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Abstract 

Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates 
of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis 
and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which 
have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate 
intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse 
cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative 
opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic 
membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this 
review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics 
of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights 
into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer 
forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolution-
ary transformation in this field.
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Graphical Abstract

Introduction
Idiopathic membranous nephropathy (IMN) is an auto-
immune glomerular podocytosis syndrome [1]. Its clin-
ical features mainly include proteinuria or nephrotic 
syndrome with insidious onset, which is a common 
cause of adult nephrotic syndrome in China. In recent 
years, both domestic and international studies have 
demonstrated a progressively increasing incidence of 
IMN [2–7]. In Caucasians, IMN accounts for approxi-
mately 30–40% of primary nephrotic syndrome cases 
[8]. In China, the prevalence of IMN has increased 
significantly in recent renal biopsy cases. According 
to data from a retrospective study covering 10  years 
and 6049 cases of renal pathology from Peking Uni-
versity First Hospital in 2015 [9], the incidence of IMN 
increased from 16.8% in 2003–2007 to 29.35% in 2008–
2012. Moreover, another study led by academician Hou 
Fanfan in 2016, which included data from nearly 70,000 
patient renal biopsies across 938 hospitals in 282 cities 
throughout China, revealed that while the incidences 
of other glomerular diseases remained stable, the inci-
dence of MN doubled from 12.2% in 2004 to 24.9% in 
2014, positioning it as the second most common cause 
of primary glomerulopathy [5]. In the same year, after 
calibrating data on kidney disease types across 11 years 
in the Chinese population, Xu and colleagues reported 
an annual increase of 13% in MN patients, demonstrat-
ing a trend toward surpassing IgA nephropathy [5]. 
Research has suggested that in the northeastern region 
of China, the incidence of IMN has exceeded that of 
IgA nephropathy, suggesting that IMN is the leading 

cause of primary glomerulopathies [10, 11] and poses a 
serious threat to human health.

The natural course of MN exhibits significant vari-
ability. Approximately 30% of patients experience spon-
taneous remission, while approximately 70% manifest 
persistent proteinuria. Within 5–20  years, 40–60% of 
patients progress to end-stage renal disease (ESRD) [3], 
making it a significant contributor to ESRD. Due to the 
high incidence and recurrence rates of this disease, early 
detection and preventive treatment are essential for 
improving patient prognosis and quality of life. Currently, 
the diagnosis of IMN still relies on invasive renal biop-
sies, which carry potential risks of complications such as 
bleeding and infections and are not suitable for repeated 
evaluations of renal changes. However, traditional IMN 
biomarkers, such as the serum creatinine concentra-
tion, estimated glomerular filtration rate (eGFR), serum 
albumin (ALB) concentration, and urine protein con-
centration, all have limitations in terms of sensitivity and 
specificity [12]. Moreover, novel biomarkers, including 
autoantibodies against intrinsic podocyte antigens such 
as anti-PLA2R and anti-THSD7A, exhibit increased sen-
sitivity and specificity. However, they still do not encom-
pass all IMN patients. For instance, there is a possibility 
of underdiagnosing anti-PLA2R- and/or anti-THSD7A-
negative IMN patients. Therefore, in-depth research 
into the pathogenesis of IMN and the exploration of 
new biomarkers are pressing challenges in the current 
field of kidney disease research. Currently, specific drugs 
capable of halting or reversing the progression of MN 
are lacking. Although the International Kidney Disease 
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Guidelines (KDIGO) have issued guidelines for the treat-
ment of MN, recommending medications that provide 
varying degrees of therapeutic effects for MN, corre-
sponding biologics and low-dose steroids combined with 
immunosuppressive regimens exhibit unstable efficacy. 
These approaches can cause potential immune-related 
side effects, increased rates of relapse, and increased eco-
nomic burdens [13–15], preventing patients from fully 
meeting the treatment needs of MN patients. As a result, 
there is an urgent need to identify noninvasive diagnostic 
markers and specific therapeutic targets for IMN.

Moreover, related studies have reported that almost 
all intrinsic renal cells, such as endothelial cells, podo-
cytes, and tubular epithelial cells, can secrete exosomes 
and mediate crosstalk between different types of cells in 
the kidney [16, 17]. There is a characteristic change in 
exosome content in renal diseases such as acute kidney 
injury [18], IgA nephropathy [19], diabetic nephropathy 
[20], renal tubular acidosis [21], and polycystic kidney 
disease [22]. In addition, exosomal miRNAs are more 
stable than circulating miRNAs, and they are protected 
from degradation by rRNA enzymes [23]. Based on these 
features, exosomes have great potential as biomarkers 
and therapeutic agents for the early diagnosis of IMN. 
Currently, exosomes have been widely studied as bio-
markers for the diagnosis of renal diseases and as thera-
peutic means for renal diseases, but there is a relative lack 
of application of exosomes in the diagnosis and treatment 
of idiopathic membranous nephropathy (IMN). In this 
paper, we hope to systematically review the progress in 
the use of exosomes in the diagnosis and treatment of 
IMN and provide a reference for the future diagnosis and 
treatment of IMN. This review first describes the genera-
tion and origin of exosomes, their composition and con-
tents, and their biological properties and functions and 
then explores the application of exosomes in IMN diag-
nosis, pathogenesis and therapy. Finally, we look ahead 
to current limitations and challenges, as well as potential 
directions for future research and clinical translation of 
exosomes.

