway that plays a key role in the promotion 
of osteogenesis by ADSC-EVs is the PI3K/AKT path-
way [164, 190], leading to improved osteogenic effects 
and bone regeneration [208]. Furthermore, ADSC-EV-
enclosed cytokines such as osteoprotegerin (OPG) and 
miRNAs such as miR-21-5p and let-7b-5p have been 
reported to hamper osteoclastogenesis by downregulat-
ing genes associated with bone resorption, suggesting 
the potential therapeutic use of ADSC-EVs in the treat-
ment of osteoporosis [107]. To effectively utilize ADSC-
EVs for bone regeneration, several application strategies 
have been proposed. These include genetic modifications 
of ADSCs to enhance the potency of derived EVs [209], 
engineering of the membrane protein of ADSC-EVs to 
improve their homing and retention capacities [206], 
and the use of biomaterial scaffolds or hydrogels to help 
immobilize the EVs and introduce extra osteoinductive 
factors to the healing site [207, 208, 210, 211]. The inte-
gration of different engineering strategies to maximize 
the bone regenerative efficiency of ADSC-EVs has also 
been evaluated. The hydrogel-encapsulated ADSC-EVs 
with overexpressed miR-375 enhance bone regenera-
tive capacity with a slow and controlled release in a rat 
model of bone defect [106]. Challenges in the applica-
tion of ADSC-EVs for bone regeneration may include 
the need for understanding the interactions between 
ADSC-EVs and the host environment, standardization 
of procedures for their use, and further investigations 
to optimize their effectiveness and delivery methods. In 
general, these findings support the significant therapeutic 

potential of ADSC-EVs in bone regeneration and repair 
and emphasize the need for future research to fully eluci-
date the underlying mechanisms and optimize their clini-
cal application.

Cartilage regeneration
The significance of cartilage lies in its pivotal role in 
maintaining joint health and mobility and the subsequent 
impacts on overall quality of life. Articular cartilage 
serves as a crucial structural component within the skel-
etal system, providing a smooth and lubricated surface 
for joint movement and load distribution. Therefore, the 
regeneration and repair of articular cartilage are impera-
tive for preventing the progression of osteoarthritis, 
which affects a substantial number of individuals, along 
with other joint-related disorders [212].

Multiple studies have demonstrated the capacity of 
ADSC-EVs to promote the proliferation, migration, 
chondrogenic differentiation, and osteogenic differen-
tiation of BMSCs [213, 214]. Compared to bone mar-
row- and synovium-derived MSC-EVs, adipose-derived 
MSC-EVs display superior regenerative efficacy for car-
tilage and bone in a mouse model [213]. The therapeutic 
potential of ADSC-EVs has been assessed in the context 
of not only osteochondral regeneration but also osteo-
arthritis. In both in  vitro and in  vivo models of inflam-
matory osteoarthritis, ADSC-EVs are found to stimulate 
chondrogenesis while reducing cartilage degeneration 
and suppressing inflammation. Consistent modulation of 
marker genes are also verified associating with chondro-
cyte viability, cartilage matrix homeostasis, macrophage 
polarization, and inflammatory suppression [214–216]. 
The activation of specific signaling pathways, such as the 
Wnt/β-catenin, PI3K/AKT, the adenosine 5’-monophos-
phate (AMP)-activated protein kinase (AMPK), and the 
MAPK-ERK/1/2 pathways, has been implicated in medi-
ating these therapeutic effects [213, 216]. Supported by 
an increasing body of evidence, the ability of ADSC-EVs 
to promote chondrogenesis while decreasing cartilage 
lesions and inhibiting inflammation holds promise for 
the development of innovative regenerative therapies for 
cartilage-related disorders (Fig. 3).

Tendinopathy and tendon healing
Tendinopathy is a prevalent musculoskeletal disor-
der characterized by a dysregulated collagen matrix, 
chronic low-grade inflammation and tissue degen-
eration, resulting in activity-related chronic pain and 
functional decline [217]. The etiology of tendinopathy 
is multifactorial, involving extrinsic conditions such as 
trauma and chronic overuse, as well as intrinsic con-
ditions such as obesity, inflammation, and genetics 
[217, 218]. It poses a significant burden on healthcare 
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systems and represents a common cause of pain and 
disability among athletes and sedentary individuals 
[219]. The limited regenerative capacity of tendons, 
in conjunction with the intricate pathology of tendi-
nopathy, emphasizes the criticality of understanding 
the underlying mechanisms and developing efficacious 
therapeutic strategies for treating tendon injuries and 
disorders.

