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Abstract
Recently, the significant benefits of cancer immunotherapy for most cancers have been demonstrated in clinical 
and preclinical studies. However, the efficacy of these immunotherapies for gliomas is limited, owing to restricted 
drug delivery and insufficient immune activation. As drug carriers, exosomes offer the advantages of low toxicity, 
good biocompatibility, and intrinsic cell targeting, which could enhance glioma immunotherapy efficacy. However, 
a review of exosome-based drug delivery systems for glioma immunotherapy has not been presented. This 
review introduces the current problems in glioma immunotherapy and the role of exosomes in addressing these 
issues. Meanwhile, preparation and application strategies of exosome-based drug delivery systems for glioma 
immunotherapy are discussed, especially for enhancing immunogenicity and reversing the immunosuppressive 
tumor microenvironment. Finally, we briefly describe the challenges of exosome-based drug delivery systems 
in clinical translation. We anticipate that this review will guide the use of exosomes as drug carriers for glioma 
immunotherapy.
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Introduction

Gliomas are tumors derived from glial or neural precur-
sor cells in the central nervous system (CNS), including 
astrocytoma, oligodendroglioma, ventricular meningi-
oma, and mixed glioma. According to recent data from 
The Central Brain Tumor Registry of the United States, 
gliomas account for 24% of all CNS tumors and 80.9% 
of malignant tumors, making them the most prevalent 
intracranial malignancy [1]. The World Health Orga-
nization categorizes gliomas into four grades (grades 
1–4), with grades 1–2 considered low-grade gliomas and 
grades 3–4 classified as high-grade gliomas [2]. Low-
grade gliomas are associated with a 10-year survival rate 
of 39% and a median survival time of 87.3 months [3]. 
Conversely, high-grade gliomas, particularly glioblastoma 
(GBM), demonstrate high malignancy, with a median 
survival time not exceeding 15 months [4]. Owing to 
their high recurrence rate, high disability and mortality 
rates, and limited cure rate, gliomas are the most aggres-
sive and refractory CNS tumors. Currently, the standard 

treatment for gliomas involves surgical intervention com-
bined with chemoradiotherapy; however, this approach is 
inefficient in preventing tumor recurrence. Therefore, it 
is critical to explore innovative treatment approaches to 
enhance therapeutic efficacy.

In recent years, tumor immunotherapy has gained 
prominence for its ability to restore and enhance immune 
responses, through exogenous intervention with the 
body’s immune system. The tumor immune cycle 
includes the release of specific antigens by tumor cells, 
which are captured and processed by antigen-presenting 
cells (APCs) for presentation to T cells. These T cells are 
then activated, and they proliferate and infiltrate tumors, 
ultimately recognizing and eliminating tumor cells [5]. 
Tumor immunotherapy can specifically kill tumor cells 
and establish long-term immune memory by facilitat-
ing any step in this process. Common cancer immuno-
therapies include immune checkpoint inhibitors (ICIs), 
chimeric antigen receptor T cell therapy, cancer vac-
cines, and oncolytic viruses, and these are currently the 
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subject of many clinical trials [6]. However, patients with 
glioma derive limited benefits from immunotherapy 
compared to those with other malignancies [7]. Several 
factors contribute to this, including (i) the blood–brain 
barrier (BBB) preventing the entry of therapeutic mol-
ecules, (ii) the low immunogenicity of gliomas limiting 
the initiation of immune responses, and (iii) the immu-
nosuppressive microenvironment inhibiting the activity 
of effector T cells. To address these challenges, research-
ers are developing drug delivery systems capable of effi-
ciently delivering therapeutic agents, such as antigens, 
immunomodulatory molecules, and anticancer drugs. 
These systems aim to penetrate the BBB precisely and 
enhance the immune response, thereby improving the 
efficacy of glioma immunotherapy.

Common drug delivery systems mainly comprise nano-
formulations, including liposomes, solid lipid nanopar-
ticles, dendritic polymers, and inorganic materials [8, 
9]. However, these nanoformulations are identified as 
“non-self” and are susceptible to capture and rapid clear-
ance by the immune system. Additionally, nanocarriers 
synthesized from inorganic materials can have potential 
toxicity owing to their inability to be degraded [10]. In 
contrast, exosomes are endogenous nanoscale vesicles 
secreted by living cells, with several advantages, includ-
ing excellent stability, low toxicity, a long circulating 
half-life, ease of modification, and intrinsic cell targeting. 
Most notably, exosomes are vital in mediating cellular 
communication within the tumor immune response. In 
addition, they participate in presenting immune signals, 
regulating the tumor microenvironment (TME), and 
influencing immune cell responses [11]. Therefore, exo-
somes have great potential as carriers for drug delivery in 
glioma immunotherapy. However, a review on this topic 
has not been presented. In this review, we introduce 
the problems in glioma immunotherapy and the advan-
tages of exosomes in it, and we discuss the preparation 
of exosomes as drug delivery systems and the strategies 
for their application in glioma immunotherapy to provide 
new ideas for realizing efficient glioma treatment.

Current problems in glioma immunotherapy
Blood–brain barrier
The BBB is a neurovascular unit consisting of brain 
microvascular endothelial cells (BMECs), basement 
membrane, astrocytes, microglia, and pericytes [12]. 
Among these components, BMECs, which form the 
primary structure of the BBB, display a flattened cell 
morphology, limited caveolae on the luminal surface, 
abundant mitochondria, and tight intercellular junctions 
[13]. This unique physical barrier permits only lipophilic 
molecules with molecular weights less than 400 Dalton 
and fewer than eight hydrogen bonds to traverse the BBB 
along the concentration gradient [14]. In addition, highly 

active intracellular and extracellular enzymes on the 
BBB prevent drugs, such as proteins and peptides, from 
passing through the BBB by degrading them [15]. Fur-
thermore, various transmembrane transporter proteins, 
particularly ATP-binding cassette transporters, limit the 
accumulation of certain small-molecule drugs by expel-
ling them into the capillary lumen [16, 17]. Given these 
constraints, the BBB not only protects the brain from for-
eign pathogens but also blocks nearly all large-molecule 
drugs and approximately 98% of small-molecule drugs 
from reaching the treatment site, while simultaneously 
controlling peripheral immune cell infiltration into the 
brain [18, 19] (Fig. 1a). As tumors progress, BBB disrup-
tion can lead to the formation of a blood–brain tumor 
barrier characterized by a looser vascular system, dimin-
ished tight junctions, an abnormal pericyte distribution, 
an altered astrocyte end-foot, and reduced neuronal con-
nectivity [20]. In a sense, BBB disruption might facili-
tate the entry of drugs and immune factors into tumors. 
However, the blood–brain tumor barrier still expresses 
efflux transporters [20], and clinical data indicate that in 
all patients with GBM, an intact BBB is retained in the 
tumor region [21]. Thus, drugs that effectively penetrate 
the BBB are essential for glioma treatment.

Tumor low immunogenicity
The tumor mutational burden (TMB) indirectly reflects 
the ability of tumors to produce neoantigens and can be 
used to predict the therapeutic efficacy of ICIs. A higher 
TMB suggests that the patient is more likely to benefit 
from ICIs [22]. However, GBM exhibits a low TMB and 
neoantigen burden, resulting in limited therapeutic tar-
gets for the immune system [23, 24] (Fig. 1b). By evalu-
ating changes in the neoantigen load and immunologic 
characteristics in patients with primary and recurrent 
gliomas, Neio et al. [25] found no difference in the num-
ber of expressed neoantigens (e-) and predicted neoan-
tigens (p-); however, their ratio (e-/p-) was significantly 
decreased in patients with recurrent gliomas. They con-
cluded that the reduced expression of mutant neoanti-
gens and impaired antigen processing and presentation 
could cause tumor immune escape and recurrence. Fur-
thermore, beyond mutated neoantigens, non-mutated 
shared antigens, such as IL13Rα2, HER2, WT1, and 
EphA2, are commonly found in most patients with gli-
oma. However, these antigens are expressed at low and 
highly variable levels compared to those in malignant 
tumors such as melanoma [26, 27]. At the same time, 
these non-mutated antigens are also usually expressed in 
normal tissues [28], increasing the risk of complications 
when targeting them for treatment.

