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Abstract
Background  Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates 
are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. 
Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the 
characterisation of biomaterials such as IBs.

Results  We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the 
single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser 
power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing 
high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in 
Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested 
distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation 
analyses revealed intricate relationships between the physical and morphological properties of IBs.

Conclusions  Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and 
between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of 
different samples and determine how to control for various technical artefacts.
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Background
Inclusion bodies (IBs) are insoluble nonmembranous 
organelles in bacterial cells that store misfolded and 
aggregated proteins, first observed by Prouty et al. 
in recombinant bacteria [1, 2]. These structures have 
attracted significant research attention due to their 
strong regulation by the host proteostasis machinery and 
their association with cellular senescence [3–5]. The chal-
lenge of resolubilising IBs often arises during the scale-
up of protein production processes; however, in certain 
instances, proteins within IBs may retain some degree of 
their native structure and catalytic activity, negating the 
necessity for resolubilisation [6]. Moreover, IBs are being 
explored as putative drug delivery systems owing to their 
cell permeability and controlled drug release kinetics 
[7, 8]. Additionally, cellular stressors such as starvation, 
senescence, and exposure to antibiotics can induce IB 
formation [9].

A wide range of techniques is employed to study the 
structural properties of IBs. Various techniques, includ-
ing X-ray diffraction (XRD), Fourier transform infrared 
(FTIR) and Raman spectroscopy, nuclear magnetic reso-
nance spectroscopy (NMR) and dye binding assays using 
Congo red, thioflavin T, thioflavin S, and pFTAA, have 
revealed that IBs possess amyloid-like characteristics 
[9–11]. Amyloid-like fibrils have been observed by trans-
mission electron microscopy (TEM) and atomic force 
microscopy (AFM) upon digestion by proteinase K or 
trypsin [12]. The interactions of IBs with the proteostasis 
system and their dynamic behaviour have predominantly 
been studied using biochemical assays, as well as bright-
field and fluorescence microscopy [4, 13–15].

Micro-FTIR (µFTIR) is one of the few methods that 
offers label-free direct imaging of the secondary structure 
of proteins in IBs that does not depend on their extrac-
tion [16]. Proteins mainly absorb IR light in two regions 
of the IR spectrum: the amide I band (1600–1700 cm-1) 
and the amide II band (1500–1600 cm-1). The former is 
sensitive to the secondary conformation of a protein: 
β-sheets absorb between 1620 and 1640 cm-1 and 1674–
1700 cm-1, depending on their nature, while α-helices and 
disordered regions absorb around 1654 cm-1 and β-turns 
around 1672 cm-1 [17]. However, the resolution of µFTIR 
cannot exceed 2.5  μm, the Abbe limit at these wave-
lengths [18].

There has been an exceptional boom in infrared imag-
ing methods for achieving higher resolution, such as 
optical photothermal infrared microscopy (OPTIR) 
and AFM-based methods such as atomic force micros-
copy-based infrared spectroscopy (AFM-IR) [19, 20], 
tip-enhanced Raman scattering (TERS) and scanning 
near-field optical microscopy (SNOM) [21]. Each of these 
methods has its merits and limitations; see Dazzi and 
Prater (2016) for a comparison of AFM-IR, TERS, and 

SNOM [18]. In this work, we attempted to develop a pro-
tocol for the study of bacterial IBs using AFM-IR.

AFM-IR relies on the thermal expansion of mol-
ecules upon illumination with IR light of a wavenumber 
matching internal vibrations in those molecules and is 
therefore also known as photothermal infrared micros-
copy (PTIR) [22]. While the illumination laser remains 
diffraction-limited, a sharp AFM probe is used for the 
infrared absorption readout, resulting in a lateral resolu-
tion as low as 10 nm [23]. The amplitude of photothermal 
expansion is often considered proportional to the FTIR 
spectrum but is also influenced by factors including the 
probe shape, incident laser power, quality of mechani-
cal contact, etc. [24, 25], resulting in slight band shifts 
in comparison to traditional FTIR in regard to protein 
conformational analysis [24, 26, 27]. Since the invention 
of AFM-IR, many improvements have been made to this 
method, such as resonance-enhanced [28], tapping [29], 
surface-sensitive [30], and null-deflection AFM-IR [31]. 
Another line of research attempts to perform AFM-IR in 
water [32, 33],

Previous studies on bacteria have utilised AFM-IR to 
study DNA [34–37], biopolymer-producing species [38, 
39], antibiotic resistance [40] or bacterial functional amy-
loids [41], primarily after depositing dried bacteria on 
a substrate [42]. AFM-IR has been shown to be capable 
of measuring changes in the cell wall composition that 
confer antibiotic resistance [40], visualising individual 
viruses injecting their genome into a cell [35], and study-
ing bacterial functional amyloids [41]. Building on this 
line of research, in this work, we attempt to study the 
structural and temporal differences between IBs formed 
under different stress conditions by applying AFM-IR 
to explore variations in protein secondary structure in 
situ within bacterial cells. We provide a detailed proto-
col optimisation and the development of an end-to-end 
data analysis pipeline to support large-scale quantitative 
measurements of parameters in a single-cell and single-
particle (IB) fashion. We show that the unprecedented 
sample size produced in our study overcomes the techni-
cal and biological variability of such challenging samples 
and conclude that AFM-IR is sensitive enough to detect 
IB formation in bacterial cells and to distinguish IBs aris-
ing from different stress conditions.