Overview of exosomes
Generation and origins of exosomes
The biogenesis of exosomes begins with the maturation 
of early endosomes to late endosomes or multivesicular 
bodies (MVBs) containing intraluminal vesicles (ILVs). 
Endosomes are the focal point of the endocytosis path-
way and determine whether internalized proteins and 
lipids are degraded or recycled [24]. Endosomes are cat-
egorized as early endosomes, late endosomes, or recy-
cling endosomes. The biogenesis of exosomes involves 
double invagination of the plasma membrane, with the 
initial inward bending of the plasma membrane forming 

a cup-shaped structure that includes cell surface proteins 
and extracellular components such as soluble proteins, 
lipids, metabolites, small molecules, and ions. These 
components can be internalized through endocytosis 
and membrane invagination along with cell surface pro-
teins. The de novo formation of early-sorting endosomes 
(ESEs) is initiated. Sometimes, it may be directly fused 
with pre-ESE, which is preformed from components of 
the endoplasmic reticulum (ER), the trans-Golgi net-
work (TGN), and the mitochondrion. Early-sorting 
endosomes (marked by Rab5) mature through acidifi-
cation and substance exchange to become late-sorting 
endosomes (LSEs) (marked by Rab7). Ultimately, the sec-
ond internalization of LSEs results in the formation of 
MVBs. These MVBs contain ILVs with diameters ranging 
from 40 to 150 nm, which are formed by inward budding 
of the MVB membrane. ILVs can be directly fused with 
lysosomes or autophagic lysosomes to undergo degrada-
tion, and the degradation products can be recycled by 
the cell. The other pathway is plasma membrane fusion, 
in which the contents are released into the extracellu-
lar space in the form of exosomes [25, 26]. This process 
is referred to as exosome biogenesis and distinguishes it 
from other forms of vesicle release, such as budding from 
the plasma membrane, apoptotic body formation, or 
membrane rupture (Fig. 1). There are two distinct mech-
anisms involved in the formation of ILVs: ESCRT-inde-
pendent and ESCRT-dependent mechanisms required 
for cargo sorting into endosomes. ESCRT consists of four 
complexes and auxiliary proteins: ESCRT-0, ESCRT-I, 
ESCRT-II, and ESCRT-III. These complexes collaborate 
in an orderly manner, recognizing ubiquitinated proteins 
on the endosomal membrane and inducing inward bud-
ding to form ILVs. Another mechanism, which is ESCRT-
independent, relies on lipid raft microdomains enriched 
in sphingomyelinase and microdomains enriched in tet-
raspanins [27–29].

Composition and contents of exosomes
Exosomes are lipid bilayer cup-shaped vesicles with sizes 
ranging from 30 to 200 nm [30]. Embedded within their 
phospholipid bilayer membrane are numerous proteins 
and lipids believed to have evolved from parent cells [31]. 
The lipid composition of these exosome bilayers includes 
phosphatidylcholines, phosphatidylethanolamine, phos-
phatidylinositol, phosphatidylserine, and sphingomy-
elin [32]. These components are more balanced in the 
exosome when their proportions are 26:26:19:19:20 and 
43:23:12:12:9, respectively [33]. Elevated levels of sphin-
gomyelin and phosphatidylinositol ensure their stabil-
ity in biological fluids with varying pH levels, guarding 
against lipid or protein hydrolysis that might occur 
during systemic circulation [34]. In addition, exosome 
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membranes are enriched with lipid rafts of various pro-
teins, such as tyrosine kinase Src and glycosylphosphati-
dylinositol-owned proteins [35]. The proteins contained 
in exosomes can be categorized into two groups: non-
specific and specific. Among them, nonspecific proteins 
are widely present in all types of exosomes, regardless 
of their cell of origin. These proteins include tetraspa-
nins (such as CD9, CD63, CD81, and CD82) serving as 
exosomal surface markers, proteins involved in exosome 
trafficking and binding to target cells (such as GTPases, 
annexins, and flotillin) [36], proteins participating in the 
biogenesis of MVBs like TSG101, Alix, ESCRT com-
plexes, heat shock proteins (Hsc70, Hsp90), GTPases, 
and membrane-associated proteins [37], as well as 
cytoskeletal proteins (such as heterotrimeric G proteins, 
14-3-3, syntenin). On the other hand, specific proteins 
within exosomes encompass tissue-specific proteins, 
such as the major histocompatibility complex class II 
(MHC-II), present on the surface of nearly all dendritic 
cells (DC) and B lymphocytes [38], and proteins unique 
to specific cell types. These specific proteins do not exist 
independently from nonspecific proteins. For instance, 
the shell of tetraspanin proteins is composed of various 
cell-specific transmembrane proteins, including α and β 
integrin chains (such as αM found on T cells and den-
dritic cells, α4β1 present on reticular cells, and β2 located 
on the apex of dendritic cells), cholesterol, and flotillin 
as lipid raft components. Additionally, certain members 
of the immunoglobulin family (such as A33 antigen on 
intestinal cells, intercellular adhesion molecule 1 (ICAM-
1)/CD54 on B cells, and P-selectin on platelets) as well as 
cell surface peptidases (such as aminopeptidase N/CD13 

on M cells and dipeptidyl peptidase IV/CD26 on intes-
tinal cells) are also included [31]. Exosomes also encom-
pass molecules involved in signaling pathways, such as 
β-catenin, ADP-ribosylation factor 1 (ARF1), epidermal 
growth factor receptor (EGFR), mucin 1 (MUC1), phos-
phoinositide 3-kinase (PI3K), G-proteins, cytoskeletal 
proteins, and cell division control protein 42 (CDC42) 
[35]. Simultaneously, exosomes harbor a diverse array 
of RNA types, including mRNA and noncoding RNAs 
such as miRNA, lncRNA, and tRNA. These RNAs exhibit 
functional roles, capable of influencing the transcriptome 
of recipient cells [39–42]. Among them, miRNA repre-
sents the most abundant RNA species in exosomes [43, 
44].