Additionally, tumor antigens necessitate the formation 
of mature peptide–major histocompatibility complexes 
(MHCs) through antigen processing and presentation 
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machinery (APM) for T cell recognition. Previous 
research has shown that glioma cell migration and inva-
sion are correlated with downregulated MHC class I 
and II antigen expression [29]. In developing APVAC2 
for the GAPVAC-101 clinical trial, based on a vac-
cine derived from glioma-associated mutant peptides, 
researchers performed extensive immunopeptidome 
analysis. They identified 35,156 distinct human leuko-
cyte antigens (HLAs) but found no mutant peptides 
presented by HLA in the plasma or tissue from patients 
with GBM [30, 31]. Moreover, Facoetti et al. observed 
that more than 50% of patients with GBM were deficient 
in HLA class I and II molecules, with a significant cor-
relation between the loss of HLA class I and a higher 
tumor grade. Furthermore, the expression of tapasin, a 
key component of the APM that facilitates MHC class 
I interactions with antigen-processing transporters, was 
determined to be reduced in several GBM specimens. 
This indicates that abnormalities in HLA and APM 
might contribute to the limited efficacy of immunother-
apy for malignant gliomas [32].

Immunosuppressive microenvironment
Tumor cell invasion into normal tissues establishes the 
TME, which comprises immune cells, cancer-associated 
fibroblasts, endothelial cells, and an extracellular matrix 
[33, 34]. In the TME, densely infiltrating immunosuppres-
sive cells and cytokines, along with hypoxia and chronic 
inflammation, synergistically inhibit T cell responses, 
facilitate tumor immune escape, and adversely affect gli-
oma immunotherapy [35, 36] (Fig. 1c). Tumor-associated 
macrophages (TAMs) constitute 40% of the total tumor 
volume and play a crucial role in the TME [37]. Accord-
ingly, high TAM infiltration is typically linked to reduced 
overall survival in patients with GBM [38]. TAMs secrete 
TGF-β, targeting cytotoxic T lymphocytes (CTLs) and 
specifically suppressing the expression of perforin, gran-
zyme A, granzyme B, Fas ligand, and IFN-γ, consequently 
diminishing CTL-mediated cytotoxicity [39]. Moreover, 
GBM-induced kynurenine activates the aryl hydrocar-
bon receptor in TAMs, promoting CD39 expression, 
which synergizes with CD73 to produce adenosine, lead-
ing to CD8+ T cell dysfunction [40]. Furthermore, TAMs 

Fig. 1  Current problems in glioma immunotherapy (By Figdraw). a Blood-brain barrier prevents the entry of therapeutic molecules. b Low immunoge-
nicity of gliomas restricts immune response initiation. c Immunosuppressive microenvironment inhibits T cell activity
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disrupt T cell metabolism through the overexpression 
of arginase (ARG1) and indoleamine 2,3-dioxygenase 
(IDO), catabolizing amino acids that are vital for T cell 
proliferation [41]. Similarly to that observed in tumor 
cells, TAMs express inhibitory surface molecules, such as 
PD-L1, PD-L2, B7H4, and CD80/CD86, which hinder T 
cell activation and even trigger apoptosis [42]. Moreover, 
the LILRB1 inhibitory receptor on TAMs binds to MHC 
I on cancer cells, directly shielding them from immune-
mediated phagocytosis [43].

Myeloid-derived suppressor cells (MDSCs) represent a 
diverse group of immature myeloid cells (IMCs) known 
for their immunosuppressive capabilities [44]. Typically, 
IMCs originating from the bone marrow rapidly dif-
ferentiate into mature macrophages, granulocytes, and 
dendritic cells (DCs) [45, 46]. In contrast, the matura-
tion of IMCs is hindered, leading them to transform into 
MDSCs with immunosuppressive functions in tumors 
[47]. MDSCs can pleiotropically inhibit CTL activ-
ity through the expression of IL-4Rα, PD-L1, and CD80 
and the upregulation of ARG1 and inducible nitric oxide 
synthase (iNOS) expression [48]. Research has further 
shown that systemic lymphopenia following radiotherapy 
is correlated with an increase in MDSC numbers and 
that targeting MDSCs is effective for mitigating immu-
nosuppression and lymphopenia in patients with GBM 
patients [49]. Moreover, MDSCs exert immunosuppres-
sive effects by inhibiting the functions of DCs, natural 
killer (NK) cells, and macrophages, in addition to induc-
ing the expansion and differentiation of regulatory T cells 
(Tregs).

Tregs are a subpopulation of CD4+ T cells that usually 
express the transcription factor Foxp3. The tumor tis-
sues and peripheral blood of patients with glioma have a 
higher proportion of Tregs compared to that in healthy 
individuals [50], with a higher glioma grade correspond-
ing to more significant Treg enrichment [51]. Tregs can 
suppress anti-tumor immune responses through a vari-
ety of mechanisms [52–54], including (i) the secretion of 
immunosuppressive cytokines, (ii) the induction of target 
cell lysis via cell–cell contact, (iii) the expression of inhib-
itory receptors to suppress APCs, (iv) competition with 
effector T cells for IL-2 to inhibit their growth, and (v) 
the promotion of adenosine accumulation and competi-
tion for nutrients to disrupt T cell metabolism. Recently, 
van Hooren et al. [55] reported that CD103+ Tregs with 
upregulated lipid metabolism are accumulated in the 
TME and significantly inhibit CTL activation after radio-
therapy combined with ICIs. The depletion of Tregs 
results in tertiary lymphoid structure formation, which in 
turn induces responses in CTLs and improves treatment 
resistance. Therefore, there is an urgent need to develop 
therapies targeting immunosuppressive cells to reverse 
the immunosuppressive microenvironment.

Overview of exosomes
Biogenesis and characteristics of exosomes
Exosomes are double-membrane structured extracellu-
lar vesicles with a 40–160  nm diameter formed by out-
growth of the plasma membrane. Most cells can actively 
secrete exosomes, which are naturally present in various 
body fluids such as blood, saliva, urine, and cerebrospinal 
fluid [56]. Exosome generation involves double invagi-
nation of the plasma membrane and the formation of 
intracellular multivesicular bodies (MVBs) containing 
intraluminal vesicles (ILVs) (Fig.  2a(i)). Specifically, cell 
membranes undergo endocytosis to form early sorting 
endosomes, which then mature and further invaginate to 
form MVBs. Subsequently, MVBs can either be degraded 
by lysosomes or autophagosomes or fuse with the plasma 
membrane, thereby releasing ILVs as exosomes [57]. Exo-
some biogenesis generally involves two potential mecha-
nisms: endosomal sorting complex required for transport 
(ESCRT) and ESCRT-independent pathway. The ESCRT 
pathway relies on the synergistic of the ESCRT com-
plexes (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) 
and the AAA ATPase Vps4 for recognition sorting of 
ubiquitinated proteins to maintain the specificity of the 
contents of ILVs [58]. The ESCRT-independent path-
way is driven by partial lipids. Sphingomyelins produce 
ceramides via neutral sphingomyelinase 2, and ceramides 
form lipid raft microdomains to trigger the formation of 
ILVs while promoting exosome release [59].