Methods
Bacterial growth conditions
10 µL of bacteria (E. coli strains BW25113, BL21, or BL21 
with pET15b-TEV-p53 plasmid [43]) from a 15% glycerol 
stock stored at − 80 °C were suspended in MHB medium 
(Fisher, 11,703,503), supplemented with ampicillin 
(100  µg/mL) if required. The cells were cultured over-
night at 37 °C with shaking at 215 rpm.
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Stress application
For Figs. 3 and 4, BL21 (or BL21 pET15b) cultures were 
split over different tubes and washed with saline. They 
were then spiked with hydrogen peroxide (4 mM final 
concentration), nickel dichloride (100 µM final concen-
tration), cobalt dichloride (100 µM final concentration), 
P2 (25  µg/mL), P33 (16  µg/mL), or, for p53 overexpres-
sion, IPTG (to 1 mM) and incubated for 1 h or 10 min in 
the case of P33.

For the experiment shown in Fig.  5, E. coli BW25113 
cultures were split into different tubes. The tube corre-
sponding to the longest recovery condition was incu-
bated at 49 °C for 1 h, after which it was moved to 37 °C 
for one or two hours. The other tubes were moved 

between the two temperatures such that they spent the 
correct amount of time at 37 °C after the one-hour heat 
shock.

AFM-IR sample preparation
All samples were spun down (2  min at 4300 × g), and 
the supernatant was replaced with 1.5 mL of saline solu-
tion (twice) before fixation in 0.5 mL of glutaraldehyde 
(2.5 vol% in 0.1  M Na-cacodylate buffer) and incuba-
tion for one hour at room temperature. Then, we per-
formed three washes with cacodylate buffer (spinning 
down for 2 min at 12,100 × g) before secondary fixation 
in osmium tetroxide (1 vol% in cacodylate buffer) for 2 h. 
The samples were washed twice in cacodylate buffer and 

Fig. 1  Protocol optimisation. (A) Schematic representation of the experimental protocol, created with Biorender.com. (B) IR Amplitude spectra of epoxy 
resin at various laser power settings. (C) Dependence of the IR Amplitude on the laser pulse rate varies from probe to probe and is influenced by the 
location at which the deflection laser hits the cantilever. (D) The distribution of values in a PLL Frequency map acquired under different feedback gain set-
tings. The inset shows how the two different distributions in the sample (cells and epoxy) are most clearly separated at the 6/60 setting. (E) Measured drift 
speeds in the x, y, and z directions of the sample relative to the probe during an overnight measurement (top), correlated to the laboratory temperature 
(bottom). (F) Drift in the free-air deflection over the same period as (E). (G) Discrepancy between the reported and actual atmospheric humidity after 
opening the dry air purging valve at t = 0. (H) Output of the quality control pipeline for AFM-IR datasets showing maps and two data profiles in the trace 
(blue) and retrace (orange) scanning directions along the lines shown in the image
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Fig. 2  Data processing and analysis. (A) IR Amplitude map of thin section of bacteria embedded in epoxy and localisation of example spectra shown in 
(B). (B) IR Amplitude spectra after normalisation with respect to the laser power spectrum and (C) after further processing. The wavenumber range used 
for quantification of β-sheets (1615–1635 cm-1) is indicated. (D) Relative β-sheet content from IB (blue) and cytoplasm (orange) IR Amplitude spectra over 
five independent but biologically similar samples. Each column represents an independent measurement. Horizontal annotations indicate whether the 
data within contained groups with significantly different means. The vertical annotation highlights the significant difference between IB and cytoplasm 
β-sheet levels. (E) Quantification of the average PLL Frequency of these spectra, relative to the mean PLL Frequency of the epoxy spectra in that mea-
surement session. Measurement 2, an outlier, is indicated by hollow markers. (F) Example of processed AFM-IR dataset, including an IR Amplitude map 
at 1625 cm-1, (G) an IR Amplitude map at 1650 cm-1, (H) a PLL Frequency map, (I) a ratio map of the IR Amplitudes, and (J) segmentation into cells and 
inclusion bodies based on the 1625 cm-1 IR Amplitude map. The white arrow highlights a cell with 3 segmented inclusion bodies. (K) Distribution of IBs 
along the cell major axis. (L) Plotted like (D), the average number of IBs per cell, (M) their area, (N) enrichment of their β-sheet ratio (average 1625/1650 
ratio) relative to the cytoplasm of the same cell, and (O) their average PLL Frequence relative to the cytoplasm. Error bars represent a 95% confidence 
interval of the mean by bootstrap
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successively transferred to an ethanol series (30, 50, 70, 
90, 100, 100, 100%), rotating at 4 °C for 10 min after each 
step. Then, they were resuspended twice in propylene 
oxide (Sigma, 82320) and rotated at 4 °C for 15 min.

The epoxy embedding was performed in three stages, 
first by resuspending in a 1:1 epoxy and propylene oxide 
mixture, supplementing 27 µL BDMA per 1 mL epoxy 
(Agar Scientific, AGR1031, hard formulation), and incu-
bating for 1  h at 4  °C while rotating. Second, we resus-
pended the samples in a 2:1 mixture and left them to dry 
overnight. Finally, we transferred the samples to 100% 
epoxy resin, dried them at low vacuum for 4 h and cured 
them at 60  °C for 2 days. We sectioned the resin blocks 
to a thickness of 95 nm (Leica Ultracut UCT) and trans-
ferred the sections onto silicon wafers (Ted Pella, 16008), 
which were then glued to a sample disc (Bruker, SD-102 
or Electron Microscopy Sciences 75010) using Reprorub-
ber Thinpour (Reprorubber, 16116).