Biological characteristics and functions of exosomes
The functions of exosomes are contingent upon their 
originating cells [45]. They participate in immune 
responses, inflammation, angiogenesis, coagulation, 
intercellular communication, as well as the dissemination 
of pathogens such as prions and viruses [17]. The attrib-
utes of exosomes underscore their significant role in dis-
ease diagnosis, noncellular therapies, and the delivery of 
proteins, genes, and chemical substances [46–48]. First, 
the composition of exosomes varies due to the cell type, 
stimuli, stress, transformation, and differentiation func-
tions of the source cells, rendering their detection and 
characterization in bodily fluids promising as diagnostic 
markers and prognostic indicators of diseases [49–55]; 
Second, exosomes are of natural origin and are inher-
ently highly biocompatible and less immunogenic, and 
can be used as endogenous carriers [44]. At the same 

Fig. 1 Exosome production and contents. A The process of exosome generation. B The contents of exosomes
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time, because of their nanoscale [33], exosomes are capa-
ble of crossing biological barriers, evading the mononu-
clear phagocytic system (MPS), and other advantages, 
and are easy to deliver drugs to the target organs [44, 56]. 
In addition, exosomes can be isolated from a variety of 
body fluids and can be stored at −80 °C for long periods 
of time and have a relatively long lifespan in vivo [17, 45, 
57]. Finally, exosomes contain bioactive substances and 
proteins, and their lipid bilayer structure protects them 
from enzymatic degradation [58, 59]. Based on the above 
characteristics such as endogenous, biocompatible and 
multifunctional properties, exosomes are expected to be 
a new means of drug delivery system, immunotherapy, 
and precision therapy.

The application of exosomes in the diagnosis 
and treatment of IMN
Role of exosomes in IMN diagnosis
The optimization of treatment for kidney diseases relies 
on the availability of diagnostic and prognostic bio-
markers. Early diagnosis and treatment of IMN present 
significant challenges in the field of kidney disease [60]. 
Currently, diagnosing IMN requires the exclusion of 
secondary factors such as hepatitis B infection, systemic 
lupus erythematosus, cancer, or drug-related effects that 
can cause IMN [1]. Although renal biopsy remains the 
gold standard for diagnosing IMN [61], it poses the risk 
of potential severe postoperative complications such as 
bleeding and infection, and it is inconvenient for repeti-
tive procedures to assess and evaluate kidney damage. 
Moreover, inappropriate sampling or lack of representa-
tiveness can affect the credibility of renal biopsy results 
[62]. The anti-PLA2R antibody is currently the best non-
invasive biomarker, yet its positivity rate ranges from 50 
to 72% in different ethnicities within the IMN population 
[62, 63], leaving some patients unsatisfied. Addition-
ally, traditional biomarkers such as the serum creatinine 
concentration, eGFR, and urinary protein concentration 
exhibit low sensitivity, particularly in the early stages of 
kidney damage [12, 64]. Therefore, the search for novel 
noninvasive diagnostic biomarkers capable of identifying 
IMN has emerged as a vibrant area of research within the 
current landscape of glomerular disease studies [65, 66].

Exosomes, as potential biomarkers, were recognized 
by the Massachusetts Institute of Technology Tech-
nology Review as one of the "Top 10 Breakthroughs of 
2015" [60, 64]. Unlike renal biopsies, exosomal biomark-
ers are not only exempt from the limitations of poten-
tially nonrepresentative sampling but also sidestep the 
traumatic nature and potential complications associated 
with tissue biopsies [64]. The encapsulation of exosomes 
shields their cargo from RNA enzymes and repeated 
freeze‒thaw cycles in both intracellular and extracellular 

environments, ensuring the integrity and stability of 
the biomolecular information they carry [21, 67]. Fur-
thermore, exosomes express origin-specific markers, 
allowing for the monitoring of changes in specific cel-
lular compartments within tissues, thereby enabling the 
tracking of lesion locations [64]. For instance, the pres-
ence of podocyte proteins like podocin [68], nephrin, and 
podocalyxin [69, 70] determines the increased in podo-
cyte or endothelial-origin exosomes, potentially imply-
ing podocyte damage. Analysis of urinary exosomes may 
be useful in the diagnostic classification of other disease 
processes involving the renal tubules, such as polycystic 
kidneys [71], lysosomal storage diseases like Niemann-
Pick disease and cystinosis, and transporter mutations 
like Gitelman and Bartter syndromes. Similarly, elevated 
levels of endothelial proteins in urinary exosomes, such 
as PL-VAP, CD31, and CD144 [72], indicate endothelial 
damage. Of particular interest, urinary exosomal miR-
200b is associated with renal fibrosis in chronic kidney 
disease (CKD) only when measured in CD13 + exosomes 
(those not derived from proximal tubules) [73]. This 
suggests that exosomal biomarkers associated with this 
cellular subset might possess unique advantages. Pre-
vious research has also shown characteristic changes 
in exosome content in various kidney diseases, such as 
acute kidney injury [18], IgA nephropathy [19], diabetic 
nephropathy (DN) [20], renal tubular acidosis [21], and 
polycystic kidney disease [22]. This indicates the poten-
tial and substantial promise of exosomes as biomarkers in 
the field of kidney diseases.