Recent studies have highlighted the therapeutic 
potential of ADSC-EVs in tissue regeneration, spe-
cifically in the healing of traumatized Achilles tendons 
[220, 221]. The promotion of Achilles tendon regen-
eration and repair by ADSC-EVs is characterized by 
enhanced proliferation and migration of tendon stem 
cells, along with increased viability, reduced senes-
cence, and elevated collagen production in tenocytes. 
These effects are mediated through specific signaling 
pathways, including the SMAD1/5/9 and SMAD2/3 
pathways [222], as well as the nicotinamide phospho-
ribosyltransferase (NAMPT)/SIRT1/peroxisome prolif-
erator activated receptor γ (PPARγ)/PPARγ coactivator 
1-α (PGC1-α) pathway [127]. Furthermore, ADSC-EVs 
exhibit anti-inflammatory effects by suppressing M1 
macrophage polarization while stimulating M2 mac-
rophage polarization. This dual action makes them 
promising therapeutic agents for promoting both ten-
don regeneration and inflammatory suppression in 
Achilles tendinopathy [104, 127, 222]. Moreover, the 
potential of ADSC-EVs for rotator cuff tendon regener-
ation and repair has been evaluated [223–226]. Admin-
istration of ADSC-EVs has been shown to enhance 
collagen deposition, promote tendon maturation and 
myofiber regeneration, improve histological and bio-
mechanical properties, and reduce tendon degenera-
tion, atrophy, and fatty infiltration in animal models of 
supraspinatus and infraspinatus tendon injury [223–
225]. Similarly, immunomodulation characterized by 
augmented M2 polarization and attenuated M1 polari-
zation has also been observed during these therapeutic 
interventions [223, 226]. In summary, there is substan-
tial evidence supporting the therapeutic potential of 
ADSC-EVs in tendinopathy and tendon healing (Fig. 3). 
These studies collectively demonstrate their poten-
tial for improving regenerative capacity while mitigat-
ing inflammation in both the Achilles and rotator cuff 
tendons, thereby highlighting their significant promise 
as a therapeutic agent within the field of regenerative 
medicine.

Peripheral nerve regeneration
The peripheral nervous system is responsible for trans-
mitting signals between the central nervous system and 

the rest of the body. Injuries to peripheral nerves can 
arise from various forms of damage or trauma, leading 
to a range of debilitating symptoms, such as sensory 
loss, muscle weakness, numbness, tingling, and chronic 
pain characterized by sharp, burning, or throbbing 
sensations. These impairments significantly impact an 
individual’s ability to carry out daily activities and may 
result in long-term disability [227, 228]. Consequently, 
promoting effective peripheral nerve regeneration 
holds immense medical significance in addressing these 
challenges and enhancing patient outcomes.

Recently, research has demonstrated the endocytosis-
mediated internalization of ADSC-EVs by Schwann 
cells, which originate from the neural crest and play a 
primary role in axonal myelination within the periph-
eral nervous system [229, 230]. Myelination is essential 
for facilitating rapid nerve impulse conduction [229]. 
Numerous studies have highlighted the therapeutic 
potential of ADSC-EVs in promoting peripheral nerve 
regeneration post-injury through various mechanisms, 
such as cell proliferation, migration, myelination, neu-
rotrophic factor secretion, and autophagy induction 
in Schwann cells [109, 230–232]. Consistently, animal 
experiments administering ADSC-EVs to rats with sci-
atic nerve injuries have shown enhanced regeneration 
of both the myelin sheath and axons and improved res-
toration of denervated muscle atrophy via optimized 
Schwann cell function [109, 231, 232]. Additionally, 
ADSC-EVs have been demonstrated to facilitate the 
recovery of erectile function following cavernous nerve 
injury, further emphasizing their potential applica-
tion in treating peripheral nerve injuries [233]. Fur-
thermore, ADSC-EV-encapsulated miRNA is found 
to promote Schwann cell proliferation and migration 
via the miR-22-3p/phosphatase and tensin homolog 
deleted on chromosome 10 (PTEN)/AKT/mTOR axis 
[110]. Another ADSC-EV-miRNA is reported to induce 
Schwann cell autophagy through the miR-26b/karyo-
pherin subunit α-2 (KPNA2) axis [109]. These investi-
gations elucidate the underlying molecular machinery 
governing the efficacy of ADSC-EVs in peripheral nerve 
regeneration. Overall, these findings provide valu-
able insights into the role of ADSC-EVs in promoting 
peripheral nerve regeneration and functional recovery 
while supporting their potential clinical application in 
treating peripheral nerve injuries (Fig. 3).

