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early symptoms of kidney disease are often inconspicu-
ous, but as the disease progresses, patients may experi-
ence a reduction in urine output, frothy urine, hematuria, 
edema, anemia, and other symptoms. Prolonged illness 
can have a profound impact on patients’ quality of life 
and lead to a range of serious complications, including 
cardiovascular diseases, diabetes, and hypertension [5]. 
If not treated promptly, the disease may advance to renal 
failure, requiring alternative treatments such as dialysis 
or kidney transplantation [6]. While dialysis and kidney 
transplantation are effective for treating renal failure, 
they demand long-term patient commitment and carry 
certain risks and complications [7].

Extracellular vesicles (EVs) are nanoscale lipid-mem-
brane-enclosed structures secreted by a variety of cell 
types and serve as pivotal agents in intercellular commu-
nication [8]. The EVs are primarily categorized into two 
major classes: exosomes and ectosomes [9]. Ectosomes 

Introduction
Kidney diseases pose a significant challenge to public 
health departments worldwide, directly impacting global 
morbidity and mortality rates [1, 2]. Research statistics 
indicate that approximately 10–15% of adults globally are 
affected by kidney diseases of varying severity [3, 4].The 
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Abstract
Kidney diseases represent a diverse range of conditions that compromise renal function and structure which 
characterized by a progressive deterioration of kidney function, may ultimately necessitate dialysis or kidney 
transplantation as end-stage treatment options. This review explores the complex landscape of kidney diseases, 
highlighting the limitations of existing treatments and the pressing need for innovative strategies. The paper 
delves into the role of extracellular vesicles (EVs) as emerging biomarkers and therapeutic agents in the context 
of kidney pathophysiology. Urinary extracellular vesicles (uEVs), in particular, offer a non-invasive means of 
assessing renal injury and monitoring disease progression. Additionally, mesenchymal stem cell-derived EVs (MSC-
EVs) are examined for their immunomodulatory and tissue repair capabilities, presenting a promising avenue 
for novel therapeutic interventions. And discusses the potential of engineering EVs to enhance their targeting 
and therapeutic efficacy. This paper systematically integrates the latest research findings and aims to provide a 
comprehensive overview of the role of EVs in kidney disease, providing cutting-edge insights into their potential as 
a diagnostic and therapeutic tool.
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arise from the outward budding of the cell membrane, 
encompassing a size spectrum from 50 nanometers to 1 
micrometer, which includes microvesicles, microparti-
cles, and larger vesicles [8, 9]. In contrast, exosomes are a 
subset of EVs that are derived from the endosomal com-
partment, typically exhibiting diameters ranging from 
40 to 160 nanometers, with an average size of approxi-
mately 100 nanometers [8, 9]. EVs are capable of encap-
sulating a diverse array of cellular constituents, such as 
DNA, RNA, lipids, metabolites, and proteins, which are 
sourced from both the cytoplasm and the cell membrane 
(Fig. 1). This cargo reflects the specific physiological state 
and functional profile of the originating cell [10]. As 
natural transporters in the biological milieu, EVs exhibit 
several advantageous characteristics, including stability, 
biocompatibility, low immunogenicity, low toxicity, and 
the capacity to traverse biological barriers [11]. These 
attributes render EVs highly promising in the realm of 
drug delivery. Their inherent biocompatibility is comple-
mented by an appropriate size distribution and intrinsic 
cellular targeting capabilities, which confer unique ben-
efits for the delivery of therapeutic agents [12, 13].

In recent years, the role of EVs in nephrology has gar-
nered considerable attention [14–16]. In the context of 
kidney injury, extracellular vesicles originating from dif-
ferent parts of the kidney play a propelling role in the 
progression of disease by mediating intercellular commu-
nication among different cell types within the nephron 
[17, 18]. Concurrently, EVs possess unique compositions 
specific to their origins, and significant changes in their 
quantity and components can reflect the physiologi-
cal or pathological state of their source, thus endowing 
them with the value of being disease biomarkers [19, 20]. 
Moreover, in-depth research on EVs, especially MSC-
EVs, and the bioactive molecules they carry, has unveiled 
their immense potential in the treatment of kidney dis-
eases [21, 22]. Therefore, the thorough investigation of 
the mechanisms of EVs in kidney diseases aids in deepen-
ing our understanding of the pathogenesis of these condi-
tions. Moreover, it holds significant research importance 
and practical value for the improvement of diagnostic 
techniques and the development of novel therapeutic 
approaches.

Fig. 1  EVs classification, biogenesis, and uptake. Based on their biogenesis and size, EVs are typically divided into two categories: exosomes and ecto-
somes. Exosomes are a subset of EVs that originate from the endosomal compartment, while ectosomes arise from budding of the cell membrane, 
including microvesicles, microparticles, and larger vesicles. EVs possess a phospholipid bilayer that can encapsulate a variety of cellular components, such 
as DNA, RNA, lipids, metabolites, and proteins. EVs can be internalized by recipient cells through mechanisms such as membrane fusion, phagocytosis, 
pinocytosis, and clathrin-mediated endocytosis
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EVs in the pathology and diagnosis of kidney 
disease
Development and pathological changes of renal disease
Extracellular vesicles play a crucial role in renal pathol-
ogy, being involved in the development process from 
the initial stages of kidney disease. The progression of 
kidney disease is a multifaceted process characterized 
by dynamic shifts in renal function. Acute kidney injury 
(AKI) and chronic kidney disease (CKD) represent the 
two principal stages of this continuum [23]. AKI typi-
cally arises from abrupt injury or illness, precipitating a 
swift deterioration in kidney function, common inciting 
factors include infections [24], sepsis [25], ischemia [26], 
and exposure to nephrotoxic drugs [27].Rapid decline 
in renal function, electrolyte disturbance and acid-base 
imbalance are considered typical symptoms of AKI [28]. 
Conversely, CKD is distinguished by a gradual and sus-
tained deterioration of renal function attributable to 
enduring or recurrent kidney damage or pathology. Nota-
bly, among the prevalent etiologies are diabetes, hyper-
tension, and glomerulonephritis, with IgA nephropathy 
being particularly significant [4, 29].

From a pathological standpoint, the hallmarks of AKI 
and CKD diverge. AKI is primarily associated with tubu-
lar necrosis, interstitial edema, inflammation, and vas-
cular alterations [30], which are often reversible with 
prompt intervention, thus offering the potential for renal 
function recovery. In contrast, the pathological features 
of CKD are more intricate, encompassing glomeruloscle-
rosis, tubular atrophy, interstitial fibrosis, renal ischemia, 
and capillary loss [31], which are generally irreversible 
and contribute to a progressive decline in renal function.

It is crucial to recognize that there is not an absolute 
dichotomy between AKI and CKD, there exists a degree 
of overlap and the potential for interconversion [32, 33]. 
Patients with AKI, if not treated promptly and effectively, 
may evolve into CKD; likewise, individuals with CKD 
may manifest AKI characteristics under certain condi-
tions [28]. A profound investigation into the mechanisms 
driving the progression and pathological changes of kid-
ney disease is of paramount importance for unraveling 
the complexities of these conditions and for informing 
diagnostic and therapeutic strategies.

Pathological effects of EVs in kidney disease
EVs secreted by damaged kidney cells play an indispens-
able role in the complex multi-dimensional pathological 
processes associated with kidney diseases [34, 35]. Data 
shows that under damaged or stressed conditions, extra-
cellular vesicle-mediated long-distance communication 
between different regions and different cells in the kidney 
can amplify kidney damage [36]. This process involves 
key aspects such as inflammatory response, oxidative 
stress, apoptosis, and tissue fibrosis in the kidney (Fig. 2). 