Urinary exosomes in diagnosing IMN
Normal urine contains exosomes from each type of epi-
thelial cell in the urinary space, including podocytes, 
endothelial cells, mesangial cells of the glomerulus, tubu-
lar cells of the nephron, and transitional epithelial cells 
of the urinary excretion system, and isolation of urinary 
exosomes allows identification of their sources [74, 75]. 
Thus, through urine collection and analysis, changes 
in the function of the entire renal, prostate, and blad-
der urinary systems can be monitored [67, 76–78]. This 
finding aligns with the findings of Miranda et  al., who 
reported that exosomes isolated from human urine 
exhibited a comprehensive RNA profile similar to that 
of the kidneys [21]. Additionally, urinary exosomes offer 
advantages, such as large volume, rich content, and non-
invasive collection [79–81]. Compared to the original 
urine metabolic pattern, the exosome metabolic pat-
tern holds greater potential for MN diagnostics [79] and 
demonstrates increased stability [82–84]. Currently, uri-
nary exosomes have been established as biomarkers for 
numerous kidney disorders, including CKD [85], DN 
[86, 87], autosomal dominant polycystic kidney disease 
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[88], renal cell carcinoma [89], and renal fibrosis [73, 
90]. These exosomal markers in urine can be detected in 
quantities as low as 0.5  mL, suggesting high sensitivity 
[91]. With further research, urinary exosomes have also 
been found to be useful for assessing the severity of kid-
ney diseases.

(1) Urinary exosomal proteins as IMN biomarkers

Under normal circumstances, approximately 3% of the 
total protein content in urine originates from urinary 
exosomes, with 70% originating from the urinary sys-
tem and 30% from the circulatory system [76]. During 
the formation of urinary exosomes, various components 
undergo selective enrichment, and changes in their pro-
tein composition may reflect pathological processes in 
the urinary system or systemic diseases [21, 92]. Moreo-
ver, proteins in urinary exosomes more accurately reflect 
changes in kidney tissue compared to urinary proteins 
[93], underscoring the significant potential of urinary 
exosomes proteins as biomarkers for both the urinary 
system and systemic conditions [76, 94]. For instance, 
urinary exosomal ceruloplasmin (CP) is significantly 
elevated by 10–20 times in CKD patients compared to 
healthy controls and increases significantly before the 
onset of proteinuria [95]. Urinary exosomal transcription 
factor Elf3 protein is exclusively detected in DN and can 
reflect irreversible podocyte damage, serving as an early 
noninvasive biomarker for DN podocyte injury [96]. Uri-
nary exosomal fibroblast-specific protein 1 (FSP1) corre-
lates with the diagnosed glomerular crescent formation 
rate and total crescent formation rate in kidney biopsies, 
reflecting ongoing glomerular injury activity (crescent 
formation) [97]. Polycystin-1 (PC-1), the protein prod-
uct of the autosomal dominant polycystic kidney disease 
gene, is readily detectable in urinary exosomes, despite 
its lower abundance in renal tissue [75]. Other proteins 
in urinary exosomes, such as Fetuin-A [98], activating 
transcription factor 3 (ATF3) [99, 100] and aquaporin-1 
[101], show significant changes in the early stages of AKI 
and may be potential markers for early detection of AKI. 
In certain hereditary kidney diseases, the production of 
pathological proteins regulated by defective genes in 
exosomes may be reduced (PKD1 in polycystic kidney 
disease) [102] or completely absent (SLC12A1 in Bartter 
syndrome type 1) [67] (see Table 1). These studies collec-
tively indicate the widespread utility of urinary exosomal 
proteins as biomarkers in the field of kidney diseases, 
revealing a certain feasibility of urinary exocytosis in 
the diagnosis of IMN, although it has not been directly 
elucidated.

In patients with IMN, the urinary exosomal marker 
proteins (Alix, CD63, and TSG101) were significantly 

greater than those in the control group, exhibiting a posi-
tive correlation with proteinuria [103]. This can reflect 
the active pathological changes in renal tissue associated 
with IMN and holds the potential to become a noninva-
sive biomarker for IMN diagnosis, disease assessment, 
and prognosis prediction [103]. Urinary exosomal ceru-
loplasmin is notably elevated in patients with CKDs, 
including MN [92, 95], and further investigation using 
the rat Heymann nephritis model revealed that this ele-
vation occurred prior to the onset of proteinuria. Addi-
tionally, studies have indicated a positive correlation 
between the urinary exosomal proteins Nrf2 and NLRP3 
and serum anti-PLA2R antibodies. Lower levels of Nrf2 
or NLRP3 are suggestive of better treatment outcomes, 
suggesting their potential as prospective biomarkers for 
prognosis assessment [104].

(2) Urinary exosomal mRNA as biomarkers for IMN.