Acute lung injury
Acute lung injury (ALI), also known as acute respira-
tory distress syndrome (ARDS) in its severe form, is a 
prevalent and life-threatening pulmonary disease charac-
terized by acute alveolar damage, pronounced inflamma-
tion, heightened vascular permeability, and substantial 
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protein-rich pulmonary edema, leading to reduced lung 
compliance, impaired gas exchange, hypoxemia and res-
piratory failure [234, 235]. The pathogenesis of ALI pri-
marily involves disruption of the lung endothelial and 
epithelial barriers induced by acute inflammation [234]. 
ADSC-EVs have been demonstrated to ameliorate ALI 
through mechanisms that include immunomodulation of 
alveolar macrophages and protection of the pulmonary 
endothelial barrier. In the recent pandemic of coronavi-
rus disease 2019 (COVID-19), approximately 15–30% 
of people hospitalized with COVID-19 will develop 
COVID-19 associated ARDS (CARDS) [236, 237]. The 
therapeutic effects of MSC-EVs including ADSC-EVs in 
COVID-19 are currently being assessed with dozens of 
clinical trials (Table 1).

It has been demonstrated that the administration of 
ADSC-EVs in alveolar macrophages results in decreased 
secretion of inflammatory cytokines and increased pro-
duction of anti-inflammatory cytokines [19, 238]. And, 
the transfer of mitochondrial components derived from 
donor cells through EVs plays a significant role in mediat-
ing these therapeutic effects when internalized by recipi-
ent alveolar macrophages. This internalization leads to 
an increase in mtDNA levels, mitochondrial membrane 
potential, mitochondrial oxidative phosphorylation 
(OXPHOS) activity, and ATP generation while reliev-
ing mitochondrial ROS stress [19]. In  vivo assessments 
in mice with cecal ligation and puncture (CLP)-induced 
ALI have consistently revealed anti-inflammatory out-
comes, such as reduced macrophage aggregation, down-
regulated pro-inflammatory cytokines, and alleviated 
pulmonary edema and vascular leakage, which are asso-
ciated with improved survival rates [238]. In addition, the 
administration of ADSC-EVs has been shown to facilitate 
recovery from pulmonary microvascular endothelial cell 
(PMVEC) injury. These EVs effectively inhibit excessive 
inflammatory response-induced ROS accumulation; cell 
damage, including apoptosis and ferroptosis; tight junc-
tion damage; and high permeability of PMVECs [111, 
239]. Furthermore, ADSC-EVs protect against cigarette 
smoke-induced chronic obstructive pulmonary disease 
(COPD) [240] and silicosis [241] by regulating mac-
rophages and suppressing inflammation. Moreover, they 
have shown efficacy in treating ventilator-induced lung 
injury (VILI) by repairing the pulmonary endothelial bar-
rier and ameliorating the inflammatory response [242]. 
In conclusion, these findings strongly support the immu-
nomodulatory and pulmonary endothelial cell protec-
tive properties of ADSC-EVs in the context of ALI and 
related conditions (Fig. 3). These findings underscore the 
potential therapeutic efficacy of ADSC-EVs as a promis-
ing intervention for these diseases, necessitating further 

investigations to understand the underlying mechanisms 
and optimize strategies for future clinical application.