These factors can interfere with normal cellular signal-
ing pathways, leading to the disruption of intracellular 
homeostasis and increased sensitivity to damage [37, 38]. 
At the same time, these factors not only participate in the 
initial stage of kidney damage through interaction but 
may also continuously exacerbate the damage through a 
variety of mechanisms, thereby affecting the long-term 
health of the kidney [39, 40].

The role of EVs in inflammation and immune modulation
Kidney disease involves a complex, multistage inflam-
matory process orchestrated by a complex network of 
cytokines/chemokines, growth factors, adhesion mol-
ecules and signal transduction pathways [41]. The injury 
to renal tubular epithelial cells (TECs) and macrophage 
infiltration remain the pivotal mechanisms determin-
ing the extent of inflammatory damage [42]. There is a 
complex interplay between macrophages and TECs, for 
example, the infiltration of macrophages can exacerbate 
TECs injury, oxidative stress, and apoptosis [43]. Stud-
ies have indicated that in cisplatin-induced acute kidney 
injury (CP-AKI), macrophage-derived EVs (Mφ-EVs) 
facilitate communication between autophagy-deficient 
macrophages and TECs by transferring miR-195a-5p. 
This transfer leads to mitochondrial damage in TECs and 
the activation of inflammatory cells in the kidney [42]. In 
diabetic kidney disease(DKD), Mφ-EVs induced by high 
glucose levels, carrying miR-7002-5p, target autophagy-
related gene 9B (Atg9b) to suppress autophagy in renal 
tubular epithelial cells, inducing dysfunction, autophagy 
inhibition, and inflammation [44].

TECs-EVs also have a powerful role in driving persis-
tent inflammation. Research has found that the secre-
tion of TEC-EVs induced by bovine serum albumin 
(BSA) has been proven to promote the expression of 
miR-26a-5p. This upregulation of miR-26a-5p targets 
the cationic amino acid transporter regulator homolog 
1/the nuclear factor kappa B (CHAC1/NF-κB) pathway, 
exacerbating TEC inflammatory injury [45]. TECs-EVs 
containing miR-19b-3p [46] and miR-374b-5p [47], as 
well as Mφ-EVs containing miR-155 [48], can target the 
NF-κB/suppressor of cytokine signaling-1 (SOCS-1) 
pathway to participate in the interaction between renal 
tubular epithelial cells and macrophages. This inter-
action significantly activates M1-type macrophages, 
thereby exacerbating renal tubular interstitial inflam-
mation. Furthermore, it has been discovered that miR-
199a-5p within exosomes from human serum albumin 
(HSA)-stimulated HK-2 cells promotes M1 polarization 
by targeting the Klotho/toll-like receptor 4 (TLR4) sig-
naling pathway, potentially accelerating the progression 
of DKD [49]. Proteinuria is a widely recognized indicator 
of renal dysfunction and plays a key role in renal tubu-
lar interstitial inflammation [50]. Studies have shown that 
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in proteinuric kidney disease, TECs-EVs rich in chemo-
kine ligand 2(CCL2) mRNA. These mRNAs are trans-
ferred to macrophages via EVs, activating their function 
and exacerbating albumin-induced renal tubular inter-
stitial inflammation [51]. Furthermore, in patients with 
DKD exhibiting significant albuminuria, researchers 
have found that TEC-EVs treated with HSA can pro-
mote macrophage glycolytic activation by stabilizing 
hypoxia-inducible factor 1α(HIF-1α), thereby inducing 
renal fibrosis and inflammation [52]. Hypoxia is a potent 
inducer of inflammation within the tubulointerstitial 
inflammation. HIF-1α serves as the central regulator of 
the hypoxic response. The HIF-1α-driven release of these 
miRNA-23a-enriched EVs from hypoxic TECs can be 
internalized by recipient macrophages. Consequently, 
this internalization leads to the suppression of the ubiq-
uitin editor A20 expression and the promotion of tubu-
lointerstitial inflammation [53].

Additionally, research has demonstrated that kid-
ney injury molecule-1(KIM-1), a protein expressed by 

injured renal tubules, can recognize phosphatidylserine 
(PS) exposed on the surface of apoptotic cells. The inter-
action between KIM-1 and PS facilitates the uptake of 
EVs, thereby enhancing hypoxia-induced tubulointersti-
tial inflammation [54].Recent studies have also revealed 
that the disruption of gut microbiota and its derived 
outer membrane vesicles (OMVs) play a significant role 
in tubulointerstitial inflammation of DKD. An increase 
in OMVs due to gut microbiota dysbiosis is transferred 
to the tubulointerstitial inflammation via the intestinal 
barrier. This transfer induces cell inflammation and renal 
tubular interstitial injury by activating the caspase-11 
pathway triggered by lipopolysaccharide [55]. These find-
ings enhance our understanding of the influence of gut 
microbiota and its released OMVs on the development 
and progression of kidney disease.

The role of EVs in the formation of oxidative stress
EVs related to oxidative stress can have beneficial or det-
rimental effects. They have the capacity to transport a 

Fig. 2  EVs-mediated intercellular communication in the pathology of kidney disease. Under conditions of injury or stress, extracellular vesicle-mediated 
long-distance communication between different regions of the kidney and various kidney cells can exacerbate kidney damage by inducing key aspects 
such as inflammatory responses, oxidative stress, apoptosis and tissue fibrosis of kidney cells
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range of molecules, including antioxidants, enzymes, and 
oxidized species that can generate reactive oxygen species 
(ROS) [56]. In a study conducted at the Royal Brisbane 
and Women’s Hospital in Australia, researchers observed 
that hypoxic TEC-derived EVs, through the transfer of 
specific miRNAs and other bioactive molecules, inten-
sify oxidative stress and tissue damage in the kidney [57]. 
This process potentially drives the transition from AKI to 
CKD. Furthermore, an increase in platelet-derived EVs 
during sepsis has been shown to aggravate septic AKI via 
the release of ADP-ribosylation factor 6(ARF6), which in 
turn, stimulates inflammation, apoptosis, and oxidative 
stress [58]. The proposed mechanism involves the activa-
tion of the extracellular signal-regulated kinase (ERK)/
Smad3/p53 signaling pathway by ARF6. Our findings 
may offer potential therapeutic targets for the manage-
ment of septic AKI.

The role of EVs in the formation of regulating apoptosis
Apoptosis is a form of programmed cell death that plays 
a crucial role in maintaining the balance of cell num-
bers and the normal development and renewal of tissues 
under normal physiological conditions [59]. However, in 
kidney diseases, abnormal apoptosis may accelerate the 
progression of the disease [60]. Apoptosis of TECs plays 
a significant role in kidney diseases [61]. Excessive apop-
tosis can disrupt the structure and function of the renal 
tubules, leading to impaired reabsorption and secretion 
functions, which further exacerbates kidney damage. 
For instance, in DKD, TECs release lipotoxic exosomes 
rich in leucine-rich α-2-glycoprotein 1 (LRG1). And the 
LRG1/TGFβR1 signaling pathway enhances the expres-
sion of tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) in macrophages and TRAIL-positive 
macrophage-derived exosomes, promoting TECs apop-
tosis and establishing a feedback loop in DKD [62]. Addi-
tionally, platelet microvesicles secrete miR-191, which 
induces TECs apoptosis by targeting Cystathionine-β-
synthase (CBS) [63]. After high glucose (HG) stimulation, 
podocyte-derived EVs undergo specific changes, with 
downregulation of mmu-miR-1981-3p, mmu-miR-3474, 
mmu-miR-7224-3p, and mmu-miR-6538, and upregu-
lation of mmu-let-7f-2-3p, also promoting apoptosis of 
TECs [64]. The crosstalk pathways between the glom-
eruli and renal tubules have also been carefully studied. 
Results confirming that endothelial cells damaged by 
podocytes release EVs containing specific microRNAs, 
especially miR-424 and miR-149, which may activate 
the p38 MARK signaling pathway, inducing apoptosis in 
renal tubular epithelial cells [65].