Depending on the parental cell of origin, exosomes 
can carry a combination of different bioactive molecules, 
including proteins, nucleic acids, and lipids (Fig.  2a(ii)) 
[60]. Among these molecules, proteins constitute the 
most abundant component of exosomes and carry a wide 
range of functions. Synaptosomal-associated proteins, 
annexins, and Rab proteins are responsible for intracel-
lular membrane fusion and trafficking. Heat shock pro-
teins such as Hsp70 and Hsp90 are involved in antigen 
presentation and immunomodulation, while proteins 
like Alix and TSG101 are essential for MVB biogen-
esis. Tetratransmembrane proteins (CD9, CD36, CD81, 
and CD82) and integrins mediate cell infiltration, adhe-
sion, and fusion. Transporter proteins (ATP7A, ATP7B, 
SLC16A1, and CL1C1) and receptors (CD46, CD55) 
facilitate cell communication and molecular transport 
[61–63]. Another vital cargo of exosomes is nucleic acids, 
including messenger RNAs (mRNAs), microRNAs (miR-
NAs), circular RNAs (circRNAs), and long non-coding 
RNAs (lnRNAs). mRNAs mediate genetic information 
transfer and regulate receptor cell function and protein 
synthesis [64]. miRNAs can inhibit the translation of 
target mRNAs or promote their degradation to regu-
late gene expression, affecting a wide range of biologi-
cal processes, such as cell proliferation, differentiation, 
apoptosis, and disease development [65]. circRNAs and 
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lnRNAs can be selectively packaged, secreted, and trans-
ferred between cells in exosomes to regulate cancer 
angiogenesis, immune escape, invasive metastasis, and 
epithelial-mesenchymal transition [66, 67]. Furthermore, 
exosomes contain diverse lipids, such as ceramides, gan-
gliosidesphosphatidylserine, cholesterol, sphingomyelins, 
phosphatidylcholine, and phosphatidylserine. These lipid 
components not only keep the morphology and structure 
of exosomes stable but also play a crucial role in the pro-
duction and release of exosomes [68, 69].

Biological function of exosomes
The diversity of the molecular composition of exosomes 
endows them with a wide range of biological functions 
that are important for maintaining the internal homeo-
stasis of organisms, influencing the course of diseases, 
and developing new therapeutic approaches. First, 
intercellular signaling and communication are critical 
biological functions of exosomes. Exosomes are taken 
up by recipient cells through receptor-ligand interac-
tions, membrane fusion, or endocytosis, delivering the 

bioactive molecules and thus modulating the functional 
and phenotypic characteristics of the recipient cells [70, 
71]. For example, exosomes loaded with the hypoxia 
master regulator HIF1A transmit hypoxic signals to 
normoxic cells, thereby inducing neoangiogenesis [72]. 
Glioma-derived exosomes (GM-Exos) induce the con-
version of normal human astrocytes to tumor-associated 
astrocytes via the miR-3065-5p/DLG2 signaling axis and 
promote malignant tumor progression [73]. Addition-
ally, exosomes can modulate inflammation by inhibiting 
or promoting the activation of inflammasomes. Studies 
have shown that M2-like macrophage exosomes carry-
ing miR-148a inactivate the TLR4/NF-κB/NLRP3 signal-
ing pathway to alleviate myocardial ischemia/reperfusion 
injury [74], while macrophage-derived exosomes treated 
with lipopolysaccharides promote acute liver injury by 
activating the NLRP3 inflammasome [75]. The role of 
exosomes in immune responses has also been extensively 
studied. Depending on their molecular composition and 
the specific cellular environment in which they reside, 
exosomes can enhance immune responses or induce 

Fig. 2  Exosome biogenesis, characteristics, and mechanism of crossing the BBB (By Figdraw). a Exosome biogenesis and characteristics. (i) Exosome 
biogenesis; (ii) Exosome characteristics. b Mechanism of exosome crossing the BBB. (i) Receptor-mediated transcytosis; (ii) Lipid rafts or nonspecific 
exosome-endothelial cell interactions; (iii) Macropinocytosis
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immune tolerance in their communication with immune 
cells, demonstrating their potential therapeutic role in 
cancer, autoimmune diseases, inflammatory diseases, and 
transplant rejection [76, 77]. Moreover, exosomes exhibit 
the ability to promote tissue repair and regeneration. In 
particular, mesenchymal stem cell-derived exosomes 
can stimulate vascular regeneration, resist apoptosis and 
fibrosis, enhance neuronal survival, and improve extra-
cellular matrix remodeling [78, 79]. Numerous studies 
have demonstrated that mesenchymal stem cell-derived 
exosomes show protective and therapeutic benefits in 
wound healing, bone and cartilage regeneration, nerve 
repair, and myocardial injuries [80, 81]. Meanwhile, 
exosomes can carry specific molecules that reflect the 
pathophysiological state of their source cells, thus serv-
ing as biomarkers for early diagnosis and monitoring of 
diseases [82]. Finally, based on their molecular transfer 
function, good biocompatibility, stability, and targeting 
properties, exosomes have been widely investigated for 
drug delivery [83].

Status of exosomes for glioma treatment
In recent years, researchers’ in-depth exploration of 
exosomes’ composition and function has facilitated 
their remarkable progress in glioma treatment, mainly 
divided into four directions. First, inhibiting the release 
or uptake of GM-Exos to weaken their role in promoting 
glioma malignant progression. Several potential thera-
peutic targets have been identified, including ubiquitin-
conjugating enzyme E2O, heparan sulfate proteoglycans, 
and the mammalian target of rapamycin [84, 85]. Sec-
ond, exosomes’ inherent properties and contents can 
be utilized to treat gliomas. For example, mesenchymal 
stem cell-derived exosomes have shown the potential to 
treat gliomas independently of other therapies [86, 87]. 
Microglia-derived exosomes stimulated by lipopolysac-
charides/INF-γ can also inhibit glioma growth by alter-
ing the phenotype of TAMs [88]. Third, exosomes can 
be used as biomarkers to monitor treatment efficacy 
and predict prognosis. Studies have demonstrated that 
certain bioactive molecule levels (e.g., circ_0072083, 
lncSBF2-AS1, and miR-1238) in the exosomes of gli-
oma patients correlate with the level of temozolomide 
resistance and treatment efficacy [89–91]. In addition, 
circulating extracellular vesicle levels can reflect over-
all survival, progression-free survival, degree of tumor 
resection, and postoperative recurrence in glioma 
patients [92]. Finally, and more importantly, exosomes 
can deliver nucleic acids, drugs, and proteins to treat 
gliomas, including anti-angiogenesis, inhibiting tumor 
growth and metastasis, reversing drug resistance, and 
enhancing immune responses [18]. In the following sub-
section, we will focus on the advantages of exosomes as 
carriers in glioma immunotherapy.