AFM-IR data acquisition
All samples were measured at least one time in reso-
nance-enhanced mode with a pulse rate around 900 kHz. 
They were imaged at least under illumination with 1625 
and 1650  cm-1 light, and spectra were collected at least 
five IB, cytoplasm and epoxy locations (as estimated by 
visual inspection of an IR Amplitude map at 1625 cm-1) 
when possible. Collecting epoxy spectra during every 
measurement session allows us to check and correct for 
tip contaminations.

A gold-coated cantilever (Bruker, PR-EX-nIR2-10, 
k = 0.2  N/m, f0 = 13  kHz, r = 20–35  nm) was mounted in 
a nanoIR3 (Bruker) equipped with a MIRcat-QT laser 
(DRS Daylight Solutions), maximizing the laser sum, and 
adjusting the vertical and lateral deflection to approxi-
mately − 0.3 V and 0 V respectively. With the laser power 
set to 1.37%, a pulse rate of approximately 880 kHz and a 
pulse length of 160 ns, the IR beam was aligned in the x 
and y directions for each of the QCL chips (at 1730, 1260, 
1088, and 914  cm-1), while its z position was optimised 
at 1730 cm-1. The atmospheric humidity is controlled by 
purging the system with dry air. Care is taken to let the 
relative humidity stably drop below 1% before measure-
ments are made.

A phase offset was chosen to maximise the IR Ampli-
tude, and the phase-locked loop (PLL) gains were set to 
I = 0.1 and P = 1. After collecting a laser emission spec-
trum (also called power spectrum or background spec-
trum), one IR spectrum was collected on epoxy to check 
that all parameters were set correctly. AFM-IR datasets 
were acquired at 1650 cm-1 and 1625 cm-1 with the fol-
lowing settings: field of view, 10 × 10 or 20 × 20 μm; reso-
lution, 512 × 512 px (hence a pixel size of approximately 
20–40  nm); scan rate, 0.1  Hz; AFM I gain, 2; P gain, 1; 
PLL I gain, 6; P gain, 60. For spectral measurements, we 

realigned the IR focus (only x and y), collected a new 
power spectrum, and collected spectra with the follow-
ing settings: PLL I gain, 0.1; P gain, 1; spectral resolution, 
2 cm-1; coaverages, 5; spectral range, 800–1800 cm-1; res-
olution, 2 cm-1. To change samples, we moved the sample 
to its lowest position and replaced it with a set of twee-
zers, taking care not to touch the AFM head.

Data processing
The data were processed using python 3.10.13, numpy 
1.26.3, pandas 2.1.4, SciPy 1.11.4, scikit-learn 1.3.2, scikit-
image 0.19.3, statsmodels 0.14.1, umap-learn 0.5.5, xar-
ray 2023.7.0, opencv-python-headless 4.9.0, and cellpose 
2.2.3. Additionally, we adapted code developed by Dos 
Santos et al. [44].

IR absorption spectra, as reported, were normalised 
with respect to the laser emission spectrum at the time 
of measurement but were further processed by dividing 
them by the average epoxy spectra from the same sample 
measurement session and then min–max normalised to 
the range 0–1 between 1600 and 1800 cm-1. Every spec-
trum was reduced to a single PLL Frequency value by 
computing the average PLL Frequency between 1600 and 
1650  cm-1 and subtracting the average epoxy PLL Fre-
quency from the same sample and measurement session.

The AFM-IR datasets were processed as follows. First, 
the 1625  cm-1 IR Amplitude map was segmented into 
background, bacterium, and IB pixels. Cells are defined 
using a Cellpose model finetuned to our data and eroded 
to discard membrane pixels [45]. Cells intersecting the 
image border were discarded for analysis. Then, the 
intensity distribution of pixels inside a cell (IR Amplitude 
map at 1625  cm-1) was thresholded using the triangle 
algorithm, a binary opening was applied to discard noise 
pixels to obtain the IB map, and IB pixels outside of the 
cell mask were discarded [46]. Second, the IR Amplitude 
map at 1625 cm-1 was registered onto the 1650 cm-1 map 
to correct for sample drift. In the case of a constant drift, 
a simple translation would suffice, but nonconstant drift 
can introduce apparent image shearing. Therefore, regis-
tration is implemented in two steps, initially maximising 
the cross-correlation between the two matching height 
maps while allowing only rigid transformations and then 
allowing affine transformations. Finally, the PLL Fre-
quency maps are processed to correct for PLL Frequency 
drift and cantilever variations by calculating the average 
PLL Frequency of epoxy pixels line-by-line, applying a 
rolling mean, and subtracting this profile from the whole 
map. Because of the higher IR amplitudes at 1650 cm-1, 
the PLL map corresponding to this wavelength was used 
in downstream analyses.

For the statistical analysis of multiple groups, Shapiro 
and Bartlett tests were performed to choose between 
ANOVA or Kruskal‒Wallis tests, after which suitable 
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post hoc tests were performed. For multiple compari-
sons, p values were Bonferroni-corrected.

Results
Optimisation of data collection parameters
We started by optimising the data collection procedure, 
focusing on experimental parameters for AFM and those 
specific to AFM-IR such as the excitation laser power and 
pulse rate. Considering that optimal settings for a field of 
view measuring 10–20  μm wide necessitate slow scan-
ning speeds [47], we quantified sample drift. Addition-
ally, methods for plotting raw data from AFM-IR datasets 
were implemented for quality control purposes.