Furthermore, mesangial cells (MCs) maintain the 
structure and function of the glomerulus, and increased 
apoptosis of MCs can lead to impaired glomerular filtra-
tion function, affecting the normal filtering and excretory 

functions of the kidney. Studies have found that HG 
upregulates urinary EVs miR-15b-5p, which directly 
binds to the target BCL-2 in DKD, causing MCs apopto-
sis [66].

The role of EVs in the formation of fibrosis
Renal fibrosis, with a particular focus on tubulointerstitial 
fibrosis, represents a prevalent terminal pathway for the 
majority of progressive chronic kidney diseases [67, 68]. 
The pathogenesis of this fibrotic process is exceedingly 
intricate, implicating a broad spectrum of both resident 
and infiltrating renal cell populations. The morphological 
characteristics of renal fibrosis include glomeruloscle-
rosis, tubular atrophy, interstitial chronic inflammation, 
fibrosis itself, and vascular rarefaction [69].

Intercellular communication is pivotal in the develop-
ment of renal fibrosis, with injured renal tubular cells 
participating in disease progression through extensive 
communication with interstitial fibroblasts. Research 
indicates that TEC-EVs carrying the sonic hedgehog 
(Shh) signaling ligand are upregulated during renal 
injury. The Shh ligand is then transported to interstitial 
fibroblasts via exosomes, facilitating their transition into 
myofibroblasts and perpetuating the fibrotic cascade 
[70].Similarly, TECs directly regulate the activation and 
proliferation of fibroblasts through exosome-mediated 
miR-150 [71]. Furthermore, miR-196b-5p [72] and miR-
21 [73], miR-216a [74] derived from TEC-EVs medi-
ate crosstalk between TECs and fibroblasts during the 
development of renal fibrosis. Respectively, they target 
the signal transducer and activator of transcription 3/
SOCS2(STAT3/SOCS2) and phosphatase and tensin 
homolog (PTEN)/AKT signaling pathways. In fibroblast-
derived EVs(Fibro-EVs), studies have shown that miR-
153-3p contained within microvesicles (MVs) released 
by renal interstitial fibroblasts is transferred to proximal 
renal tubular epithelial cells through the damaged tubu-
lar basement membrane [75]. This transfer induces apop-
tosis in TECs by suppressing B-cell lymphoma-2(Bcl-2) 
levels, thereby exacerbating renal interstitial fibrosis 
(RIF). It has been reported that macrophages, in addition 
to participating in the inflammatory response of kidney 
disease, are also involved in the process of fibrosis forma-
tion. For example, exosomal miRNA-34a from TECs has 
been shown to target and inhibit the PPARGC1A gene, 
promoting the activation of M1 macrophages and the 
fibrosis of renal tubular cells [76].

In the context of DKD, the HNRNPA1-mediated exo-
some sorting mechanism transports miR-483-5p from 
TECs to urine. This process diminishes the inhibi-
tory effect of miR-483-5p on mitogen-activated protein 
kinase 1(MAPK1) and tissue Inhibitor of metallopro-
teinases 2(TIMP2) mRNAs, and accelerating the pro-
gression of DKD-induced renal interstitial fibrosis 
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[77]. Podocyte-derived EVs have also been shown to be 
involved in the fibrotic development of kidney disease. 
In the pathogenesis of DKD, podocyte-derived EVs con-
taining miR-221 exacerbate renal cell injury through the 
Wnt/β-catenin signaling pathway, thereby further pro-
moting the progression of renal cell injury and fibrosis 
[78].Additionally, a new study has elucidated the mecha-
nism of interaction between podocyte microparticles and 
CD36 on TECs, activating the p38MAPK/transforming 
growth factor-β receptor signaling pathway, thereby pro-
moting fibrotic responses [79].

EVs as diagnostic biomarkers for kidney diseases
Accurate diagnostic markers are essential for the early 
detection and precise treatment of kidney diseases, 
which have a complex and dynamic pathological progres-
sion. Renal biopsy is a powerful tool for diagnosing and 
classifying glomerular diseases, but it is limited by sam-
pling errors and the difficulty of obtaining subsequent 
renal biopsies to track the progress of treatment. Consid-
erable effort is being expended to discover non-invasive 
biomarkers for both acute and chronic kidney injury. 
Urinary extracellular vesicles (uEVs) are a rich source of 

biomarkers because they are released from every part of 
the nephron [80], are easily accessible. It can comprehen-
sively and directly reflect the real-time status of tissue 
inflammation and kidney injury [81, 82],making them an 
ideal non-invasive source of potential biomarkers for kid-
ney diseases (Fig. 3).

Protein cargos of EVs for the diagnosis of kidney diseases
Ischemia/reperfusion AKI (I/R-AKI)
Studies have demonstrated that uEVs AQP1 levels 
decrease within 6  h post-injury and remain low for up 
to 96  h, without a significant increase in plasma creati-
nine levels [83]. This suggests that uEVs AQP1 may serve 
as a sensitive biomarker for detecting renal cell status 
throughout the I/R injury timeline, indicating its poten-
tial for early I/R injury detection. Additionally, research-
ers have identified potential biomarker candidates for the 
diagnosis of AKI through proteomic analysis of uEVs. 
Simultaneously, they have detected that uEVs Fetuin-A 
may serve as a biomarker for the detection of I/R-AKI 
[84].In I/R-AKI, the level of uEVs Na/H exchanger iso-
form 3 (NHE3) protein is elevated compared to the con-
trol group, a result that has also been confirmed in four 

Fig. 3  Urinary extracellular vesicles (uEVs) serve as biomarkers for kidney diseases. Proteins and nucleic acids derived from uEVs hold promise as potential 
biomarkers for various types of kidney diseases. Abundant in source and easily accessible, they are ideal non-invasive biomarkers
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other AKI models. This suggests that uEVs NHE3 could 
serve as a diagnostic biomarker for AKI [85].

Sepsis-AKI (S-AKI)
uATF3 [86], typically undetectable in sepsis without AKI, 
may qualify as a qualitative indicator for sepsis-AKI diag-
nosis. In contrast, the role of neutrophil gelatinase-asso-
ciated lipocalin (NGAL) in sepsis-AKI remains debated, 
particularly regarding its critical value and baseline lev-
els. The presence of transcription factor uATF3 in uEVs 
is emerging as a potential biomarker for sepsis-associated 
AKI.

Diabetic kidney disease (DKD
Researchers have meticulously examined the proteomic 
changes within EVs at different stages of DKD. Utilizing 
proteomic approaches, key proteins MASP2, CALB1, 
S100A8, and S100A9 were identified as potential bio-
markers for the diagnosis and monitoring of DKD [87].
In diabetic patients with normal albuminuria, uEVs con-
taining alpha-1-antitrypsin (α1-AT) were significantly 
increased and elevated with the progression of DKD, 
indicating their potential as biomarkers for early diag-
nosis of DKD [88]. Similarly, another study found that 
NGAL within exosomes is an early biomarker for DKD, 
and it outperforms free NGAL in the DKD evaluation in 
children and adolescents with type 1 diabetes mellitus 
[89].Additionally, researchers investigated the differen-
tial expression of actin cytoskeleton regulatory factors in 
uEVs, and the upregulation of uEVs proteins PAK6 and 
EGFR suggests that they may become new biomarkers for 
the diagnosis of DKD [90].It has been reported that path-
ological changes in podocytes play a key role in the devel-
opment of DKD. Studies have found that the presence of 
Elf3 protein in the uEVs of patients with DKD indicates 
irreversible damage in podocytes. This suggests that Elf3-
positive urinary extracellular vesicles (Elf3+uEVs) can 
serve as a new biomarker for podocyte injury in patients 
with type 2 diabetes mellitus (T2DM), especially in those 
with significant proteinuria [91]. Additionally, Wilms’ 
tumor protein (WT1) in uEVs is predominantly found in 
the exosomes of diabetic patients. Detection has revealed 
that its expression levels increase with the decline of 
renal function, making it another potential biomarker for 
podocyte injury [92].