Advantages of exosomes as drug delivery systems 
in glioma immunotherapy
BBB-penetration capability
The ability of exosomes to penetrate the BBB and 
enter the brain has been demonstrated. Banks et al. 
[93] found that exosomes derived from different spe-
cies (human and mouse) and cell lines (cancerous and 
noncancerous) can penetrate the BBB, with penetration 
rates varying more than 10-fold. Here, lipopolysaccha-
ride and wheatgerm agglutinin were found to regu-
late the transport of most exosomes, and the mannose 
6-phosphate receptor was determined to be a potential 
receptor facilitating the movement of mouse macro-
phage exosomes across the BBB. In addition, the inves-
tigators outlined possible transport pathways utilized 
by exosomes to penetrate the BBB, such as macropino-
cytosis, lipid rafts or nonspecific exosome–endothelial 
cell interactions, and receptor-mediated transcytosis 
[94, 95] (Fig.  2b). Although the detailed mechanisms 
underlying exosome entry into the brain need to be 
fully elucidated, several studies have indicated that the 
binding of specific ligands on the surfaces of exosomes 
to brain endothelial cell receptors facilitates their pas-
sage across the BBB. For example, both in vitro and in 
vivo models have been used to confirm that naïve mac-
rophage-derived exosomes are internalized by BMECs 
through interactions between surface integrin lympho-
cyte function-associated antigen 1 and intercellular 
adhesion molecule 1 (ICAM-1) [96]. Moreover, neural 
stem cell-derived exosomes that bind heparan sulfate 
proteoglycan receptors are endocytosed by BMECs and 
cross the BBB [97]. Further, serum exosomes exhibit 
natural brain-targeting abilities through transferrin–
transferrin receptor interactions [98]. CD46 is one of 
the primary receptors utilized by BMECs to take up 
exosomes derived from brain metastatic cancer cell 
lines and promote cancer metastasis [99]. In addition, 
different pathologic conditions enhance the uptake of 
exosomes by the BBB. Inflammation causes the overex-
pression of ICAM-1 receptors on the BBB, and macro-
phage exosomes enter the inflamed brain 3.1-fold faster 
and accumulate 5.8-fold more than in a healthy brain 
[96]. Hypoxia triggers intracellular calcium release, 
modifies connexins to disrupt the BBB, and leads to the 
significant leakage of exosomes into the brain [100]. 
The brain-targeting capabilities of both natural and 
engineered exosomes have led to their excellent thera-
peutic efficacy in models of CNS diseases, including 
Alzheimer’s disease, Parkinson’s disease, stroke, and 
epilepsy [94]. Therefore, exosomes offer broad clinical 
applications for the delivery of drugs to treat CNS dis-
eases and hold promise for overcoming the challenges 
to glioma immunotherapy posed by the BBB.
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Immunomodulatory capability
Exosomes derived from tumor and immune cells have 
different essential functions in terms of shaping the can-
cer immune cycle, including antigen processing and pre-
sentation, antigen transfer, innate and adaptive immune 
activation, and immune suppression [101] (Fig. 3). Clari-
fying the intrinsic immunomodulatory capacity of exo-
somes derived from different cells and using exosomes 
as carriers to initiate anticancer immune responses or 
deliver anticancer drugs could help to further improve 
drug efficacy.

Tumor-derived exosomes (TEXs) carry specific tumor 
antigens, antigen-presenting molecules, and co-stim-
ulatory molecules that activate anti-tumor immune 
responses. For example, TEXs carrying HSP70 induce 
NK cell-specific migration and cytolytic activity [102]. 
Meanwhile, TEXs expressing Rab27 enhance the expres-
sion of MHC II and the co-stimulatory molecules CD80 
and CD86 in DCs, inducing DC maturation and promot-
ing T cell proliferation [103]. However, TEXs encapsulate 
different contents, contributing to the complexity of their 
functions. TEXs can disrupt host immunity by inhibit-
ing antigen recognition and presentation by DCs [104], 

promoting MDSC activation and differentiation [105], 
inducing the polarization of TAMs toward an immuno-
suppressive phenotype [106], and interfering with T cell 
proliferation and activation [107, 108]. Furthermore, in 
addition to promoting tumor immune escape, TEXs are 
also involved in various aspects of tumor progression by 
communicating with adjacent or distant cells, including 
the establishment of pre-metastatic niches, anti-apopto-
sis, angiogenesis, promotion of inflammatory response, 
tumor growth, and drug resistance [109, 110]. Conse-
quently, the safety of utilizing TEXs as carriers warrants 
further examination.

Exosomes derived from immune cells serve as cru-
cial mediators of both innate and adaptive immune 
responses. DC-derived exosomes (DEXs), enriched in 
MHC I, MHC II, CD80, CD86, ICAM-1, HSP70, and 
HSP90, play a key role in antigen presentation, thereby 
triggering immune responses based on both CD4+ 
and CD8+ T cells [111]. Additionally, DEXs transport 
functional peptide–MHC complexes to adjacent unre-
sponsive DCs, enhancing the proliferation of DCs with 
specific peptides to facilitate widespread T cell activa-
tion and amplify immune responses [112]. Furthermore, 

Fig. 3  Immunomodulatory capability of tumor cell and immune cell-derived exosomes (By Figdraw)
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DEXs express IL-15Rα, NKG2D ligand, and the TNF 
superfamily ligand and can directly bind to NK cell sur-
face receptors and induce NK cell activation [113, 114]. 
T cell-derived exosomes have different roles in immu-
nomodulation depending on their phenotype. For exam-
ple, exosomes secreted by antigenically fully activated 
CD8+ T cells induce the activation of low-affinity CD8+ 
T cells, which are involved in tumor cell killing [115]. 
Moreover, CD4+ T cell-derived exosomes mediate anti-
tumor cellular immunity, by activating CD8+ T cells, 
and enhance humoral immunity by promoting B cell 
proliferation, activation, and antibody production [116, 
117]. In contrast, Treg exosomes express CD73 [118], 
carry specific miRNAs and iNOS [119], and synergize 
with cytokines to suppress the immune response [120]. 
Another study showed that exosomes from M1-like mac-
rophages partially deliver phagocytosed antigens to DCs 
via a ceramide-dependent pathway, thus enhancing T 
cell responses [121]. NK cell exosomes carrying several 
specific miRNAs (miR-10b-5p, miR-92a-3p, and miR-
155-5p) target molecules involved in the Th1 immune 
response and increase antigen presentation and co-stim-
ulation through monocyte and monocyte-derived DC 
activation [122]. In addition, the roles of exosomes from 
B cells, mast cells, and neutrophils in the tumor immune 
response have been established [11, 123].

Preparation of exosomes as drug delivery systems
Isolation and purification
Given the characteristics of exosomes, such as their mass 
density, particle size, and surface protein markers, vari-
ous strategies are available to isolate them from biofluids 
or cell culture supernatants. These include ultracentrifu-
gation (UC), density gradient centrifugation (DG), ultra-
filtration (UF), size exclusion chromatography (SEC), 
immunoaffinity capture, polymer precipitation, and 
microfluidics (Table 1).

UC is the most commonly used exosome isolation 
method and is the “gold standard” [124]. It involves two 
steps, as follows: (1) low-to-medium-speed centrifuga-
tion to remove cells, cellular debris, and large vesicles, 
and (2) ultra-high-speed centrifugation at 100,000 × g 
to obtain exosomes. UC is simple, technologically estab-
lished, and suitable for processing large-dose samples. 
However, exosomes can be damaged by the high centrif-
ugal forces, and impurities of a similar size and density 
might be co-separated with them [125–127]. Conse-
quently, to enhance exosome purity, researchers devel-
oped DG through the introduction of separation media, 
such as sucrose and iodixanol. However, this method is 
cumbersome and time-consuming, limiting its efficiency 
[128]. Based on a difference in particle size, exosomes 
can be separated via UF or SEC. UF selectively separates 
samples through ultrafiltration membranes with different Ta
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molecular-weight cutoffs. Moreover, it is a simple and 
low-cost method, but the membranes are susceptible to 
clogging, which causes exosome loss, and shear forces 
can damage the exosomes [129]. The principle of SEC is 
that large molecules cannot enter the gel pores and are 
eluted along the porous gel voids, while small molecules 
enter the gel pores and are eluted for a longer time. SEC 
is based on the principle of gravity flow, and the result-
ing exosomes retain a high degree of structural integrity 
and biological activity, with better recovery and purity 
than those with UC [130, 131]. However, the co-elution 
of similar-sized lipoproteins and the need for additional 
exosome enrichment pose challenges for the large-scale 
commercial application of SEC [132]. Immunoaffinity 
capture can be used to isolate exosomes based on inter-
actions between their marker proteins (e.g., CD9, CD63, 
CD81, and ALIX, etc.) and specific antibodies. In this 
method, only exosomes that express proteins recognized 
by the antibody can be captured, and thus, the yield is low 
and isolation depends on the quality and specificity of the 
antibody. However, compared to other methods, immu-
noaffinity capture yields exosomes with a higher purity 
and can be used to isolate specific subtypes of exosomes 
[133, 134]. In addition, the binding of polyethylene glycol 
to water molecules and the formation of a hydrophobic 
microenvironment reduces exosome solubility and allows 
them to precipitate [135]. This polymer precipitation 
method is simple, but the exosomes obtained have more 
impurities and the polymer is difficult to remove [136]. 
Finally, microfluidics comprise a micro-sized horizon-
tal separation technique based on the physicochemical 
characteristics of exosomes, and this has advantages over 
conventional methods, including its automated opera-
tion, precise control of flow conditions, high purity, and 
short time. However, microfluidics approaches require 
expensive and sophisticated equipment and are not suit-
able for large-scale applications [137, 138]. In conclusion, 
we should flexibly choose one or more methods for exo-
some isolation depending on the sample types, sources, 
volumes, and downstream applications, in addition to 
considering the yield, purity, cost, and time.