Urine presents a potential source of nucleic acids, 
although these may arise from apoptotic cells and poten-
tially not accurately reflect the functional state of viable 
cells [21]. Furthermore, urine’s intricate composition, 
coupled with a lack of specificity in its components, 
may introduce interference into component detection 
[21]. However, urinary exosomes selectively encapsu-
late mRNA and miRNA, overcoming these drawbacks 
by enriching for relatively specific components [21]. 
Moreover, the bilayer membrane structure of exosomes 
shields against degradation by both intracellular and 
extracellular RNases, rendering exosomal RNA more sta-
ble than total urine RNA [21]. Recent research, as indi-
cated in Table  2, underscores the practicality of urinary 
exosomal mRNA as biomarkers for various kidney dis-
eases, including IMN, DN, FSGS, IgA nephropathy, renal 
fibrosis, and CKD. For example, in IMN patients, CCL2 
mRNA expression was significantly elevated compared 
to healthy controls [118]. Similarly, in patients with renal 
fibrosis, urinary exosomal CD2AP mRNA downregula-
tion correlated negatively with renal function, proteinu-
ria levels, severity of fibrosis, and glomerular sclerosis 
[119]. Among DN, those with proteinuria displayed nota-
bly elevated levels of urinary exosomal WT1 mRNA 
expression compared to nonproteinuric patients. WT1 
levels were indicative of the extent of diabetic glomerular 
injury [68, 106]. These findings collectively underscore 
the critical role of urinary exosomal vesicle mRNA as 
essential diagnostic and prognostic tools for various kid-
ney diseases, including IMN. This methodology capital-
izes on the enrichment of specific mRNA types and the 
inherent stability of exosomal RNA, ultimately amplify-
ing the potential for early detection and management of 
renal pathologies [68, 118, 120].
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(3) Urinary Exosomal Non-Coding RNAs as Biomarkers 
for IMN.

MicroRNAs (miRNAs) are a class of noncoding RNAs 
that play a crucial role in the regulation of gene expres-
sion. Typically, they interact with the 3’ UTR of target 
mRNAs to suppress gene expression [123], influencing 
various biological processes [124]. Aberrant expression 
of miRNAs has been linked to numerous human dis-
eases [125, 126], suggesting that they could be potential 
biomarkers for a variety of kidney disorders [127–129] 
(Table  3). Moreover, urinary exosomes contain abun-
dant miRNAs, rendering them potential biomarkers for 
diverse diseases [21, 130, 131]. They can also reflect kid-
ney dysfunction and structural damage [21, 127–129, 
131]. For instance, in CKD, the overexpression of the 
urinary exosomes miR-181a-5p [85] and miR-451 [132] 
individually contributes to CKD pathogenesis through 
lipid metabolism modulation, renal fibrosis, and mesan-
gial hypertrophy [132]. Renal fibrosis serves as an indica-
tor of permanent CKD-related damage, and correlations 
between elevated miR-200b [73] and decreased miR-
29c [90, 119] levels and CKD-related fibrosis have been 
established. In DN patients, urinary exosomal miR-21-5p 
[133], miR-15b, miR-34a, miR-636 [134], and miR-30b-5p 
[133] hold promise as potential biomarkers. In lupus 
nephritis (LN) patients, urinary exosomal miR-21, miR-
29c, and miR-150 are potential predictive biomarkers 
for disease progression [135]. Notably, reduced levels of 
urinary exosomal miR-29a and miR-29c are associated 
with disease severity, tubulointerstitial fibrosis, and glo-
merulosclerosis in DN, focal segmental glomeruloscle-
rosis, IgA nephropathy, MN, and membranoproliferative 
glomerulonephritis [90, 119]. These findings underscore 
the invaluable diagnostic advantage of urinary extracel-
lular vesicle miRNAs in early-stage kidney diseases. In 
patients with IMN, Ma et  al. [16] identified MUC3A in 
blood and urinary exosomes as a potential diagnostic 
biomarker for IMN. The implication is that the MUC3A 
gene encodes amino acids pertinent to IMN pathogen-
esis, possibly involving the lectin pathway via mannose 
binding.

Role of exosomes in the pathogenesis of IMN
Elucidating the pathogenic mechanisms underlying IMN 
through the use of exosomes is imperative for improving 
the diagnosis and treatment of this disease. Exosomes are 
not only cellular entities but also pivotal players within 
the framework of disease mechanisms [159]. Previously, 
it was widely believed that the primary physiological role 
of urinary exosomes was the disposal of senescent pro-
teins from cells, possibly through a more effective protein 

elimination method than proteasomal and lysosomal 
degradation [76]. This process is akin to the shedding of 
outdated membrane proteins and subsequent membrane 
remodeling by mature reticulocytes via the exosomal 
route [160]. However, an increasing body of evidence sug-
gests that the role of urinary exosomes extends beyond 
the elimination of extracellular cellular waste [161, 162]. 
Another potential role of miRNAs is their ability to 
impact recipient cell mRNAs and miRNAs by secreting 
and reabsorbing their contents, thus regulating collabo-
rative functions among various parts of the kidney [74]. 
Songjia Guo, Jinshi Zhang, and their colleagues employed 
high-throughput sequencing to analyze urinary exosomal 
miRNA expression profiles in healthy controls and IMN 
patients. These authors revealed significant downregula-
tion of miRNAs, including miR-532-3p, miR-9-5p, miR-
30b-5p, miR-129-5p, miR-125b, and miR-338-5p, in IMN 
patients [163, 164]. These findings suggest the potential 
involvement of these miRNAs in the pathogenesis of 
IMN.

(1) Associated with PLA2R1 and HLA-DQA1.