End-stage renal disease (ESRD)
In ESRD patients, the absence of uEVs expressing the 
CD133 marker contrasts sharply with healthy subjects, 
where such EVs are readily detectable [93]. The pres-
ence of urinary CD133 EV may reflect ongoing nephron 
homeostatic processes, suggesting a potential role in 
ESRD diagnosis.

IgA nephropathy (IgAN)and thin basement membrane 
nephropathy (TBMN)
Urinary exosome proteomic analysis has identified sev-
eral proteins, such as aminopeptidase N, vasorin precur-
sor, α-1-antitrypsin, and ceruloplasmin. These proteins 
differentiate early IgA nephropathy from tubulointer-
stitial nephritis and normal conditions, indicating their 
potential as biomarkers [94].

Lupus nephritis (LN)
Urinary podocyte-derived microparticles (MPS) levels 
are positively correlated with clinical indicators of SLE 
activity [95], including the SLE disease activity index 
(SLEDAI) score and anti-dsDNA antibody titer, suggest-
ing their potential as non-invasive biomarkers for lupus 
nephritis diagnosis and monitoring.

Others
In essential hypertension (EH), increased levels of urinary 
podocyte-specific EVs and peritubular capillary (PTC) 
endothelial microparticles(EMPs) may indicate renal 
microcirculation damage [96], suggesting their potential 
as new biomarkers for renal capillary loss. Urinary PTC-
EMP levels are directly related to renal histological PTC 
counts and fibrosis [97], further supporting their role as a 
novel biomarker for renal intracapillary loss.

RNA cargos of EVs for the diagnosis of kidney diseases
Diabetic kidney disease (DKD)
A study involving 103 patients with diabetic kidney dis-
ease (DKD), 100 patients with diabetes without kidney 
disease, and 53 healthy controls. Results showed that 
the levels of WT1 mRNA and ACE mRNA in circulat-
ing EVs were elevated in DKD patients, suggesting that 
they may serve as potential early diagnostic markers for 
DKD [98]. Another study found that the enriched expres-
sion of uEVs miRNA-4534, which targets BCL2 inter-
acting protein 3(BNIP3) and is involved in the forkhead 
box O(FOXO) signaling pathway, may become a new 
biomarker for the progression of DKD in type 2 diabe-
tes [99]. Additionally, research has found that the pro-
gression of proteinuria is paralleled by an increase in 
the levels of miR145 and miR126 in uEVs. And they are 
simultaneously elevated in renal epithelial cells undergo-
ing epithelial-mesenchymal transition (EMT), highlight-
ing their potential as biomarkers for the progression of 
diabetic nephropathy and the occurrence of proteinuria 
[100]. Analysis of miRNA in uEVs from patients with 
T2DM revealed that in patients with microalbumin-
uria (MIC), the levels of let-7i-3p, miR-24-3p, and miR-
27b-3p were increased, while the level of miR-15b-5p was 
decreased. In patients with macroalbuminuria (MAC), 
the concentration of miR-30a-5p in uEVs was specifi-
cally modified, but not in MIC patients, indicating that 
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miR-30a-5p may be associated with severe renal damage 
[101].Additionally, it has been found that in type 2 dia-
betic patients with kidney damage, the enrichment of 
uEVs miR-21-5p and the reduction of miR-30b-5p may 
represent candidate biomarkers for renal injury in type 2 
diabetes [102].Furthermore, data indicate that uEVs miR-
615-3p is positively correlated with various renal injury 
markers. And the diagnostic efficacy of miRNA-615-3p 
in combination with albumin-to-creatinine Ratio(ACR) 
is higher than that of ACR alone, suggesting that it can 
serve as a more stable and sensitive diagnostic biomarker 
for DKD [103].

IgA nephropathy (IgAN)
In the context of IgAN, EV-associated CCL2 has been 
found to be correlated with the estimated glomerular 
filtration rate (eGFR) and associated with kidney inflam-
mation and C3 deposition. Elevated CCL2 levels are also 
linked to the progression of renal dysfunction, implying 
that uEVs and exosomal CCL2 mRNA could serve as bio-
markers reflecting IgAN activity and the deterioration 
of renal function [104]. In patients with IgAN and DKD, 
researchers have observed a decrease in the expression of 
miR-200b in uEVs as fibrosis progresses [105], suggest-
ing its potential as a diagnostic biomarker. Furthermore, 
researchers have explored the differences in the uEVs 
microRNA expression profiles between patients with 
IgAN and healthy controls. The significant upregula-
tion of uEVs miRNAs, such as miR-215-5p and miR-378i 
[106], miR-4639 and miR-210 [107], and the significant 
downregulation of miR-29c and miR-205-5p [106] may 
represent new non-invasive biomarkers for IgAN. These 
findings may aid in diagnosis, assessment of severity, and 
evaluation of disease progression in IgAN.

Lupus nephritis (LN)
In lupus nephritis (LN), the regulatory effects of uEVs 
miRNAs, including miR-135b-5p, miR-107, and miR-
31-5p, have been demonstrated to be potential early 
biomarkers for the disease [108]. In the study of LN 
renal fibrosis, researchers have found that miR-29c is 
correlated with the chronicity of kidney disease [109]. 
Moreover, this level of variation is independent of renal 
function, indicating that it can serve as a non-invasive 
biomarker for the early progression to fibrotic processes 
in LN patients. In recent years, due to the insufficiency 
of a single biomarker in achieving adequate sensitivity 
and specificity in clinical diagnosis. Another study has 
demonstrated that a multi-biomarker panel composed of 
uEVs miRNAs, including miR-29c, miR-150, and miR-21, 
can be used to detect early renal fibrosis and predict the 
progression of LN [110].

Renal cell carcinoma(RCC)
In mice with the transgenic PrCC-TFE3 gene, uEVs miR-
204-5p levels surge during precancerous and tumor 
development stages, indicating its potential as a diagnos-
tic biomarker for xp11 translocation renal cell carcinoma 
[111].In clear cell renal cell carcinoma (ccRCC), research-
ers have detected that the expression levels of exosomal 
miR-210 and miR-1233 in ccRCC patients are signifi-
cantly higher than those in healthy individuals. Circulat-
ing microRNAs, miR-210 and miR-1233, may potentially 
serve as biomarkers for the future diagnosis and moni-
toring of ccRCC [112].

Early renal injury in hypertension
In hypertensive patients, increased levels of uEVs miR-
146a are significantly correlated with urinary albumin 
excretion, with a decrease observed in patients with pro-
teinuria [113], indicating its potential as a non-invasive 
biomarker for early renal injury in hypertension.

BKV nephropathy (BKVN)
The BK virus (BKV) is an important pathogen causing 
nephropathy in renal transplant recipients. Recent stud-
ies have shown that BKV-associated microRNAs are 
significantly enriched in the uEVs fraction of patients 
with BKV nephropathy (BKVN). The diagnostic role of 
specific microRNAs such as BKV-miR-B1-5p, which has 
been found to be consistent with the assessment of blood 
and urine BK viral loads, suggests that uEVs microRNAs 
may become valuable biomarkers for the diagnosis and 
monitoring of BKVN [114].