Bacterial cells were embedded in epoxy resin after fixa-
tion, and AFM-IR was conducted on 95 nm thick sections 
of the produced resin blocks (Fig.  1A). This embedding 
approach provides superior sample shelf life and surface 
smoothness, facilitating imaging [48]. At the point of 
loading the cantilever, we adjust the deflection mirror to 
ensure free-air deflection is about − 0.3  V, matching the 
default engagement force to achieve a deflection setpoint 
close to 0 V. The scan rate and AFM feedback gains were 
optimised to maintain a deflection within 0.01  V of the 
setpoint during a measurement, except around very 
sharp features such as knife marks.

To determine the common optimal laser power for all 
measurements, we collected spectra at various power 

Fig. 3  The nature of a stress affects the resulting IBs. (A) IR Amplitude spectra of IBs and cytoplasm collected from thin sections of epoxy-embedded 
bacteria after application of various stress conditions. (B) Second derivative spectra (averaged for each sample) display an increase in β-sheet content. The 
average over the whole dataset is represented by the mean and shaded CI (mean ± 1.96 × SEM; standard error of the mean). (C) Relative β-sheet content 
of IBs and cytoplasma in each spectrum. Mean and 95% CI (bootstrap). (D) Same as (C) but highlighting the correlation between cytoplasmic and IB 
β-sheet levels. Error bars represent mean ± 1.96 × SEM. (E) The first three principal components found in this data. (F) Score plot mapping all spectra to 
PCA space. The colours of the data points match panel (D). (G) UMAP representation of the spectral data
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levels at sample locations devoid of cells, as reflected 
by the absence of the protein-originating amide I band 
(Fig.  1B). The IR Amplitude signal at a laser power of 
1.37% was larger than at both lower (0.69%) and higher 
(2.87%) power, indicating optimal field enhancement due 
to surface plasmon resonance [49]. At even higher power 
(5.73%), significant noise appeared around the absorption 
peak. Furthermore, it is recommended to avoid using 
excessively high laser powers, as this can potentially 
damage the sample. We conclude that 1.37% is the opti-
mal power level for these samples on our system.

In resonance-enhanced AFM-IR, the repetition fre-
quency of the IR laser needs to match the contact fre-
quency of the sample-cantilever system [25], which varies 
from cantilever to cantilever but also depends on where 
the deflection laser hits the cantilever (Fig. 1C). The opti-
mal frequency was tracked using a phase-locked loop 

(PLL), as it is subject to drift and contingent upon the 
nanomechanical properties of the sample and cantilever. 
Therefore, investigating the PLL Frequency maps reveals 
nanomechanical differences in the sample, although it 
cannot offer a direct quantification of the Young’s mod-
ulus [50, 51]. The gains of the PLL were determined 
through scanning experiments of epoxy-embedded 
bacteria. I = 6 and  P = 60 provided the best separation 
between epoxy and bacteria (Fig. 1D). When acquiring a 
collection of spectra at various locations throughout the 
sample, we opt for low PLL gains (I = 0.1, P = 1) to reduce 
noise while allowing the PLL Frequency to adapt to slow 
changes in the optimal pulse rate.

Given the slow scanning speeds employed, sample drift 
may cause issues if left uncorrected. Temperature varia-
tions in the laboratory environment were found to exert a 
pronounced influence on sample drift relative to the AFM 

Fig. 4  Validation of hydrogen peroxide stress. (A) Representative IR Amplitude maps of thin sections of bacteria embedded in epoxy resin after control, 
hydrogen peroxide, and heat shock treatment. (B) Number of IBs per cell. Compared to other conditions, heat shock causes much more IB formation 
(comparisons report p values from Tukey’s test). (C) Average IR Amplitude spectra of IBs and cytoplasma under the three conditions reveal differences 
in structural composition. (D) Averaged second derivative spectra from peroxide-treated bacteria are characterised by peaks at 1678 and 1616 cm-1. (E) 
Quantification of β-sheet levels (IR Amplitude intensity around 1628 cm-1). (F) Quantification of IR Amplitude intensity around 1678 cm-1. All spectra are 
plotted for each condition and replicate, and 95% CIs (bootstrap) are shown
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probe. Drift correction strategies were employed based 
on the observed drift patterns. This was done by collect-
ing a series of height maps of the same sample, in this 
case, 2 × 2 μm height maps of amyloid protein on a gold 
substrate over a period of over 12 h (Fig. 1E; underlying 
data are presented in Supplementary Information,  Note 

S1). Temperature-dependent drift is apparent both in the 
sample plane (x and y) and its vertical position (z). Based 
on our data, drift speeds on the order of 5–10  nm/min 
should be expected, even at relatively constant tempera-
tures, and drift correction may be necessary [52].

Fig. 5  Recovery of IBs after heat shock. (A) Representative IR Amplitude maps (top) and spectra (bottom) of thin sections of bacteria embedded in epoxy 
resin after control treatment, (B) heat shock, (C) and heat shock with subsequent recovery, (B) immediately after heat shock and (C) two hours after heat 
shock. (D) Β-sheet content of inclusion bodies (integral of normalised spectra between 1615–1635 cm-1), averaged per sample. Biological replicates are 
connected by thin lines. Bold lines represent averages. (E) Average PLL Frequency of IB and cytoplasm IR Amplitude spectra, relative to epoxy. (F) The IB 
area increases during heat shock but remains constant afterwards, like (G) the number of IBs per cell and (H) their β-sheet enrichment. (I) IBs are more 
rigid than the cytoplasm at all timepoints tested, but there were no differences between timepoints. Shaded regions represent 95% CIs by bootstrap

 



Page 9 of 15Duverger et al. Journal of Nanobiotechnology          (2024) 22:406 

Vertical sample drift was automatically compensated 
for by the AFM height tracking feedback. However, drift 
in the cantilever’s free air deflection requires additional 
consideration to ensure consistent force application dur-
ing acquisition. Similar measurements over 2 days at 
near-constant temperatures (within 28 ± 0.2  °C) and an 
average sample drift of only 0.4 nm/min revealed differ-
ences in the free air deflection when automated deflec-
tion setpoint adjustment between acquired height maps 
was allowed (Fig.  1F). Given an engagement force of 
0.3 V, these differences were large. As such, they required 
counteracting by resetting the deflection setpoint 
between map acquisitions; otherwise, this would result in 
strong variations in the force applied on the sample and 
cantilever and therefore the optimal pulse rate.