Other regenerative medical conditions affected 
by ADSC‑EVs
In addition to their effects on the aforementioned dis-
eases, ADSC-EVs have also displayed therapeutic poten-
tial in various medical conditions that require tissue 
regeneration and immunomodulation (Fig. 3). According 
to the latest literature available to the authors, ADSC-EVs 
ameliorate hepatic ischemia–reperfusion injury [243], 
skeletal muscle injury [126, 244], diabetic [245, 246] or 
non-diabetic [247] erectile dysfunction, and thin endo-
metrium-induced infertility [248], primarily through 
the activation of tissue regeneration characterized by 
enhanced cell proliferation, differentiation, angiogenesis, 
reduced apoptosis, and modulated production of cell fac-
tors regulating these processes. Additionally, ADSC-EV-
mediated inflammatory suppression has been reported 
as a major underlying mechanism for treating atopic 
dermatitis [249, 250], sepsis [251, 252], and atheroscle-
rosis-induced vascular lesions [253], along with other 
conditions of immunosuppression failure listed in this 
review. In these contexts, ADSC-EVs downregulate the 
expression of inflammatory cytokines while decreasing 
immunocyte infiltration and reducing ROS accumula-
tion. They also inhibit macrophage M1 polarization while 
stimulating M2 polarization [249–253]. Furthermore, 
ADSC-EVs exhibit antifibrotic effects on hepatic fibrosis 
by reducing fibrotic collagen deposition and liver inflam-
mation while restoring liver function [112, 254, 255]. 
Moreover, ADSC-EVs have been found to protect against 
metabolic disturbance and alleviate polycystic ovary syn-
drome by maintaining liver metabolic homeostasis [108]. 
Collectively, these studies highlight the versatile applica-
tions of ADSC-EVs in promoting tissue regeneration and 
reducing inflammation and fibrosis while maintaining 
metabolic homeostasis, thus strongly supporting their 
role as a promising therapeutic strategy in regenerative 
medicine.

Conclusions and perspectives
ADSCs have gained recognition for their significant 
potential in regenerative medicine due to their ability 
to differentiate into various cell lineages and exert auto-
crine/paracrine effects through the secretion of growth 
factors, cytokines, chemokines, miRNAs, proteins, and 
diverse important mediators enclosed in EVs [75]. Uti-
lizing ADSC-derived EVs offers several advantages, 
including ease of transportation and storage, low immu-
nogenicity, and no potential tumorigenicity, while pre-
serving the therapeutic activity of donor ADSCs [200]. 
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The reviewed studies have demonstrated that ADSC-EVs 
represent a novel therapeutic approach in the field of 
regenerative medicine due to their pivotal roles in various 
biological processes, such as cell proliferation, migration, 
angiogenesis, apoptosis, tissue regeneration, and immu-
nomodulation [78]. They have been applied to the afore-
listed regenerative medical conditions and have shown 
the most promising outcomes in skin wounds, scars, 
bone injuries, and fat grafting associated with plastic and 
cosmetic surgery. Utilizing adipose tissue as the source of 
MSCs provides numerous advantages, including abun-
dant clinical source availability, resulting high EV yields, 
and easier and less invasive surgical technique to obtain 
the adipose tissue compared to other tissue sources, 
which is uniquely convenient for plastic surgeons and 
researchers since plastic surgeons frequently perform 
liposuction and autologous fat transplantation [76].

However, several notable challenges still need to be 
addressed before the clinical application of ADSC-EVs 
can be realized. Currently, the clinical translation of 
ADSC-EVs is hindered by limitations such as insuf-
ficient understanding of the mechanisms and interac-
tions between ADSC-EVs and the host environments; 
variations in EV contents and bioactivities across tissues, 
individuals and their metabolic states; less-optimized 
therapeutic efficiency and delivery methods; an absence 
of standardized protocols and automatic workflows spe-
cific for adipose tissue and ADSC isolation, large-scale 
production, transport and preservation; a lack of quality 
control for EV sources; and the inadequate standards for 
the characterization of EV products [75, 79, 256]. Please 
note that adipose tissue is dynamically and deeply associ-
ated with and regulating the systemic metabolic homeo-
stasis [1], which could potentially augment the variation 
of EV contents across individuals and their metabolic 
states. For example, ADSC-EVs collected from normal 
individuals and individuals with obesity might show 
inconsistent efficacies [98]. As a result, further stud-
ies, engineering optimizations, and the establishment of 
these procedures and standards, with a specific consid-
eration of donor metabolic states, will be essential for 
facilitating the transition of ADSC-EV therapy to clini-
cal practice [256]. Overall, the therapeutic potential of 
ADSC-EVs in tissue regeneration is strongly supported 
by their pro-proliferative, proangiogenic, regenerative, 
and immunomodulatory properties. The future clinical 
applications of these EVs hold great promise for address-
ing diverse medical conditions and advancing regenera-
tive medicine.
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