PLA2R1 and HLA-DQA1 have been confirmed to be 
risk factors for IMN [165]. Currently, anti-PLA2R anti-
bodies serve as crucial diagnostic markers for IMN, with 
approximately 70% of IMN patients exhibiting their pres-
ence via kidney biopsies. A search of the TargetScanHu-
man8.0 database (https:// www. targe tscan. org/ vert_ 80] 
revealed that differentially expressed genes, such as miR-
30b-5p and miR-9-5p, in the urinary exosomes of IMN 
patients potentially regulate PLA2R1. Additionally, other 
members of the miR-30 family (miR-30 s) are associated 
with HLA-DQA1. Further Spearman correlation analy-
sis indicated a significant negative correlation between 
miR-30b-5p and anti-PLA2R antibodies [164]. Hence, 
we postulate that urinary exosomes may participate in 
the pathogenesis of IMN by potentially modulating anti-
PLA2R antibodies and/or HLA-DQA1 (Fig. 2).

(2) Regulating extracellular matrix and combating renal 
fibrosis.

It is well known that both MNs and DNs are associ-
ated with varying degrees of excessive accumulation of 
extracellular matrix, leading to gradual glomerular scle-
rosis and renal fibrosis. Renal fibrosis is the ultimate 
outcome of CKD development and a major contributor 
to ESRD. Research has indicated that miR-30b-5p and 
miR-9-5p may be involved in the process of renal fibrosis 
[166, 167]. In DN mouse models and human kidney tis-
sues, miR-30b-5p is significantly downregulated, thereby 
promoting epithelial–mesenchymal transition (EMT) in 

https://www.targetscan.org/vert_80
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DN. Moreover, overexpression of miR-30b-5p can miti-
gate high glucose-induced EMT [166]. This effect is likely 
achieved by targeting the key EMT activator SNAI1. In 
unilateral ureteral obstruction (UUO) mice, miR-9-5p 
protects against renal fibrosis by inhibiting the downreg-
ulation of genes associated with key metabolic pathways, 
including mitochondrial function, oxidative phosphoryl-
ation, fatty acid oxidation (FAO), and glycolysis [167]. In 
IMN patients, there are differences in the expression of 
urinary exosomal miR-30b-5p and miR-9-5p. The down-
regulation of urinary exosomal miR-9-5p in IMN patients 
may reflect the active metabolism of pathways related to 
kidney fibrosis. Based on the above findings, it can be 
inferred that miR-30b-5p and miR-9-5p might also play 
a role in the renal fibrosis process in IMN [164] (Fig. 2).

(3) Associated with podocyte injury.

Podocytes are terminally differentiated visceral epithe-
lial cells of the glomerulus in the kidney; together with 
the basement membrane and endothelial cells, these 
cells form the glomerular filtration barrier [168]. Podo-
cyte injury leads to proteinuria, and reduced podocyte 

numbers are considered a relative risk factor for pro-
gressive kidney damage [169]. The primary pathologi-
cal change in IMN is kidney glomerular podocyte injury 
caused by immune complex deposition. MiRNAs are 
essential for maintaining podocyte homeostasis. Studies 
have shown that differentially expressed miR-9-5p and 
miR-30  s in IMN urinary exosomes may be involved in 
maintaining podocyte stability [164]. Wu et al. reported 
that downregulation of miR-30 induces proteinuria and 
podocyte injury [145]. Further confirmation in a rat 
model demonstrated that miR-30 exerts a protective 
effect by directly inhibiting Notch1 and p53, which medi-
ate podocyte injury [137]. Moreover, recent research 
has suggested that miR-30 may enhance mouse podo-
cyte injury and proteinuria improvement by potentially 
regulating calcium/calcineurin signaling and disrupting 
urokinase-type plasminogen activator receptor-integrin 
β3 (uPAR-ITGB3) signal transduction [170]. In addition, 
miR-9-5p, regulated by tumor susceptibility candidate 
gene 2 (CASC2), targets PPARγ and can alleviate podo-
cyte injury [171]. Furthermore, relevant literature indi-
cates that differentially expressed genes associated with 
urinary exosomal miRNAs, such as miR-532-3p [172], 

Fig. 2 The role of exosomes in the pathogenesis of IMN. The role of exosomes in the pathogenesis of IMN. The five miRNAs in the figure 
are the differential miRNAs identified by miRNA flux sequencing in IMN patients compared with healthy controls, and they are involved 
in the pathogenesis of IMN through four main aspects, namely, the regulation of anti-PLA2R antibody and/or HLA-DQA1, renal fibrosis, podocyte 
injury, and immune homeostasis of Tregs
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miR-429 [173], miR-129-5p [174], miR-107 [172], miR-
25-3p [175], and miR-206 [176, 177], are associated with 
glomerular podocyte injury, and miR-532 and miR-107 
have been confirmed to participate in podocyte injury in 
MN [178] (Fig. 2).

(4) Tregs are involved in the regulation and modulation 
of the immune response.

Currently, antigen‒antibody reactions are considered 
the primary immunopathogenic mechanism of MN [179], 
and CD4 + T cells are recognized as key cellular partici-
pants in immune responses [180]. CD4 + T cells consist 
of helper T cells (Th) and regulatory T cells (Tregs), with 
the former playing a pivotal role in the immune response 
by secreting cytokines that mediate inflammatory reac-
tions and pathogen clearance [180]. Treg cells primar-
ily regulate the intensity of Th cell responses to prevent 
excessive immune reactions, causing self-repair damage 
[180]. Clinically, MN is also characterized by evident Th 
cell subset imbalances. Multiple studies have indicated 
that Th17 cell expression is enhanced in MN patients, 
along with upregulated IL-17 and other cytokines [181–
183], while the proportion of Treg cells is reduced [183]. 
In the urine of IMN patients, differentially expressed 
miRNAs, including miR-532-3p [184], miR-9-5p [185], 
miR-30b-5p [186], miR-129-5p [186], miR-125b [187], 
and miR-338-5p [188], have been found to participate in 
the regulation of Tregs across various diseases. There-
fore, it is inferred that in IMN, the differential expres-
sion of miRNAs, including miR-532-3p, miR-9-5p, 
miR-30b-5p, miR-129-5p, miR-125b, and miR-338-5p, in 
urine exosomes might also be involved in Treg regulation 
to prevent kidney damage potentially caused by excessive 
immune reactions [184]. However, these assumptions 
await further experimental validation [164] (Fig. 2).