We assessed the accuracy of the humidity sensor in our 
system because atmospheric water vapour profoundly 
impacts IR spectra in the mid-infrared region due to 
its sharp absorption lines. While regular collection of 
the laser emission spectrum before each measurement 
partially compensates for this effect, periodic verifica-
tion of the relative atmospheric humidity throughout 
an experiment is advisable, ideally maintaining levels 
below 1%. Notably, the placement of the humidity sen-
sor in a nanoIR3 system near the supply of dry air may 
yield humidity readings that appear overly optimistic 
compared to readings obtained from a sensor positioned 

adjacent to the sample location (Fig.  1G). Thus, it is 
imperative to allow humidity levels to fully equilibrate 
before collecting IR measurements.

Finally, we acquired AFM-IR datasets at 1770  cm-1, a 
wavenumber at which no IR absorption is expected for 
epoxy or cells, to ensure that there is no IR Amplitude 
signal due to confounding mechanical effects. For this 
data, see Supplementary Information, Note S1.

Despite the implementation of these optimisations, 
the stability of the system may not always be sufficient 
to guarantee high-quality measurements. To ensure the 
integrity of our data, we acquired Height and Deflection 
maps in one scanning direction and IR Amplitude, IR 
Phase, and PLL Frequency maps in both scanning direc-
tions (trace and retrace) without applying any data pro-
cessing. This approach enables the assessment of data 
quality both during and after measurement (Fig.  1H). 
Through this method, we can evaluate trace-retrace 
errors and assess the magnitude of deflection and IR 
phase signals, minimising deviations from zero. For all 
AFM-IR datasets and spectra published in this work, 
the raw data can be found in Supplementary Informa-
tion, Note S2.

Throughout the rest of the paper, we will be using 
“AFM-IR dataset” for a set of images or maps with differ-
ent types of data (Height, Deflection, IR Amplitude, PLL 
Frequency and IR Phase) collected simultaneously, and 

Fig. 6  Highlighting the capabilities of image-based analysis of AFM-IR data. (A) Average β-sheet enrichment and PLL Frequency (relative to epoxy) of a 
pixel in an AFM-IR dataset as a function of its distance to the nearest IB edge (mean and 95% CI). (B) IR Amplitude map of an IB after heat shock treatment 
in a thin section of epoxy-embedded bacteria. (C) Correlation plot between IB properties. Dots highlight statistically significant correlations (Bonferroni-
corrected p < 0.05)

 



Page 10 of 15Duverger et al. Journal of Nanobiotechnology          (2024) 22:406 

“IR Amplitude spectra” or simply “spectra” for IR absor-
bance spectra collected with the AFM-IR instrument.

Data analysis pipeline and signal reproducibility
We established a pipeline for the automated analysis of 
AFM-IR datasets and spectra collected with the pre-
defined parameters. Refer to the Methods section for 
details. To evaluate the performance of our measure-
ment and analysis protocols, we prepared five identical 
samples of bacteria with spontaneous inclusion body (IB) 
formation and conducted multiple imaging sessions for 
each sample (n = 3–4), utilising the same cantilever when-
ever possible (refer to Supplementary Information, Note 
S3 for additional sample and cantilever details). This 
approach enabled us to assess both technical and biologi-
cal variability.

In each individual measurement, we collected two 
AFM-IR datasets, one with illumination 1625 cm-1 (rep-
resenting β-sheets [26]) and one at 1650 cm-1 (represent-
ing α-helices and unordered loops [26]), along with five 
IR spectra corresponding to inclusion bodies (IB), cyto-
plasm (CP), and epoxy (background; BG). Representa-
tive spectra and their locations are shown in Fig. 2A-C. 
For all spectra in this study, location data are provided 
in Figure S2. To quantify the relative β-sheet content 
in each spectrum, we integrated the area from 1615 to 
1635  cm-1 (Fig.  2D). Our analysis revealed an enrich-
ment of β-sheets in IBs compared to the cytoplasm. The 
observed β-sheet enrichment had a relative magnitude of 
1.4 (95% CI: 1.36–1.52, two-sample t test: padj = 10−6). 
Notably, the technical variability observed did not yield 
statistically significant differences between repeat mea-
surements (ANOVA on all data points for each sample: 
padj > 0.3). Moreover, no significant biological variability 
was observed (ANOVA on averages of each replicate: 
p > 0.76) in this assessment.

On the other hand, the PLL Frequency analysis (Fig. 2E) 
revealed significant technical variability (ANOVA on all 
data within each repeat: 9 > p  adj > 2  × 10-5), even after 
exclusion of an outlier measurement series (repeat 2, 
hollow markers). This technical variability masked any 
between-sample differences in the PLL Frequency of IBs, 
if there is any (ANOVA on averages of each replicate: 
padj = 2.2).