Drug loading
The process of loading drugs into exosomes is crucial 
for the development of exosome-based drug delivery 
systems. Maintaining drug activity and effective loading 
without compromising exosome integrity is the primary 
concern when selecting the optimal loading method. 
Drug loading strategies for exosomes can be primarily 
divided into endogenous and exogenous. Subsequently, 
the characteristics of these different loading methods will 
be discussed.

Endogenous loading refers to therapeutic molecules 
being imported into the source cells via transfection, 

co-incubation, or electroporation and then loaded into 
exosomes through a cell sorting mechanism. Endoge-
nous loading has a wide range of applications and does 
not destroy exosomes, but the process is complex and 
time-consuming [139, 140]. Crucially, with endogenous 
loading, control over exosome yields and therapeu-
tic molecule encapsulation is lacking, generally result-
ing in low loading efficiency [141]. Recently, Yang et al. 
[142] introduced a cellular-nanoporation technique for 
the large-scale production of exosomes encapsulating 
therapeutic mRNAs and targeted peptides. Compared to 
results with electroporation and other exosome produc-
tion strategies, this method can be used to produce up to 
50-fold more exosomes, increase mRNA transcripts by 
more than 103-fold, and result in better therapeutic effi-
cacy based on glioma models.

In exogenous loading, the exosome is first isolated, and 
then, the therapeutic molecule is directly loaded onto 
the exosome membrane or into the lumen. This method 
offers controllable encapsulation efficiency and loading 
capacity, generally outperforming endogenous loading 
[143]. Various loading methods have been developed, 
such as incubation, freeze–thaw, sonication, extrusion, 
electroporation, and permeabilization. Incubation is 
used to passively load drugs via concentration gradi-
ents without compromising the integrity of the exosome 
membrane. However, this still mainly applies to hydro-
phobic small molecules, and the loading efficiency is 
affected by the drug concentration, pH, and temperature, 
among other factors [144, 145]. For freeze–thaw, rapid 
temperature changes are employed for active drug load-
ing into exosomes; it is simple but has a low loading rate 
and can lead to exosome aggregation [143, 146]. In con-
trast, sonication and extrusion result in higher loading 
efficiencies [147, 148], but they can damage the exosome 
membrane and reduce drug activity [149]. Similarly, 
electroporation causes the formation of several tempo-
rary hydrophilic pores on the exosome membrane using 
an applied electric field, permitting the entry of drugs 
into the exosome. Studies have shown that the loading 
efficiency of electroporation is three times that of incu-
bation but much less than that of sonication and that it 
causes exosome damage and aggregation [145, 148, 150]. 
Surfactants, such as saponins, enhance exosome mem-
brane permeability for drug loading, which is known as 
the permeabilization method. However, surfactants can 
alter drug activity and are associated with a risk of hemo-
lysis and cytotoxicity, necessitating further purification 
[144, 146, 151]. In addition, dialysis [152] and in situ syn-
thesis [153] are also employed for drug loading, albeit 
less commonly than other methods. Table 2 outlines the 
principles, advantages, disadvantages, and applicable 
types of therapeutic molecules of commonly used drug 
loading methods.
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Exosome-based immunotherapy strategies for 
gliomas
To address the challenges associated with glioma immu-
notherapy, we propose strategies using exosome deliv-
ery systems to boost immune efficacy by enhancing 
immunogenicity and reversing the immunosuppressive 
microenvironment (Fig.  4). Additionally, we provide a 
summary of the types and effectiveness of current exo-
some-based drug delivery systems for glioma immuno-
therapy (Table 3).

Cascade modulation to improve low tumor 
immunogenicity
Targeted delivery of chemotherapeutic agents to promote 
antigen release
Tumor cell death resulting in the release of sufficient 
antigens is the basis for triggering specific immune 
responses. Chemotherapy can kill tumor cells, produce 
large amounts of antigens, and induce immunogenic cell 
death (ICD). However, the inefficient targeted delivery of 

chemotherapeutic agents impairs their cytotoxic effects 
on tumors, leading to reduced antigen release and lim-
iting the effects of ICD, which can even cause other 
severe side effects in organs. Therefore, exosome-based 
drug delivery systems could be a promising strategy for 
enhancing the efficacy of chemotherapeutic agents.

Transmembrane proteins on the surfaces of exosomes 
(such as integrins, tetraspanins, and ICAM-1) confer 
intrinsic cell- or tissue-targeting properties to exosomes 
[101]. For example, exosome-encapsulated doxorubi-
cin (DOX) shows faster cellular uptake and accumulates 
at higher concentrations than free DOX and liposomal 
DOX in multiple cell lines [154]. Moreover, brain endo-
thelial cell-derived exosomes carrying DOX nanoparti-
cles can be used to deliver drugs to the tumor region and 
cause their accumulation, inducing tumor cell apoptosis 
and ICD, leading to DC maturation and CTL infiltra-
tion, and enhancing immune responses in GBM mouse 
models [155]. Based on the intrinsic inflammatory che-
motactic capacity of neutrophils, Wang et al. [156] 

Fig. 4  Exosome-based immunotherapy strategies for gliomas (By Figdraw). a Improvement of tumor low immunogenicity. (i) Exosomes precisely deliver 
chemotherapeutic drugs to promote antigen release and trigger immunogenic cell death; (ii) Exosomes from tumor and immune cells as cancer vaccines 
to enhance antigen expression and presentation. b Improvement of the immunosuppressive microenvironment, including reprogramming TAMs, target-
ing MDSCs/Tregs, and improving TME physicochemical properties
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constructed a neutrophil-exosome system (NEs-Exos) to 
deliver DOX. Substantial evidence suggested that NEs-
Exos can cross the BBB and respond chemotactically to 
inflammatory stimuli, targeting the inflammatory sites of 
gliomas. Genetic engineering or chemical modification 
to introduce tissue- or cell-specific ligands onto the exo-
some surface can further enhance targeting. Angiopep-2 
(ANG) has a high affinity for low-density lipoprotein 
receptor-related protein-1, which is highly expressed in 
glioma and BBB endothelial cells. Exosomes co-modified 
using ANG and trans-activator of transcription pep-
tides, highly potent cell-penetrating peptides, can signifi-
cantly increase DOX penetration into the tumor region 
through dual targeting for optimal glioma therapy [157]. 
Moreover, c(RGDyk) modifications on the surfaces of 
embryonic stem cell-derived exosomes and simultane-
ous paclitaxel loading were used to treat GBM; here, the 
modified exosomes significantly improved the thera-
peutic efficacy of paclitaxel through enhanced targeting 
compared to that with unmodified exosomes and free 
paclitaxel [158]. Other tumor-targeting molecules, such 
as neuropilin-1-targeting peptide [159], heme oxygen-
ase-1 specific short peptide [160], and transferrin recep-
tor-binding peptide [161], have also been experimentally 
used for exosome surface modification to enhance drug 
delivery. Thus, exosomes, based on intrinsic targeting or 
obtained through engineered modifications contribute to 
chemotherapeutic agent delivery, enhance tumor cell kill-
ing, and ultimately facilitate the release of many tumor 
antigens to enhance immune efficacy.