In conclusion, the exploration of EVs as biomarkers in 
kidney diseases is a rapidly evolving field, presenting new 
opportunities for early diagnosis, disease monitoring, 
and personalized therapeutic strategies. Future research 
is warranted to validate the clinical potential of these bio-
markers and to elucidate their mechanisms of action in 
the context of various kidney diseases.

EVs-based therapy in kidney diseases
The treatment of kidney diseases has always faced many 
challenges. Existing therapeutic methods, such as drug 
therapy and dialysis, can control the condition to a cer-
tain extent, but find it difficult to completely reverse the 
damage. Drug therapy often only targets specific aspects, 
and struggles to address all pathological issues compre-
hensively. Moreover, the self-repair capacity of kidney 
tissue is relatively weak. Once severe damage occurs, it is 
extremely challenging to restore its normal structure and 
function. Although dialysis can temporarily replace some 
of the kidney’s functions, long-term dialysis may lead to 
cardiovascular complications, malnutrition, and psycho-
logical issues for patients.
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In the realm of kidney disease research and therapeu-
tics, EVs have emerged as a promising avenue, exhibit-
ing distinct properties and therapeutic potential based 
on their cellular origins. Notably, EVs derived from 
mesenchymal stem cells (MSC-EVs), renal tubular epi-
thelial cells (TEC-EVs), and other sources have each 
demonstrated unique contributions to the field. The fol-
lowing sections will delve into the advancements and 
applications of these diverse EVs in the treatment of renal 
pathologies.

Stem cell- derived extracellular vesicles
MSCs possess unique abilities for self-renewal and dif-
ferentiation, and they have a rich variety of sources, 
including umbilical cord, placenta, bone marrow, adipose 
tissue, and Urinary stem cells, among others. In recent 
years, MSC-EVs have been extensively studied as thera-
peutic molecules for kidney diseases in both in vitro cel-
lular models and preclinical animal models (Fig. 4).

HucMSC-EVs
Ischemia/Reperfusion AKI (I/R-AKI)  Studies have 
found that human umbilical cord mesenchymal stem cell-

derived extracellular vesicles (hucMSC-EVs) can improve 
the outcomes of I/R-AKI and promote the repair and 
regeneration of renal tubular cells [115]. In AKI, exosomes 
derived from mesenchymal stem cells, specifically miR-
125b-5p, adhere to TECs via very late antigen-4(VLA-4) 
and lymphocyte function-associated antigen-1(LFA-1), 
targeting the miR-125b-5p/p53 signaling pathway in 
TECs. This targeting induces cell cycle arrest and apop-
tosis, and mediates kidney repair in AKI [116]. Similarly, 
exosomal miR-148b-3p from hucMSCs can suppress 
apoptosis in I/R injury by downregulating the expression 
of pyruvate dehydrogenase kinase 4(PDK4), activating 
the activating transcription factor 6(ATF-6) pathway, and 
inducing endoplasmic reticulum stress [117]. Research 
has also demonstrated that pyroptosis is associated with 
AKI, and hucMSC-Exos can improve AKI by inhibiting 
pyroptosis and reducing kidney damage [118]. These 
studies further elucidate the mechanisms by which pro-
tective cells hucMSC-EVs resist acute kidney injury.

Cisplatin-induced AKI (CP-AKI)  Research indicates 
that the synergistic effect of pulsed focused ultrasound 

Fig. 4  Therapeutic effect of MSC-EVs on kidney diseases. MSC-EVs, carrying a variety of bioactive molecules, target different molecular mechanisms, al-
leviating kidney damage by inhibiting inflammatory responses, fibrosis, oxidative stress, and other pathological changes in the kidney
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(PFUS) and hucMSC-EVs can inhibit the heat shock pro-
tein70/90 (HSP70/90). This inhibition leads to a reduction 
in the expression of the NLRP3 inflammasome and down-
stream pro-inflammatory cytokines, ultimately improving 
renal function [119]. The 14-3-3ζ protein carried by huc-
MSC-ex can also induce autophagy levels in HK-2 cells, 
thereby protecting HK-2 cells from the toxic damage of 
cisplatin [120]. Similarly, pre-incubation with hucMSC-
Ex can significantly reduce CP-induced injury in NRK 
cells, which may be achieved by upregulating Bcl-2 and 
inhibiting the expression of apoptotic markers, thereby 
enhancing cell survival and suppressing apoptosis [121].

Glycerin-induced AKI  Platelet-rich plasma (PRP) 
can promote the proliferation of MSCs by inducing the 
nuclear expression of yes-associated protein (YAP), main-
taining and enhancing their stemness. Furthermore, PRP 
promotes the secretion of hucMCS-EX that inhibit apop-
tosis of renal tubular cells and repair glycerol-induced 
AKI through the activation of the AKT/Rab27 pathway in 
a paracrine manner [122].

Sepsis-AKI(S-AKI)  Treatment with hucMSC-Ex upreg-
ulates the levels of miR-146b, leading to a reduction in the 
expression of interleukin-1 receptor-associated Kinase 1 
(IRAK1), which in turn suppresses the activity of NF-κB. 
This ultimately alleviates S-AKI and improves the survival 
rate of septic mice. This suggests that hucMSC-Ex could 
serve as a novel therapeutic agent for reducing S-AKI 
[123].

Unilateral ureteral obstruction (UUO)  In CKD, huc-
MSCs release exosomes carrying miR-186-5p, which 
reduce the expression of Smad5 by directly binding to 
its 3’-untranslated region (3’-UTR). This action leads to 
a decrease in the accumulation of extracellular matrix 
(ECM) proteins, inhibition of EMT and apoptosis, and 
alleviation of renal fibrosis [124]. Similarly, hucMSC-Ex 
can also inhibit the activation of YAP by promoting its 
ubiquitination and degradation through the delivery of 
casein kinase 1δ (CK1δ) and β-transducin repeat-con-
taining protein (β-TrCP). This results in reduced collagen 
deposition and alleviation of mechanical stress-induced 
renal fibrosis [125]. Furthermore, hucMSC-EVs inhibit 
apoptosis and promote cell proliferation by suppressing 
the ROS -activated p38MAPK/ERK signaling pathway. 
This reduces renal tubular damage and interstitial fibrosis, 
protecting the UUO kidney from oxidative stress-induced 
injury [126].Another study has confirmed that the exo-
somes from hucMSCs carry miR-874-3P, which targets 
receptor-interacting serine/threonine-protein kinase 1 
(RIPK1) to regulate necroptosis, reduces the expression 
of Phosphoglycerate mutase family member 5 (PGAM5), 
and promotes the dephosphorylation of the Drp1 gene 

at the S637 site. This maintains mitochondrial function 
homeostasis, alleviates renal injury, and promotes repair 
[127].

BMSC-EVs
Studies have shown that a single injection of bone mar-
row stem cell (BMSC)-purified MVs at the time of UUO 
can prevent epithelial-mesenchymal transition (EMT) 
[128], this protective effect is observed in in vivo experi-
ments using TGF-β1 induced in HK2 cells, indicating 
that curtailing initial damage can forestall subsequent 
kidney injury.

Furthermore, recent research has found that BMSC-
EVs provides therapeutic approaches for kidney diseases 
by targeting binding immunoglobulin protein (BIP), 
semaphorin 3  A(Sema3A), the mammalian target of 
rapamycin(mTOR) signaling pathway, krüppel-like fac-
tor 6(KLF6)/NF-κB, and phosphofructokinase (PFKM) 
in renal tubular epithelial cells. Specifically, these tar-
gets are modulated through miR-199a-5p [129], miR-
199a-3p [130],miRNA-122a [131],miR-181d [132], and 
miR-21a-5p [133], respectively. Exosomes derived from 
BMSCs can prevent kidney damage and inhibit renal 
fibrosis both in vitro and in vivo by regulating the klotho 
protein in rats that have undergone 5/6 nephrectomy 
[134] and by modulating the Smurf2/Smad7 pathway 
[135].