AFM-IR datasets provide a greater variety and depth of 
information than do spectra. They were first processed 
following the protocol detailed in the Methods section. 
Briefly, the pixels were classified as cell or background 
using a finetuned Cellpose model [45]. An IB map was 
generated by a binary threshold of the 1625  cm-1 IR 
Amplitude map, where the threshold was defined by 
the Triangle algorithm applied to the intensity histo-
gram of the cell pixels, and a binary opening to discard 
noise pixels [46]. As a result, the smallest IBs detected 

have a radius of 2 pixels, corresponding to 40 nm or two 
times the nominal radius of the probe. Note that further 
experiments in this paper take a larger field of view, with 
twice the pixel size. However, since they are processed 
in the same manner, the smallest IBs will have a radius 
of 80  nm. This was done to increase throughput at the 
expense of resolution.

An example dataset is shown in Fig. 2F-J. For illustra-
tion purposes, this is a 20 × 20 μm dataset. The datasets 
underlying the analysis in this section can be consulted in 
Supplementary Information, Note S2. First, we observed 
polar enrichment of IBs (Fig.  2K); however, there were 
more IBs in the middle of the cell than expected from 
the literature [3]. This may be a result of the random 
three-dimensional orientation of cells with respect to the 
sectioning plane, but it is also possible that AFM-IR is 
sensitive to small protein aggregates that were not previ-
ously picked up by fluorescence microscopy approaches. 
Note that the relative age of the cell poles is not acces-
sible in this experiment and that therefore, the sign of the 
polar location has no meaning. The positive pole is sim-
ply the one located on the right-hand side in the map.

Second, this dataset provides a measurement of the 
number of inclusion bodies per cell for each sample, as 
shown in Fig. 2L. Within this dataset, there was no sig-
nificant technical variability (ANOVA on all data within 
each repeat: padj > 0.5), but biological variability (ANOVA 
on averages of each replicate: p adj = 0.0002) was observed.

Third, this dataset contains a distribution of IB sizes 
(Fig. 2M), with an average radius of 85 nm, correspond-
ing to eight pixels or four times the nominal radius of the 
AFM tip. There was no evidence of significant technical 
(ANOVA on all data within each repeat: padj > 10) or bio-
logical variability between the samples (ANOVA on aver-
ages of each replicate: p adj = 0.5).

Fourth, the segmentation maps can be correlated to the 
IR Amplitude ratio and PLL maps to assess the physical 
and structural properties of IBs in an unbiased manner. 
Due to the inhomogeneous intensities of IR Amplitude 
maps discussed before, it is important to compare the 
relative β-sheet enrichment of an IB, the mean of the 
1625/1650 cm-1 ratio map within the IB region, to that of 
the cytoplasm surrounding it (Fig. 2N). In this case, there 
was significant technical variability only within sam-
ple 3 (ANOVA on all data within sample 3: padj = 0.001, 
for other samples: padj > 9), but no biological variability 
between samples (ANOVA on averages of each replicate: 
padj = 0.06). We have not found the cause for this out-
lier measurement and can only recommend performing 
enough measurements so cases like these can be aver-
aged out or discarded.

The relative β-sheet enrichment of inclusion bodies 
in this dataset was 1.11 (95% CI: 1.06–1.15, two-sample 
t test: padj = 0.0009). This enrichment value is lower than 
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that measured in the spectral analysis, possibly because 
of the choice of wavenumbers for imaging.

Figure  2O shows the PLL Frequency difference 
between IBs and the surrounding cytoplasm. As in the 
spectral analysis, measurement 2 is an outlier. Excluding 
it, there was no statistical evidence for technical variabil-
ity (ANOVA on all data within each repeat: padj > 0.1) or 
biological variability (ANOVA on averages of each mea-
surement: padj > 1.2). While the PLL Frequency of IBs 
can be evaluated independently from the cytoplasm, this 
approach introduces extensive technical and biological 
variability (Supplementary Information, Note S4).

In summary, we developed a robust imaging pipeline 
providing data inaccessible by spectral analysis and inde-
pendent of user bias due to the cherry-picking of spec-
trum locations. However, image analysis is limited by the 
discrete number of acquired wavenumbers and is more 
sensitive to technical artifacts, as shown in the ratio map 
in Fig. 2I.

The nature of a stressor is reflected in the structure of 
resulting inclusion bodies
Having developed a robust imaging pipeline and evalu-
ated its sensitivity to technical and biological variability, 
we attempted to distinguish IBs from various stress con-
ditions by AFM-IR. A panel was selected to include phys-
ical stress (heat shock), chemical stress (heavy metals 
such as NiCl2, CoCl2 and oxidation by hydrogen perox-
ide) and proteotoxic stress (overexpression of the aggre-
gation-prone p53 DNA-binding domain [43] or exposure 
to the peptides P2 and P33 [9]). Peptins are short hydro-
phobic peptides that nucleate the aggregation of endog-
enous proteins due to homology with aggregation-prone 
regions.

To increase the experimental throughput, only IR 
absorption spectra were collected for these samples, as 
shown in Fig. 3A. These experiments were performed in 
E. coli BL21 to accommodate the overexpression stress, 
but this strain also exhibited spontaneous IB formation 
in the buffer IB and cytoplasm were distinct from each 
other under all conditions, partly due to the increased 
β-sheet concentration, which was visible in the second 
derivative spectra (Fig. 3B). Figure 3C shows a quantifi-
cation of the β-sheet content, the cytoplasmic levels of 
which were correlated with those in IBs (Pearson r = 0.84, 
95% CI: 0.34-0.97, p = 0.009; Fig.  3D). Principle com-
ponent analysis (PCA) indicated that the first principal 
component was highly sensitive to the β-sheet content 
(Fig. 3E). Both PCA and uniform manifold approximation 
and projection (UMAP) [53] could distinguish between 
the IB and cytoplasm spectra (Fig.  3F-G). Furthermore, 
IBs from heat shock and proteotoxic stress conditions 
formed a cluster, and the chemical stresses were inter-
mediate between them and the cytoplasm spectra. In this 

sense, the AFM-IR spectra seem to reflect the severity 
and type of applied stress.