Mono-chemotherapy often results in resistance and 
causes insufficient antigen release [162]. Therapies such 
as radiotherapy, photodynamic therapy, photodynamic 
therapy (PDT), and oncolytic viruses can also cause 
apoptosis in tumor cells, resulting in the release of anti-
gens and triggering ICD [163, 164]. Therefore, combina-
tion therapy might be a practical anti-tumor approach. 
Wang et al. [165] fabricated Rg3-modified homologous 
engineered exosomes for co-delivery of the chemothera-
peutic agent arsenic trioxide (ATO) and the photosen-
sitizer chlorin e6 (Ce6). Specifically, it was determined 
that ATO and Ce6 could be delivered to the tumor area. 
Under laser irradiation, Ce6-triggered PDT destroys 
tumor cells and results in the release of more tumor anti-
gens, synergistically improving ATO efficacy. Similarly, 
a recent study reported a novel strategy for multilevel 
cascade GBM therapy with M1 macrophage-derived 
extracellular vesicles (M1EVs) co-loaded with the chemo 
excitation source CPPO, Ce6, and hypoxia-activated pro-
drug AQ4N. In this system, M1EVs were found to modu-
late the TME to increase the level of hydrogen peroxide, 
which reacts with CPPO to generate chemical energy 
to activate Ce6 and produce reactive oxygen species for 
PDT. At the same time, this reaction consumes oxygen 

to activate the AQ4N toxicity [166]. In addition, in lung 
cancer-model mice, exosome-mediated combination 
therapy with oncolytic viruses and paclitaxel significantly 
induced ICD and T cell infiltration [167], and its applica-
tion to gliomas might also have significant potential.

Increased antigen expression and presentation with cancer 
vaccines
TEXs can be used as antigenic vehicles for cancer immu-
notherapy, for example as cancer vaccines, to elicit 
immune responses. Harshyne et al. [168] injected differ-
ent doses of GM-Exos into mice to establish an immune 
model. They found that high doses of GM-Exos induced 
protective immunity in mice transplanted with GL261 
cells, causing less tumor growth in vivo. This protective 
effect was associated with enhanced T cell activity and 
specific antibody production induced by the GM-Exos. 
However, the immune response elicited by TEXs is rela-
tively weak, requiring the preparation of vaccines with 
higher immunogenicity. Vaccines comprising DCs loaded 
with tumor-associated antigens or tumor cell lysates are 
being widely developed. TEXs have many advantages 
over traditional antigens, and these include the enrich-
ment of tumor antigens, a strong antigen-presenting 
phenotype, and easy uptake by DCs and guidance to the 
antigen-processing region; therefore, these could serve as 
antigenic vectors for DC vaccines [169]. One study dem-
onstrated that DCs co-incubated with TEXs stimulate 
the differentiation of T lymphocytes into antigen-specific 
CTLs, with better glioma cell-killing ability than DCs 
loaded with cell lysates [170]. Based on these findings, 
Liu et al. [171] constructed a novel DC vaccine using 
TEXs in combination with an invariant natural killer T 
cell adjuvant, which could modulate the release of immu-
nosuppressive/immunostimulatory factors, deregulate 
the precancer immunosuppressive microenvironment, 
and induce a solid antigen-specific CTL response against 
GBM cells.

In addition, the artificial modification of TEXs to 
enrich tumor antigens, immunostimulatory molecules, 
and miRNAs enables the fabrication of cell-free cancer 
vaccines with good immunogenicity and immunostimu-
latory capacity [169]. To date, engineered TEX vaccines 
for gliomas have been less studied, but several strate-
gies used to modify TEXs have been developed and 
have shown good efficacy for other cancers [172]. For 
example, leukemia cells were transfected with lentiviral 
vectors encoding B7 co-stimulatory molecules, and the 
exosomes (LEX-8086) obtained expressed high levels of 
CD80 and CD86. LEX-8086 was effective in inducing 
CD4+ T cell proliferation, Th1 cytokine secretion, and a 
CTL response [173]. Moreover, heat-treated tumor cells 
can produce exosomes that are highly enriched in HSP70 
(HS-TEXs). HS-TEXs, an MHC-independent vaccine, 
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increase IgG2a and IFN-γ production, triggering a strong 
Th1-type immune response [174]. INF-γ-modified exo-
some vaccines (INF-γ-TEXs), obtained via protein-
anchoring, increase the number of M1-like macrophages 
and the proportion of IFN-γ+ CD8+ T cells and decrease 
the proportion of Tregs [175]. In conclusion, these stud-
ies suggest that fully deciphering the immunostimula-
tory/immunosuppressive mechanisms of TEXs and 
modifying them appropriately could be a valuable immu-
notherapeutic approach for gliomas.

DEXs express more MHC antigens than DCs and are 
easy to modify genetically, have a long half-life, and 
can be used as a biological nano-vaccine to activate the 
immune response, instead of DCs [111, 176]. Bu et al. 
[177] found that DEXs containing chaperonin-rich cell 
lysates induce a strong anti-tumor immune response in 
mice with glioma by maintaining T cell activation. More-
over, DEXs loaded with neoantigens significantly inhibit 
tumor growth, preventively delay tumor occurrence, and 
establish long-term immune memory-mediated protec-
tion by inducing broad-spectrum T and B cell immune 
responses [178]. Recently, Zuo et al. co-loaded hepato-
cellular carcinoma-targeting peptides, α-fetoprotein epi-
topes, and an immune adjuvant on the surface of DEXs 
to prepare a novel bio-nano-vaccine with universal appli-
cability for DC recruitment and activation. The vaccine 
was found to promote the recruitment and activation 
of endogenous DCs, as well as tumor neoantigen cross-
presentation, to induce T cell responses and activate 
the innate immune response, providing an innovative 
approach for developing personalized cancer vaccines 
[179]. In addition, M1-like macrophage exosomes can 
be taken up by local DCs and macrophages and cause 
the release of Th1 cytokines, inducing more robust CTL 
responses and synergistically enhancing the efficacy 
of nanoparticle vaccines, suggesting that they have the 
potential to serve as adjuvants for cancer vaccines [180].

Although the applications of exosome vaccines in gli-
oma are still limited, there is a relatively solid theoretical 
foundation and reliable methods to prepare exosome vac-
cines for glioma based on their widespread use in other 
cancers. In the future, we should continue to explore new 
approaches to increase exosome immunogenicity and 
immune activation capacity and overcome host immu-
nosuppression to obtain effective exosome vaccines for 
glioma.

Multiple targets to synergistically improve the 
immunosuppressive microenvironment
Reprogramming TAMs
TAMs have two phenotypes, specifically M1-like TAMs 
obtained via INF-γ and Toll-like receptor 4 stimula-
tion and M2-like macrophages derived from IL-4, IL-10, 
and IL-13 stimulation [181]. M1-like TAMs secrete 

TNF-α, IL-6, and IL-12 to promote anti-tumor immune 
responses. However, the M2 phenotype is predominant 
among TAMs and is associated with local and systemic 
immunosuppression in glioma patients [182]. Therefore, 
reprogramming M2 tumor-promoting phenotypes into 
M1 anti-tumor phenotypes is a promising strategy for 
cancer therapy. However, owing to potential side effects, 
most approaches do not allow for the in situ reprogram-
ming of TAMs. Based on the advantages of exosomes as 
transporter vehicles, attempts have been made to pre-
cisely deliver various therapeutic agents to reprogram 
TAMs and reduce immunosuppression.