ADSC-EVS
Adipose-derived mesenchymal stem cell-derived extra-
cellular vesicles(ADSC-EVs) [136] that have demon-
strated efficacy in improving kidney damage within 
experimental paradigms of chronic metabolic syndrome 
complicated by renal artery stenosis (MetS + RAS). Fur-
thermore, ADSC-EVs convey miR-26a-5p [137] and 
miR-342-5p [138], which ameliorate the pathologi-
cal symptoms of DKD and AKI by aiming at TLR4 and 
TLR9, respectively. Simultaneously, ADSC-derived EVs 
manifest protective influences in S-AKI, potentially 
through the modulation of sirtuin 1(SIRT1) on the NF-κB 
signaling pathway, thereby diminishing inflammatory 
responses and apoptosis [139].

Others
HP-MSC-EVs  Hepatic MSC-derived extracellular ves-
icles (HP-MSC-EVs) [140], for instance, concentrate in 
renal tubules during renal I/R injury. They stimulate the 
recuperation of kidney function by invoking the kelch-
like ECH-associated protein 1(Keap1)-nuclear factor 
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erythroid 2 related factor 2(Nrf2) signaling pathway and 
bolstering the mitochondrial function of TECs.

HLSC-EVs  Hepatocyte-like stem cell-derived EVs 
(HLSC-EVs) [141] have evinced reparative traits, fore-
stalling interstitial fibrosis and renal tubular necrosis 
while advocating kidney regeneration and attenuating the 
inflow of inflammatory immune cells in a CKD mouse 
model.

iMSC-EV  Induced MSC-derived EVs (iMSC-EV) [142] 
shield against cisplatin-provoked kidney injury by curb-
ing apoptosis, immune cell infiltration, and inflammation.

PSC-EVs  Exosomes derived from PSC-MSCs [143], 
through the upregulation of SIRT6, have been demon-
strated to effectively mitigate endothelial cell injury, atten-
uate inflammatory responses, preserve renal function, 
and decelerate the progression of renal fibrosis.

USC-EVs  Urinary stem cells (USCs) [144] are capable 
of averting kidney IRI through exosomal miR-146a-5p, 
which homes in on the 3’UTR of IRAK1, subsequently 
suppressing the ignition of the NF-κB pathway and the 
encroachment of inflammatory cells, thus nurturing kid-
ney function.

hWJMSC-EVs  Human Wharton’s jelly MSC-derived EVs 
(hWJMSC-EV) can amplify the expression of miR-30b/c/d 
in renal tubular cells, alleviate the activation of dynamin-
related protein 1(DRP1) and mitochondrial fragmenta-
tion, thus assuming an anti-apoptotic role [145]. Further-
more, hWJ-MSC-EV can rehabilitate AKI induced by I/R 
and assist in balancing the oxidative stress/antioxidant 
equilibrium by invigorating Nrf2/antioxidant response 
element(ARE) activation, offering new vistas into the 
therapeutic mechanisms of MSC-EVs in renal regenera-
tive medicine [146].

Non-stem cell- derived extracellular vesicles
TEC-EVs
Ischemia/Reperfusion AKI (I/R-AKI)  TEC-EVs have 
emerged as significant contributors to the renal repair 
process following ischemia-reperfusion injury (IRI). Evi-
dence suggests that the systemic administration of EVs 
from preconditioned renal tubular cells, particularly those 
subjected to hypoxic preconditioning, can substantially 
ameliorate severe I/R-AKI. The therapeutic infusion of 
these EVs within a critical 24 to 48-hour window post-
IRI has been shown to enhance renal function, mitigate 
renal tubular damage, oxidative stress, inflammatory 
infiltration, fibrosis, and microvascular structural altera-
tions [147].EVs derived from hypoxia-preconditioned 

renal tubular epithelial cells ameliorate renal IRI via the 
HIF-1α/Rab22 pathway, while hypoxia-preconditioned 
hepatocyte EVs may offer renal protection through differ-
ential expression of EV-miRNAs [148].Furthermore, miR-
590-3p is transferred between renal tubular epithelial cells 
via exosomes, modulating autophagy by targeting TRAF6. 
This paracrine miRNA transfer suggests that augmenting 
miR-590-3p levels in exosomes may bolster autophagy 
and protect against renal IRI [149].

Cisplatin-induced AKI (CP-AKI)  Exosomal miR-122 
derived from cisplatin-treated HK2 cells has been dem-
onstrated to inhibit pyroptosis in surrounding cells, with 
miR-122 targeting embryonic lethal abnormal vision 
(ELAVL1) to suppress pyroptosis and AKI, offering a 
potential therapeutic target for AKI [150].

Antimycin A-induced AKI(AMA-AKI)  Intrinsic renal 
scattered tubular cells (STC-like cells) have demonstrated 
protective effects on AMA-impaired TECs in vitro, with 
exosomes potentially transferring mitochondria or mito-
chondrial fragments to rejuvenate the mitochondrial 
function of recipient cells. Systemic delivery of mitochon-
dria-laden exosomes may integrate into ischemic renal 
tubules, improving mitochondrial function and mitigat-
ing chronic kidney injury [151].

IgA nephropathy (IgAN)  The combined therapy of arte-
misinin and hydroxychloroquine has shown renoprotec-
tive effects in IgAN by inhibiting exosomal NF-κB signal-
ing and NLRP3 inflammasome activation, presenting a 
novel therapeutic strategy for IgAN by modulating exo-
some release and NF-κB/NLRP3 signaling [152].

Endothelial progenitor cell-EVs (EPC-EVs)
Investigations have uncovered that miR-21-5p, contained 
within endothelial progenitor cell (EPC)-derived exo-
somes, possesses the potential to mitigate S-AKI. This 
is achieved by downregulating the expression of runt-
related transcription factor 1(RUNX1), thereby introduc-
ing a fresh strategy for renal endothelial preservation in 
the context of S-AKI [153].

Circulating extracellular vesicles
Circulating exosomal miR-1-3p, identified in the after-
math of myocardial infarction, has been demonstrated 
to suppress cardiomyocyte (CM)-induced apoptosis and 
autophagy of renal tubular epithelial cells. It achieves this 
by targeting autophagy-related protein 13(ATG13) and 
activating the AKT signaling pathway, thereby enhancing 
renal function. Post-cardiac injury, these exosomal miR-
1-3p are swiftly released into the kidney, where they exert 
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a positive influence on renal function by directly target-
ing ATG13 [154].

Others
Human amniotic epithelial cells-EVs (hAEC-
EVs)  Recent research outcomes highlight human amni-
otic epithelial cells (hAECs) and their derived exosomes 
can markedly alleviate cisplatin-induced nephrotoxic-
ity. They reduce mortality and serum creatinine levels 
and decrease renal tubular damage. The renal protective 
mechanism involves the inhibition of the TNF-α/MAPK 
and caspase signaling pathways [155].

Macrophage-derived EVs(Mφ-EVs)  A study’s data indi-
cate that exosomal miR-25-3p derived from M2 macro-
phages protects podocytes from HG-induced injury by 
activating autophagy in podocytes through the inhibi-
tion of dual specificity phosphatase 1(DUSP1) expression 
[156]. This confirms the importance of paracrine com-
munication via exosomes between M2 macrophages and 
HG-induced podocytes, and identifies a new potential 
target for the treatment of diabetic nephropathy.