Because these results were based on a single sample 
per condition, they needed to be validated. We therefore 
compared H2O2 stress to heat shock with a larger num-
ber of samples (n = 3) and full imaging following the pro-
tocol developed in this paper. Heat shock was shown to 
induce a much greater IB load (Fig.  4A, B). There were 
some inclusions visible in the hydrogen peroxide sample 
in Fig.  4A, but they were not recognised by the image 
segmentation pipeline, presumably due to their lower 
β-sheet enrichment and smaller size.

These smaller IBs could still be studied by collect-
ing IR absorption spectra on locations that visually had 
a strong IR Amplitude signal at 1625 cm-1 (see Fig. 4C-
D). Spectral analysis confirmed that heat shock IBs had 
the highest β-sheet content among all spectra quantified 
in Fig.  4E (Dunnett’s test: p < 0.033). Additionally, the 
second derivative spectra implied the existence of two 
new bands in the peroxide-stressed spectra at 1678 cm-1 
(antiparallel β-sheets) and 1616  cm-1 (intermolecular 
β-sheets), although the latter was nearly invisible in the 
original spectra. The 1678  cm-1 band sets the peroxide 
cytoplasm spectra apart from all others (Fig.  4F): Dun-
nett’s test comparing all spectra to the control cytoplasm 
revealed no significant differences, except for the perox-
ide cytoplasm spectrum (padj = 0.01). We concluded that 
AFM-IR, at least in spectral mode, is sensitive enough to 
distinguish between different stresses based on the sec-
ondary structure of cytoplasmic and aggregated proteins 
in stressed cells.

Recovery from heat shock
To go even further, heat shock IBs were characterised in 
a time-resolved manner after returning to 37  °C (sam-
ples were collected before heat shock and immediately, 
30 min, 1 h and 2 h after heat shock; Fig. 5A-C).

A quantification of the β-sheet signal from these spec-
tra (Fig. 5D) showed that the IB spectra at all timepoints 
were significantly enriched in β-sheets compared to 
the IB spectra before heat shock (ANOVA followed by 
Tukey’s test: padj < 0.0003), but there was no evidence 
of significant changes in the β-sheet content during the 
recovery period (Tukey’s test: p > 0.6). The cytoplasmic 
β-sheet content was stable over time (ANOVA: p = 0.4). 
Due to the number of spectra in this experiment, it was 
possible to perform an accurate analysis of the second 
derivative spectra, which revealed the formation of both 
intramolecular and intermolecular β-sheets (Supplemen-
tary Information, Note S5). The PLL Frequency of IBs did 
not change over time between the IB spectra at different 
timepoints (ANOVA: p = 0.7), nor did cytoplasm spectra 
(ANOVA: p = 0.7, Fig.  5E). In general, however, IBs had 
a higher PLL Frequency than the cytoplasm of the same 
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cell, reflecting their increased stiffness (Wilcoxon signed-
rank test: padj = 2 × 10-5).

The image analysis data, specifically of the IB area 
(Fig. 5F) and number (Fig. 5G), showed similar trends: an 
increase during the heat shock with a steady state in the 
two hours afterwards. While the evolution of IB β-sheet 
enrichment was not statistically significant (ANOVA: 
padj  = 0.1), its trend recapitulated the spectral quantifi-
cation and remained significantly greater than 1 in gen-
eral (95% CI: 1.13–1.18, two-sample t test: padj   = 10-18, 
Fig.  5H). Similarly, the difference in PLL Frequency 
between IBs and the cytoplasm (Fig. 5I) did not vary over 
time (ANOVA: p = 0.8) but was positive (95% CI: 0.15-
0.52, one-sample t test: padj = 0.0003).

In short, AFM-IR was unable to resolve any differences 
in the IB composition in the first two hours after heat 
shock. This could mean that disassembly takes longer 
than two hours under the conditions used in this paper 
[15], or it could be a limitation of the instrument. These 
data were validated by several orthogonal methods: the 
IBs were stained with the amyloid marker pFTAA and 
imaged using structured illumination microscopy to ver-
ify the amyloid nature of the β-sheets, one sample was 
imaged by transmission electron microscopy (TEM) and 
scanning electron microscopy (SEM) to electron density 
variations measure surface wear due to the AFM mea-
surement, and IBs were purified and imaged by AFM-IR 
(Supplementary Information, Note S6).

Using the full capabilities of AFM-IR
The protocol presented in this paper sacrifices resolu-
tion in favour of faster acquisition times and larger fields 
of view, yet the resulting data did offer evidence that IBs 
are not sharply defined objects but that they have diffuse 
boundaries spanning approximately 120  nm (Fig.  6A). 
This figure shows the average β-sheet enrichment and 
PLL difference of all pixels in the heat shock recovery 
dataset as a function of their distance to the closest IB 
border, with negative values indicating pixels outside an 
IB. To substantiate this conclusion, we also present an 
example of the capabilities of the instrument at a sam-
pling rate of approximately 1 pixel per 3 nm, as presented 
in Fig. 6B. This IR Amplitude map clearly shows a hetero-
geneous IB with diffuse edges.

In addition to the β-sheet content and PLL Frequency 
of each IB, a large set of other properties was measured, 
such as localisation, size and shape, thickness, etc. Some 
of these were found to be intimately connected with each 
other (Fig. 6C; see Supplementary Information, Note S7 
for descriptions of each property). For this figure, Pear-
son correlations were calculated between all pairs of 
properties in the set of IBs in each of the AFM-IR data-
sets underlying Fig. 5. Bootstrap resampling (n = 9999) of 

the resulting set of correlations was used to test which 
ones are significantly different from 0.