The role of exosomes in the treatment of IMN
Treatment for IMN primarily involves the use of ster-
oids in combination with alkylating agents in modern 
medicine. The latest 2021 guidelines from KDIGO [189] 
included rituximab as a first-line treatment for IMN. 
However, challenges persist, such as inconsistent efficacy, 
substantial side effects, and a high relapse rate, which 
fail to fully meet the therapeutic needs of MN patients 
[190]. Consequently, exploring safer and more effec-
tive treatment approaches is imperative. Exosomes have 
demonstrated potential as cellular therapy alternatives in 
preclinical and clinical studies, with data indicating the 
feasibility and safety of exosome-based treatments. For 
instance, exosomes derived from dendritic cells (DCs), 
which contain major histocompatibility complex/peptide 
complexes and promote T-cell immune responses, have 

been tested in clinical trials as vaccines against metastatic 
melanoma and non-small cell lung cancer [191–193]. 
Furthermore, exosomes sourced from stem cells have 
been developed for applications in cardiovascular dis-
ease, diabetes, graft-versus-host disease, and neurologi-
cal and orthopedic disorders [194–196]. Clinical trials 
have also explored the use of plant-derived exosomes for 
curcumin delivery [197, 198]. In the field of kidney dis-
eases, multiple preclinical, clinical, and in  vitro models 
have been used to investigate the potential therapeutic 
applications of exosomes in conditions such as DN [199], 
hypertension-related cardiorenal syndrome [200], acute 
kidney injury [201, 202], IgA nephropathy [203], cad-
mium nephropathy [204], obstructive kidney diseases 
[205], and ischemia/reperfusion injury [206]. Exosomes, 
which can act as therapeutic agents or drug delivery vehi-
cles, exhibit significant potential to mitigate systemic 
consequences in patients with CKD [207], suggesting 
that they are promising candidates for treatment [208–
210]. Moreover, the discovery of mRNAs and miRNAs 
in exosomes and their role in cell-to-cell communication 
signify a novel direction for utilizing exosomes as deliv-
ery vehicles for therapeutic drugs [76].

(1) Therapeutic agents: exosomes with inherent healing 
activity.

Exosomes carrying RNA can selectively deliver their 
contents to specific target cells, temporarily correcting 
dysfunctional processes [76]. This endows exosomes 
with immense potential as therapeutic delivery vehi-
cles. Exosomes have found widespread application in 
kidney diseases, such as modulating kidney transplant 
rejection, rectifying metabolic defects, and fostering 
renal regeneration. These therapeutic extracellular 
vesicles (EVs) seem to primarily derive from various 
sources of mesenchymal stem cells [211]. Mesenchy-
mal stem cells (MSCs), recognized as among the most 
effective stem cell types for inducing kidney regenera-
tion and having diverse differentiation potential [212], 
predominantly treat kidney ailments through the par-
acrine release of EVs [213, 214]. For instance, they have 
demonstrated the ability to reverse acute and chronic 
kidney injuries in various experimental models [215]. 
These effects are partly driven by paracrine enhance-
ment of recovery [215–217] and are strongly medi-
ated by the cargo of RNA within exosomes and/or 
microvesicles [218, 219]. Injection of exosomes derived 
from bone marrow mesenchymal stem cells (BMSCs) 
into DN rats significantly improves renal tissue oxi-
dative stress damage, reduces urinary protein excre-
tion, and safeguards renal function [220]. Injection of 
exosomes isolated from urine-derived stem cells (SCs) 
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into DN rats decreases cellular apoptosis and uri-
nary ALB while enhancing glomerular endothelial cell 
growth [221]. Moreover, urinary stem cells have been 
shown to repair podocyte injury through exosome-
mediated mechanisms [222] (see Fig.  3 for details). 
Additionally, exosomes from cultured epithelial cells 
also exhibit some effects in vitro [223].

For many kidney-related diseases, the primary targets 
for potential exosome-based therapies are endothelial 
cells, which play important roles in regulating blood 
pressure, locally regulating blood flow, modulating 
blood coagulation, and removing plasma lipids and are 
readily accessible to exosomes from the circulation [94]. 
Dysregulation of these processes constitutes a signifi-
cant factor contributing to common CKDs. Endothelial 
cells face the bloodstream, positioning them as "low-
hanging fruits" for exosome-based therapies and largely 
circumventing targeting issues [76]. Although current 
research lacks the application of exosomes as thera-
peutic agents for IMN, the future may involve utilizing 
mesenchymal stem cells or epithelial cells as sources, 

with endothelial cells as targets, potentially ushering in 
a new paradigm for treating IMN.

(2) Drug delivery vehicles: exosomes as therapeutic car-
riers.