In summary, different extracellular vesicles (includ-
ing hucMSC-EVs, BMSC-EVs, ADSC-EVs, TEC-EVs, 
EPC-EVs, Mφ-EVs, and Circulating EVs) play a diver-
sified role in the treatment of kidney diseases through 
the bioactive substances they carry and the signals they 
transmit. EVs can deliver survival signals to injured kid-
ney cells, inhibiting apoptosis. They promote the prolif-
eration and differentiation of damaged cells, accelerating 
tissue repair and regeneration. For instance, EVs derived 
from specific cell types, such as MSC-EVs, can carry 
miR125b-5p, which promotes renal tubular repair and 
inhibits apoptosis, thus playing a role in the treatment of 
AKI [116]. Additionally, extracellular vesicles can transfer 
molecules with anti-inflammatory effects. For example, 
IL-10-loaded EVs (IL-10 EVs) produced by engineered 
macrophages can enhance the stability of IL-10 and its 
targeting to damaged kidneys. A large number of IL-10 
EVs located in the renal tubular interstitial macrophages 
induce a significant shift in the polarization of renal mac-
rophages from the M1 to the M2 phenotype, ultimately 
significantly improving renal tubular damage and inflam-
mation caused by ischemia/reperfusion injury [157]. Fur-
thermore, EVs can inhibit the activation and proliferation 
of fibroblasts, reducing the excessive deposition of extra-
cellular matrix. They modulate fibrotic-related signaling 
pathways and reverse the fibrotic process. For example, 
fibrosis-related macrophages promote the differentia-
tion of mesangial cells into myofibroblasts by activating 
the TGF-β1/Smad2/3/YAP axis, while MSC-EVs antago-
nize the fibrotic niche in DKD by mediating the degra-
dation of YAP through CK1δ/β-TRCP, alleviating the 

progression of DKD. These collectively illustrate that the 
precise regulation of EVs’ biosynthesis and function may 
pave the way for innovative therapeutic interventions in 
kidney diseases [158] (Table 1).

Engineered extracellular vesicles of kidney 
diseases
Given the preliminary achievements of EVs in the treat-
ment of kidney diseases, researchers are committed 
to overcoming their limitations through engineering 
approaches to achieve more optimized therapeutic strat-
egies. Engineered EVs are gradually becoming the focus 
of research due to their great potential as multifunctional 
drug delivery systems in the field of biomedicine.

The design of engineered EVs focuses on improv-
ing their delivery capabilities by means of strategic sur-
face modifications or the inclusion of functional ligands. 
These modifications enable the conjugation of a variety 
of molecules, such as endogenous and exogenous sub-
stances, drugs, proteins, or nucleic acids, to either the 
surface or the interior of the vesicles [159]. Furthermore, 
this engineering facilitates the precise targeting of spe-
cific cell types or tissues, which is essential for directed 
therapeutic interventions [160].This approach not only 
expands the therapeutic potential of EVs, but also intro-
duces a multifaceted enhancement of their capabilities. 
The ability to selectively deliver cargo to intended sites 
while minimizing off-target effects is particularly ben-
eficial [161]. The implications of these advancements are 
significant, as they open the door for a new generation of 
clinical applications of EVs, providing tailored treatments 
with enhanced efficacy and safety profiles.

Engineering strategies for EVs can be categorized into 
three main approaches: cargo loading, surface modifica-
tion, and genetic engineering. Each engineering strat-
egy has its unique strengths and limitations. In practical 
applications, it may be necessary to consider the appro-
priate engineering strategy based on the specific type of 
kidney disease, therapeutic objectives, and the individual 
patient’s condition. Combining multiple strategies may 
be required to achieve the best therapeutic outcomes.

Cargo loading
Cargo loading involves incorporating therapeutic agents, 
such as small molecule drugs, proteins, nucleic acids, 
etc., into EVs through methods like electroporation, 
extrusion, sonication, and incubation, to achieve the pur-
pose of drug delivery. Strategies for cargo loading include 
endogenous loading and exogenous loading. Endogenous 
loading is an engineering loading method based on the 
parental cells, which involves modifying the source cells 
to introduce the target molecules, allowing them to be 
incorporated into the vesicles during the production 
of EVs. Exogenous loading, on the other hand, involves 
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using membrane penetration or other loading strategies 
to directly load the cargo into the isolated EVs [8, 162].

The extrusion method is a commonly used strategy for 
engineering EVs. For example, by mixing purified neutro-
phil membranes with recombinant human IL-37 protein 
and then preparing N-MV@IL-37 through the extrusion 
method. This approach not only enhances the stability of 
IL-37 but also enables it to be targeted to injured renal 
endothelial cells via PSGL-1 on the neutrophil mem-
brane. This enhances the therapeutic effect of IL-37 on 
renal IRI [163]. Electroporation loading technology pri-
marily involves encapsulating small RNA molecules into 
the interior of EVs. Studies have shown that by using 
electroporation to load exogenous microRNA from Cae-
norhabditis elegans (cel-miR-39) into MSC-EVs, one can 

protect podocytes from damage, reduce cell death, and 
decrease albumin permeability [164].

To enhance the efficacy of EVs, various stimuli can be 
used to bioengineer the originating cells. For instance, 
exosomes derived from melatonin-stimulated mesen-
chymal stem cells (Exocue) can reduce the gene expres-
sion of miRNAs associated with the severity of CKD, 
increase the levels of aquaporins AQP2 and AQP5, and 
decrease blood urea nitrogen (BUN) and creatinine lev-
els. Thereby alleviating the severity of CKD and modu-
lating chronic inflammation and fibrosis [165]. Integrins 
are a type of protein found on the surface of EVs, and the 
RGD peptide has a strong binding affinity for integrins. 
Research indicates that supramolecular nanofibers con-
taining the arginine-glycine-aspartic acid (RGD) peptide 
can enhance MSC-EVs carrying let-7a-5p miRNA. By 

Table 1  Therapeutic role of non-stem cell-derived extracellular vesicles in kidney diseases
Origin Model Effective molecules Therapeutic 

schedule
Treatment outcome Ref.

TEC-EVs IRI,
female SD rats,
AKI/CKD

undefined 100 µg,
two
doses (24 and 48 h 
after surgery),
tail vein

improved renal tubular damage, 4-hy-
droxynanoneal adduct formation, neutrophil 
infiltration, fibrosis, and microvascular pruning.

[147]

TEC-EVs IRI,
C57BL/6 mice,
AKI

HIF-1α/Rab22 50 µg,
single dose 
(24 h before the 
operation),
injected 
intravenously

Serum creatinine is reduced, and the damage to 
the renal tubules is alleviated

[148]

TEC-EVs H/R, HK-2,
AKI

miR-590-3p undefined increases in the expression of autophagy marker 
proteins, including Beclin-1 and microtubule as-
sociated protein 1 light chain 3 beta (LC3II), and 
prolonged the autophagic response

[149]

TEC-EVs Cisplatin,
male C57BL/6mice,
AKI

miR-122/ELAVL1 undefined Inhibited pyroptosis [150]

TEC-EVs AMA,
Male 129-S1 mice,
AKI

undefined 30ug,
single dose,
injected caudally

improve mitochondrial pathways and alleviate 
chronic kidney injury in vivo

[151]

TEC-EVs BSA and castor oil,
SPF male SD rats,
IgAN

NF-κB/NLRP3 7.5 mg/kg,
tail vein

ameliorated kidney function of lgAN rats and 
inhibited the expansion of mesangial matrix and 
proliferation of mesangial cell

[152]

EPO-EVs CLP,
SD rats,
AKI

miR-21-5p/RUNX1 tail vein before CLP 
operation

reduced Serum creatinine and BUN levels, renal 
tubular injury score, apoptosis rate, inflammatory 
factors levels, and oxidative stress response as 
well as increased the proportion of endothelial 
glycocalyx area in glomerulus

[153]

Circulating-EVs iodixano,
SD rats,
CIN

miR-1-3p/ATG13/AKT tail vein inhibiting the CM-induced apoptosis and 
autophagy of renal tubular epithelial cells, and 
improving the renal function of rats.