As expected, neither cell orientation nor the polar pro-
jection of an IB is correlated with any other variable in 
this dataset. However, its proximity to a cell pole is part 
of a cluster of correlated variables likely driven by appar-
ent cell size, which in turn is strongly dependent on the 
orientation of the cell with respect to the sectioning 
plane.

Somewhat unexpectedly, the relative β-sheet enrich-
ment of an IB was largely uncorrelated to variables 
related to PLL Frequency and therefore stiffness. For 
reasons outlined earlier in this paper, we consider the 
difference in PLL a more robust readout than the mean 
IB PLL itself. The fact that the former does not correlate 
with β-sheet concentration (beta_ratio_ib) may mean 
that stiffness is driven by protein density than second-
ary structure, or it may reflect a lack of sensitivity to the 
small differences in β-sheet concentration and PLL Fre-
quency within the set of measured IBs, even if it is estab-
lished that IBs as a whole have a higher PLL than the 
cytoplasm. Furthermore, the correlation between PLL 
Frequency and local section thickness may additionally 
confound these observations. Finally, β-sheet enrichment 
was correlated with IB area and a cluster of definition-
ally related variables, such as the IR Amplitude at 1652 
and 1650 cm-1. Even if our conclusions from this correla-
tion analysis are limited, the analysis itself does show the 
potential of image-based AFM-IR experiments.

Discussion
This paper describes the development of a protocol for 
performing high-throughput single-cell AFM‑IR spec-
troscopy on bacterial IBs. In total, this paper studies 
AFM-IR datasets at two wavenumbers of 12,030 cells, 
containing 3539 IBs, as well as 1343 spectra. Datasets of 
this size require saving all data in their rawest form pos-
sible, not only to evaluate the data quality but also to per-
form end-to-end automated data analysis, as developed 
in this paper. This means that our primary data are easily 
auditable and that our analysis is fully reproducible.

The scale of this dataset made it possible to, for the 
first time, make a rigorous assessment of data variabil-
ity introduced by repeated measurements or biological 
variation. For most data outputs, the differences between 
repeated measurements were not significant, except for 
the PLL Frequency, which was found to be very sensitive 
to technical variability. Considerable biological variabil-
ity between different samples was also observed, which is 
important for quantitative measurements.

Improving the stability of the PLL feedback system 
will be critical for robust assessments of nanomechani-
cal heterogeneities in a correlative fashion with chemical 
and structural information derived from AFM-IR. For the 
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moment, this need may be better served by AFM modes 
specifically developed for mechanical characterisation 
and not by using the PLL Frequency as a primary read 
out [54]. Even on systems with both AFM-IR and specific 
nanomechanical mapping modes, improved PLL stabil-
ity will benefit the quality of the IR Amplitude signal. 
Users of a nanoIR3 system should attempt to minimise 
exogenous factors such as environmental noise, temper-
ature fluctuations, power supply stability, and to make 
sure the system is fully equilibrated before initiating key 
measurements.

It was established that AFM-IR can detect differences 
between a set of various stresses, both in spectral and 
imaging mode, but cannot discern any evolution in IB 
properties over a two-hour recovery period after heat 
shock, revealing both the possibilities and the limitations 
of the method’s sensitivity. However, given its severity, 
the time allowed for recovery from heat shock was quite 
short.

Currently, the main limitations of AFM-IR lie in the 
long measurement times for IR absorption images and 
in the technical artefacts that can cause misinterpreta-
tions of the data. Acquiring one high-quality dataset 
can easily take three to four hours. PLL tracking of the 
IR pulse frequency is a strength and a limitation of this 
study: it offers mechanical information about the sample, 
but the PLL feedback can be unstable and lose tracking; 
therefore, PLL Frequency is the least reproducible output 
modality. While sections of epoxy-embedded samples 
provide smooth samples and faster imaging, the epoxy 
masks some regions of the IR spectrum, precluding a 
measurement of the IR response of lipids and nucleic 
acids. Fixing the samples prevents live time-lapse imag-
ing, but this is already prohibited by the long scanning 
times. Additionally, it is unlikely to find entire cells in a 
field of view because of the random orientation of bac-
teria with respect to the sectioning plane. It would be 
interesting to perform image-based analyses on bacteria 
spotted directly on a substrate to circumvent the prob-
lems caused by epoxy embedding, although we anticipate 
additional imaging difficulties caused by the increased 
surface topology [42]. Efforts are underway to enable 
AFM-IR imaging in a liquid environment, which would 
open the door to live-cell imaging [55, 56].

AFM-IR has already been applied in medical contexts, 
for example to study drug uptake and formulation, pro-
tein aggregation in situ and in vitro, parasitic infections, 
and more [57–65]. We expect that improving technology 
and increasing ease-of-use of AFM-IR will enable even 
more biological applications of this method.

Conclusion
We studied IB formation and recovery under heat shock 
and other stresses by rigorously optimising the data col-
lection protocols and developing an imaging pipeline to 
process large datasets. This study shows the potential of 
AFM-IR for single-cell spectroscopy of large numbers 
of cells and IBs, details a method that could be applied 
to many questions in microbiology, and improves upon 
existing data analysis workflows using fully open-source 
software. Furthermore, the code published alongside this 
work should facilitate future analyses of large AFM-IR 
datasets and improve the transparency and reproducibil-
ity of data reported in this field.
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