Currently, various drug delivery vehicles, such as 
liposomes, micelles, nanoparticles, and hydrogels, are 
being extensively investigated. However, many of these 
materials face significant challenges, such as low bio-
availability and high systemic toxicity [33]. Recently, 
exosomes and microvesicles have garnered substantial 
attention as novel drug delivery vehicles due to the fol-
lowing attributes: (a) Safety: Exosomes, which are endog-
enous carriers, exhibit excellent biocompatibility, low 
immunogenicity, and good tolerability, thereby estab-
lishing safer and more effective drug delivery systems 
(DDSs) [224–229]. (b) Barrier penetration: Exosomes 
and microvesicles, owing to their small size and flex-
ibility, can traverse major biological barriers, including 
the blood‒brain barrier (BBB) [230–233]. Zhuang et  al. 

Fig. 3 Exosomes as therapeutic agents for IMN. Exosomes as therapeutic agents for IMN. Exosomes used as therapeutic agents for IMN are mainly 
derived from mesenchymal stem cells (MSCs), which can be subdivided into bone marrow mesenchymal stem cells (BMSCs) and urothelial stem 
cells (SCs). Each of the three pathways shown in the figure treats IMN through different pathways
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discovered that exosomes effectively transport curcumin 
to the brain to treat neuroinflammation-related diseases 
without side effects [227]. (c) Specificity: Analysis of the 
proteins on the surface of exosome membranes aids in 
developing drug delivery systems for targeted cell-spe-
cific delivery [234]. (d) Stability: The bilayer structure of 
exosomes shields their cargo from RNases and proteases, 
enhancing drug stability and efficacy [94]; see Fig.  4 for 
details. Additionally, research suggests that the bioavaila-
bility of exosome delivery systems surpasses that of other 
systems. For instance, doxorubicin loaded into exosomes 
has been shown to be more effective than other deliv-
ery systems and to cause fewer adverse effects on major 
organ systems, especially the heart [235]. In the future, 
exosomes hold promise for delivering drugs or traditional 
Chinese medicine monomers for treating IMN to target 
organs, enhancing treatment precision and effectiveness.

Future outlook and challenges
As novel biological signaling molecules and therapeutic 
carriers, exosomes have unique advantages in the field of 
kidney disease diagnosis and treatment. Compared with 

other renal diseases, there are relatively few studies on 
the use of exosomes in the treatment of IMN, which also 
means that exosome development in IMN will help revo-
lutionize the diagnosis and treatment of IMN. Inevitably, 
there are some challenges to overcome.

(1) Extension of clinical applications: exosomes face 
the challenges of standardization and standardized 
methods in the clinical treatment of IMN. Ensuring 
consistency and accuracy in the exosome collection, 
purification and assay process is critical to ensure 
the efficacy and reproducibility of the results. 
Large-scale multicenter clinical trials are neces-
sary to extensively validate the efficacy and safety of 
exosomes in patients with IMN and to develop rel-
evant guidelines and standards.

(2) In-depth mechanistic exploration of exosomes: 
although exosomes play an important role in the 
pathogenesis of IMN, their specific regulatory 
mechanisms and targets of action are not yet fully 
understood. Future studies should further explore 
the relationship between exosomes and IMN and 

Fig. 4 Exosomes as drug delivery carriers. Exosomes, as drug delivery carriers, consist of three main components: harvesting, loading engineering 
and targeted delivery
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reveal their regulatory networks and signaling path-
ways to better understand the occurrence and pro-
gression of IMN.

(3) The development of individualized therapeutic 
strategies: IMN is a heterogeneous disease with 
significant clinical variability. As potential biomark-
ers and therapeutic targets, exosomes hold promise 
for individualized diagnosis and treatment. Future 
research should focus on the transition from dis-
covery to application. Exosomes can be used for 
early diagnosis, patient staging and severity pre-
diction, as well as for more accurate identification 
of underlying etiologies, improved patient catego-
rization, and stratification of patients with IMN. 
Appropriate exosome-targeted therapies should be 
selected based on individual patient characteris-
tics. After specific therapeutic strategies have been 
defined, continuous monitoring of therapeutic effi-
cacy allows for close individualization of diagnosis 
and treatment.

(4) Optimization of drug delivery vehicles and associ-
ated techniques: the foremost challenges of using 
exosomes as drug delivery vehicles include imper-
fect extraction and separation techniques, which 
can lead to low yields and low encapsulation and 
loading efficiencies. Functionalizing exosomes is 
needed for encapsulating hydrophilic macromol-
ecules. Concurrently, advancing and optimizing 
exosome delivery systems and technologies is cru-
cial for enhancing exosome stability and targeting 
within the body. Additionally, additional pharmaco-
logical studies are needed to validate the safety and 
efficacy of exosome-targeted therapies for eventual 
clinical translation.

(5) Interdisciplinary Collaboration and Data Sharing: 
exosome research demands interdisciplinary col-
laboration involving experts from fields such as 
nephrology, molecular biology, and bioinformat-
ics. Future efforts should strengthen collaboration 
and communication between different domains, 
facilitating data and resource sharing to expedite 
research progress and promote exosome applica-
tions in IMNs.

In conclusion, exosomes hold immense potential for 
the diagnosis and treatment of IMN. Future research and 
clinical practices should further refine the techniques and 
methods, explore their mechanisms comprehensively, 
develop personalized treatment strategies, intensify drug 
development, and foster interdisciplinary collabora-
tion to realize the widespread application of exosomes 
in IMN. These findings could lead to more precise 

and effective diagnostic and therapeutic tools for IMN 
patients, significantly improving disease management 
and prognosis.
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