Li et al. [183] constructed a dual delivery system 
for GBM immunotherapy and evaluated its effect on 
tumor-bearing mice. First, they prepared T7 peptide-
modified exosomes (T7-Exos) and loaded Galectin‑9 
siRNA (siGalectin-9) into the exosomes via electropora-
tion. The results showed that T7-Exos could effectively 
deliver siGalectin-9 to GBM cells. Moreover, siGalec-
tin-9 was dependent on activation of the TLR7–IRF5 
pathway, which promoted macrophage polarization to 
the M1 phenotype, increased macrophage phagocytosis 
of glioma cells, and activated the immune response. Sig-
nal transducer and activator of transcription 3 (STAT3) 
is a crucial transcription factor that induces macro-
phage polarization towards the M2 phenotype [181]. 
Cui et al. [184] reported the self-assembly of tanshinone 
IIA (TanIIA) and glycyrrhizic acid (GL), which are the 
inhibitors of STAT3, to form TanIIA-GL nanogel micelles 
(TGM). Serum-derived exosomes encapsulated with 
TGM and surface-modified with the immunoadjuvant 
CpG oligonucleotides were further used to construct a 
bionic nanodelivery system (CpG-EXO/TGM). CpG-
EXO/TGM could be effectively taken up by glioma cells, 
promoting TAM reprogramming, DC maturation, and 
CTL activation and activating immune memory cells to 
prevent tumor recurrence in glioma recurrence models. 
Similarly, the encapsulation of CpG-STAT3 antisense 
oligonucleotide using neural stem cell-derived exo-
somes was found to stimulate macrophage immunoac-
tivity, induce NF-κB signaling and IL-12 production, and 
inhibit glioma growth [185]. High-molecular weight hyal-
uronic acid (HMW-HA) inhibits M1-like macrophage 
polarization and enhances M2-like macrophage polar-
ization [186]. Human hyaluronidase delivered by folic 
acid-modified exosomes can enhance antitumor efficacy 
by degrading HMW-HA to promote the polarization of 
TAMs to the M1 phenotype [187]. In addition, ginseng-
derived exosome-like nanoparticles (GENs) carrying 
multiple chemical cargoes can penetrate the BBB and tar-
get glioma cells, recruit M1-like macrophages, and down-
regulate the M2-like macrophage phenotype, suggesting 
that GENs are promising candidates for the development 
of nanocarriers for glioma immunotherapy [188].
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Further, M1-like macrophages can secrete the nec-
essary molecules to consistently drive an M2-to-M1 
phenotypic conversion, suggesting the feasibility of 
exploiting M1-like macrophage-derived exosomes to 
mediate TAM reprogramming [189]. Researchers found 
that exosome-mimetic nanovesicles from M1-like mac-
rophages can induce the repolarization of M2-like TAMs 
to the M1 phenotype by modulating the expression pro-
file of miRNAs and mRNAs, which in turn results in the 
release of pro-inflammatory cytokines to induce anti-
tumor immune responses and synergistically enhance 
the efficacy of ICIs in glioma models [190]. Compared to 
those on M1-like TAMs, IL4 receptor (IL4R) is expressed 
at higher levels on M2-like TAMs and is involved in M2 
macrophage polarization in response to the cytokine IL-4 
[191]. M1 exosomes were transfected with NF-κB p50 
siRNA and miR-511-3p to enhance M1 polarization and 
were surface-modified using IL-4R-binding peptides to 
target the IL4 receptor (IL4R-Exos(si/mi)). IL4R-Exos(si/
mi) can be efficiently internalized by M2-like TAMs and 
reprogrammed to M1-like macrophages to enhance anti-
tumor immunity [192]. In conclusion, exosome-based 
drug delivery systems can reverse the immunosuppres-
sive microenvironment by reprogramming TAMs into 
anti-tumor phenotypes to achieve efficient therapy for 
gliomas.

Targeting MDSCs and Tregs
Based on the immunosuppressive role of MDSCs and 
Tregs in the TME, researchers have focused on develop-
ing immunotherapies targeting these cells to restore the 
anti-tumor immune response. This includes (i) blocking 
the recruitment of MDSCs/Tregs, (ii) deregulating the 
immunosuppressive activity of MDSCs/Tregs, and (iii) 
depleting MDSCs/Tregs. Here, we present the current 
strategies used to target MDSCs/Tregs in glioma ther-
apy, to load these therapeutic agents into exosomes and 
achieve precision therapy.

Targeting MDSCs  The CCL2–CCR2 axis is an essential 
target for blocking the migration of MDSCs to tumors. 
CCX872, an antagonist of CCR2, reduces MDSC infiltra-
tion and enhances the efficiency of ICIs in glioma-bearing 
mice [193]. Moreover, a macrophage migration inhibitory 
factor inhibitor targets a monocytic subset of MDSCs via 
the CD47 receptor, suppressing downstream MCP-1 sig-
naling and inhibiting MDSC recruitment and expansion 
[194]. In addition, other chemokines that block MDSC 
recruitment, such as CCR5 antagonists [195], VEGF 
antagonists [196], and CXCR2 antagonists [197], are also 
being actively studied. Developing exosomes containing 
these blockers for glioma therapy might result in excellent 
efficacy.

Promoting the differentiation of MDSCs to mature 
myeloid cells is the most direct and effective way to 
reverse their immunosuppressive activity. Vitamin A 
and its metabolites, vitamin D, STAT3 inhibitors, and 
TLR agonists can mediate the differentiation of MDSCs 
[44]. All-trans retinoic acid is a vitamin A derivative that 
can effectively inhibit glioma growth when applied alone 
[198] or in combination with a DNA demethylating agent 
[199] and interferon-gamma [200]. Aberrant activation of 
the cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2)/
PGE2 receptor axis is vital for maintaining the immu-
nosuppressive activity of MDSCs. Researchers found 
that the COX2 inhibitors acetylsalicylic acid or celecoxib 
inhibit MDSC activation by decreasing PGE2 production 
and retard the growth of glioma [201]. Currently, combi-
nation therapeutic strategies are under investigation, and 
exosome-based specific delivery systems could offer a 
promising means to inhibit MDSCs.

In addition, MDSCs can be exhausted by specific anti-
bodies targeting MDSCs and chemotherapeutic agents. 
An anti-CD33 antibody, as well as an agonistic DR5 anti-
body, resulted in the favorable induction of apoptosis in 
MDSCs [202]. Moreover, some low-dose chemothera-
peutic agents (5-fluorouracil and gemcitabine, etc.) can 
directly exert cytotoxic effects, mediating the depletion 
of MDSCs. A phase 0/I clinical trial found that the com-
bination of capecitabine, a prodrug of 5-fluorouracil, and 
bevacizumab reduces circulating MDSC levels in GBM 
patients [203].

However, when using these therapeutic strategies, 
problems such as high toxicity, low permeability, and 
delivery efficiency could be generally encountered. Exo-
somes, as a powerful drug-loading system, are expected 
to achieve better therapeutic effects. In fact, research-
ers have already made some attempts to implement this 
strategy. Qiu et al. found that modified DEXs loaded with 
miR-21 inhibitors synergistically improve the therapeu-
tic efficacy of ICIs and prolong the survival of glioma-
bearing mice. This was associated with its ability to target 
tumor mesenchymal stem cells and disrupt the miR-21/
SP1/DNMT1 positive feedback loop and reduce MDSC 
activation by decreasing CD73 expression on MDSCs 
[204]. Furthermore, glioma-derived extracellular vesicles 
overexpressing basic leucine zipper ATF-like transcrip-
tion factor 2 inhibit the recruitment of MDSCs to limit 
glioma growth [205]. Therefore, based on the aforemen-
tioned studies, developing exosome delivery systems tar-
geting MDSCs could be a promising approach.

Targeting Tregs  Similarly, treatment strategies based 
on Tregs have been extensively studied. Targeting the 
glucocorticoid-induced TNFR-related receptor (GITR) 
in Tregs using αGITR promotes Treg differentiation into 
effector T cells and attenuates treatment resistance in 
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GBM models [206]. Loading an anti-GITR antibody and 
catalase into nanoparticles consisting of a photothermal 
agent and photosensitizer induces a 4.3-fold reduction in 
Tregs and exerts a strong antitumor effect [207]. More-
over, heat stress-treated TEXs stimulate DCs to secrete 
IL-6 to block the TGF-β1-induced differentiation of 
Tregs and promote Treg conversion to Th17 cells [208]. A 
detailed summary of cancer therapeutic strategies target-
ing Tregs has been presented [209], which is an impor-
tant guide for the development of exosome-based glioma 
nano-immunotherapies.

Improving TME physicochemical properties
Hypoxia is a crucial trigger of glioma invasion, anti-
apoptotic processes, angiogenesis, and resistance to 
radiotherapy and chemotherapy [210]. Hypoxic glioma 
niches attract and sequester TAMs and CTLs and repro-
gram them toward an immunosuppressed state [211]. 
Liu et al. [212] developed a glioma-targeted transport 
system to enhance sonodynamic therapy by alleviat-
ing tumor hypoxia. They first encapsulated catalase into 
silica nanoparticles (CAT@SiO2) and then loaded the 
sonosensitizer indocyanine green to prepare a biode-
gradable nano platform (CSIs). The CSIs were further 
encapsulated with AS1411 aptamer-modified macro-
phage exosomes to form a delivery system (termed CSI@ 
Ex-A) with highly efficient BBB-infiltration and tumor-
targeting capabilities. At the tumor site, highly expressed 
glutathione triggered the biodegradation of CSIs, and 
the catalase that was released catalyzed the produc-
tion of O2 from H2O2 in the tumor, thus alleviating the 
hypoxic microenvironment and improving the efficiency 
of sonodynamic therapy. In addition, CSI@Ex-A effec-
tively inhibited glioma metastasis in vivo, which could 
be related to the alleviation of tumor hypoxia and the 
suppression of the activation of hypoxia-inducible fac-
tor 1α. Moreover, chronic persistent inflammation con-
fers immune-escape ability in glioma, inducing immune 
tolerance to numerous therapies. Therefore, glioma ther-
apy can be achieved by suppressing the inflammatory 
state in the TME. Extracellular vesicles overexpressing 
esophageal cancer related gene-4 significantly inhibit the 
expression of inflammatory cytokines (IL-1β, IL-6, IL-8) 
and activate the p38–AMPK signaling pathway to sup-
press the inflammatory response and induce anti-tumor 
effects in vitro and in vivo [213]. Exosomes loaded with 
STAT3 inhibitors that enter the brain by crossing the 
BBB, after nasal administration, are selectively taken up 
by microglia and inhibit the expression of inflammatory 
cytokines, such as IL-1β and IL-6, ultimately retarding 
glioma cell growth [214]. In summary, improving hypoxia 
and chronic inflammation in the TME could also be a 
strategy to reverse immunosuppression and enhance 
therapeutic efficacy.

Clinical translation and challenge
According to Clinicaltrials.gov (https://clinicaltrials.gov/) 
[215], there are four clinical trials based on exosomes as 
drug delivery systems for cancer treatment (Table 4), all 
of which are at an early stage. Although exosomes for 
drug delivery have been extensively studied, they still 
face challenges in clinical translation. First, there is an 
urgent need to develop standardized and industrialized 
methods for exosome production, isolation, and purifi-
cation for the large-scale preparation of clinical-grade 
exosome products. Exosomes are heterogeneous, and 
small changes in the production process can affect their 
yield and activity. However, a gold standard for exosome 
preparation is lacking, and relatively low yields limit the 
further clinical applications of exosomes. Researchers 
have already enhanced exosome secretion in preclinical 
studies using physical stimulation, molecular interfer-
ence, environmental factors, and external inducers [216], 
but extending these findings to the clinic still requires the 
consideration of various aspects, such as safety, bioac-
tivity, efficiency, and stability. In addition, the exosomes 
collected using existing separation and purification tech-
niques do not meet the standards for clinical use. Second, 
the safety of exosomes should be considered. Exosomes 
of different cell origins have different functions in cancer 
immunomodulation, and the mechanism underlying the 
effects of exosomes on cancer immunity should be thor-
oughly clarified. Especially, TEXs, despite their homing 
properties and immunogenicity, also contribute to tumor 
progression through epithelial–mesenchymal transition, 
angiogenesis, and immune escape. Mesenchymal stem 
cells can be used for safe and stable exosome production 
[217]. However, these exosomes lack antigens and anti-
gen-presenting molecules, when compared to exosomes 
derived from immune and tumor cells, which limits their 
use in cancer vaccines. In addition, serious safety issues, 
such as cytokine release syndrome, could arise from the 
use of exosome drugs [218]. Third, there are still some 
limitations to the engineering and modification of exo-
somes. Genetic engineering or chemical modifications 
can further enhance exosome-specific targeting capabili-
ties. However, genetic engineering is limited to targeting 
motifs that can be genetically encoded. Moreover, chemi-
cal modifications often affect the functions of exosomes, 
and the complexity of the exosome structure reduces the 
efficiency of the reaction [219]. In addition, there is no 
standardized drug-loading technique. Several commonly 
used drug-loading strategies have different disadvan-
tages and cannot simultaneously combine the properties 
of high loading efficiency, limited exosome damage, and 
easy operation. Finally, exosome storage is also a pressing 
issue. Different storage conditions will affect the exosome 
morphological structure, protein content, and biologi-
cal activity. Currently, it is believed that exosomes are 

https://clinicaltrials.gov/
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more stable at − 80 °C and can maintain clinical availabil-
ity after 5 months [220, 221]. However, high storage and 
transportation costs can restrict generalization. In sum-
mary, we still need to improve on existing technologies 
or develop new ones to overcome the problems associ-
ated with exosome-based drug delivery systems in terms 
of their clinical translation, large-scale production, stable 
preparation and storage, and quality control.

Conclusions
As a natural delivery system, exosomes have the unique 
advantages of low toxicity, targeting ability, and immuno-
modulatory properties, which can be exploited for can-
cer immunotherapy. Exosomes for the precise delivery 
of chemotherapeutic drugs, antigens, antigen-presenting 
molecules, and immunomodulatory molecules to tumors 
can overcome certain obstacles to existing glioma immu-
notherapy approaches, including the BBB, low immuno-
genicity, and an immunosuppressive microenvironment. 
Exosome-based immunotherapeutic strategies, including 
increasing antigen release, expression, and presentation, 
reprogramming TAMs, targeting Tregs and MDSCs, and 
improving the physicochemical properties of the TME, 
offer new hopes for effectively enhancing glioma treat-
ment. Although the clinical translation of exosomes still 
faces many challenges, exosome-based drug delivery sys-
tems hold great promise for the glioma immunotherapy. 
With the continuous development and innovation of new 
technologies, exosome therapy will soon be at the fore-
front of glioma treatment.
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ICD	� Immunogenic cell death
ICG	� Indocyanine green
ICI	� Immune checkpoint inhibitor
INF-γ-TEXs	� INF-γ-modified exosome vaccines
ILV	� Intraluminal vesicle
IMC	� Immature myeloid cell
iNOS	� Inducible nitric oxide synthase
LEX8086	� Exosomes enriched for B7 co-stimulatory molecules
lnRNAs	� Long non-coding RNAs
M1EV	� M1 macrophage-derived extracellular vesicle
MDSC	� Myeloid-derived suppressor cell
MHC	� Major histocompatibility complex
MVB	� Multivesicular body
miRNAs	� microRNAs
mRNAs	� Messenger RNAs
NEs-Exos	� Neutrophil–exosome system
NK	� Natural killer
p-	� Predicted neoantigens
PGE2	� Prostaglandin E2
PDT	� Photodynamic therapy
PDX	� Patient-derived xenograft
SEC	� Size exclusion chromatography
siGalectin-9	� Galectin‑9 siRNA
STAT3	� Signal transducer and activator of transcription 3
T7-Exos	� T7 peptide-modified exosomes
TAM	� Tumor-associated macrophage
TanIIA	� Tanshinone IIA
TEX	� Tumor-derived exosome
TGMs	� TanIIA-GL nanogel micelles
TMB	� Tumor mutational burden
TLR	� Toll-like receptor
TME	� Tumor microenvironment
Treg	� Regulatory T cell
UC	� Ultracentrifugation
UF	� Ultrafiltration
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