[154]

hAEC-EVs Cisplatin,
male C57BL/6J mice,
AKI

the TNF-α/MAPK and 
the caspase signaling 
pathways

1 × 108,
single dose,
injected 
intravenously

reduce the mortality rate and attenuate renal 
dysfunction and pathological damage

[155]

Mφ-EVs HG,
podocytes,
DKD

miR-25-3p/DUSP1 200 µg,
co-culture

protected podocytes against HG-induced injury 
through activation the autophagy in podocytes

[156]
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targeting the CASP3 and RragD genes, these nanofibers 
can reduce apoptosis and activate autophagy [166]. 

Klotho is a single-pass transmembrane protein that is 
essential for renal tissue regeneration. By using the Exo-
Fect exosome transfection reagent to load recombinant 
Klotho protein into EVs, it has been found that in an AKI 
mouse model, engineered EVs expressing recombinant 
human Klotho exhibit stronger renal protective effects 
compared to the same dosage of soluble Klotho [167].
In another study, by transfecting MSCs with let-7i-5p 
antagomir, which is an antagonist targeting let-7i-5p, 
it is possible to suppress the levels of let-7i-5p in MSC-
EVs. This suppression increases the anti-fibrotic activity, 
reduces the deposition of extracellular matrix, and miti-
gates epithelial-mesenchymal transition [168].

The advantage of cargo loading is that the type and 
dose of therapeutic substances (e.g., drugs, nucleic acids, 
etc.) encapsulated in EVs can be precisely controlled, 
thus facilitating targeted therapy. It can load some large 
molecule drugs to improve their stability and bioavail-
ability. However, the loading efficiency of this method 
may be affected by various factors, such as the nature of 
the cargo and the loading method.

Surface modification
The surface of EVs is enriched with various proteins and 
polysaccharides, which can influence the targeting, sta-
bility, and immunogenicity of EVs. By modifying the 
surface molecules of EVs, one can confer cell and tissue 
targeting specificity, thereby enhancing their targeting 
efficiency and therapeutic efficacy. Methods for surface 
modification include chemical modification, bio-fusion 
expression, and liposome fusion, among others [169]. 
Chemical modification is key in ensuring that the bio-
logical activity and stability of EVs are not compromised 
while achieving the desired engineered characteristics. 
For instance, by using copper-free click chemistry, the 
LTH peptide can be conjugated to the surface of red 
blood cell-derived extracellular vesicles (REVs) through 
a reaction between azadibenzocyclooctyne (DBCO) and 
an azide. The targeting effect of the Kim-1 binding pep-
tide LTH effectively reduces the expression of P-P65 and 
Snail1 in injured renal tubular cells, inhibiting ischemia/
reperfusion injury and unilateral ureteral obstruction-
induced kidney inflammation and fibrosis in mice, thus 
delaying the progression from acute kidney injury (AKI) 
to chronic kidney disease (CKD) [170].In another study, 
researchers covalently linked a P-selectin binding peptide 
(PBP) to a polyethylene glycol-derivatized phospholipid 
(DMPE-PEG) and then anchored this complex to the sur-
face of EVs. It was found that these PBP-EVs could com-
petitively bind to P-selectin on damaged endothelial cells, 
inhibiting the invasion of inflammatory cells and thereby 
reversing the pro-fibrotic renal microenvironment [171].

Furthermore, after achieving efficient expression of the 
CHIP protein by transducing MSCs with the CHIP gene 
using lentiviral transduction technology, the authors 
surface-modified the isolated MSC-EVs-CHIP with 
superparamagnetic iron oxide nanoparticles (SPION). 
The results indicated that SPION-EVS-CHIP had a good 
targeting effect on kidney injury in rats with unilateral 
ureteral obstruction (UUO). Compared to traditional 
MSC-EVs, SPION-EVS-CHIP significantly reversed 
collagen deposition and inhibited the inflammatory 
response mediated by renal tubular injury by inducing 
ubiquitination of renal tubular cells and degradation of 
Smad2/3169 [172].

Surface modification offers the advantage of signifi-
cantly improving the targeting of EVs to kidney lesion 
tissues or cells by conjugating targeting ligands or spe-
cific molecules on the EV surface, thereby enhancing 
therapeutic effects. It can improve the stability and bio-
availability of EVs. However, the process of surface modi-
fication can be quite complex, requiring precise chemical 
or biological reaction conditions. Modification might 
alter the natural characteristics of EVs, potentially trig-
gering immune responses or other adverse effects.

Genetic engineering
The gene engineering strategy in engineered EVs refers 
to the modification of the genes of EVs to express spe-
cific proteins or RNAs to achieve particular functions. 
This process typically involves the specific insertion, 
deletion, or modification of target genes in the genome, 
followed by the isolation of EVs containing engineered 
genetic material or therapeutic agents [173]. Transfection 
of plasmids can achieve the effect of engineered EVs by 
introducing plasmids containing specific genes into cells, 
causing the cells to express the gene and package it into 
EVs. For example, transfecting RAW 264.7 macrophages 
with a plasmid encoding mouse IL-10 to produce EVs 
loaded with interleukin-10 (IL-10-EV). This process can 
promote mitochondrial autophagy and the polarization 
of renal tubular interstitial macrophages towards an anti-
inflammatory M2 phenotype, effectively treating isch-
emic acute kidney injury (AKI) [157]. In another study, 
the authors transfected mouse renal tubular epithelial 
cells (TEC) with a plasmid encoding mouse VEGF-A 
to prepare EVs expressing high levels of VEGF-A (sEV-
VEGF-A). It was found that these vesicles could treat 
ischemic renal injury by promoting the repair of the peri-
tubular capillary (PTC) [174].

Lentiviral transduction is a commonly used method 
for gene delivery, utilizing a modified lentivirus vector to 
effectively integrate the gene of interest (such as reporter 
genes, functional genes, or gene-editing tools) into the 
host cell’s genome. In a study, the authors transduced 
mesenchymal stem cells (MSCs) with an expression 
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plasmid of miR-let7c via a lentiviral vector. The geneti-
cally engineered mesenchymal stem cells with high 
expression of miR-let7c (miR-let7c-MSCs) could selec-
tively deliver to the damaged kidneys, reducing fibrosis 
in vivo and alleviating the injury to renal cells stimulated 
by transforming growth factor-β1 [175].Additionally, by 
using the lentiviral transfection system to transduce the 
GDNF gene into human adipose-derived mesenchymal 
stem cells (ADSCs), one can obtain GDNF-modified 
exosomes from human adipose-derived mesenchymal 
stem cells (GDNF-AMSC-exos). Research findings have 
shown that GDNF-AMSC-exos can enhance the pres-
ervation of peritubular capillaries and activate the post-
injury angiogenesis program to improve renal fibrosis 
by activating the SIRT1/eNOS signaling pathway [176].
In addition, the use of an inducible lentiviral vector con-
taining the FOXP3 gene to transduce CD4+ T cells allows 
for the construction of engineered T cells (Foe-Th). From 
these T cells, genetically engineered EVs containing spe-
cific FOXP3 transcripts are isolated, known as FOE-TEV. 
These vesicles can improve the inhibition coefficient 
under secondary lymphatic drainage by suppressing Th1 
cell polarization, inhibiting the production of donor-
specific antibodies (DSA). And obstructing complement 
activation, effectively alleviating allograft rejection after 
renal transplantation [177].Researchers have utilized 
a lentiviral vector to insert the human EPO gene into 
Kidney Mesenchymal Stem Cells (KMSCs), resulting in 
the generation of engineered KMSCs that express EPO 
(EPO(+)–KMSCs). They found that the EVs secreted by 
these cells can transfer EPO mRNA to target cells, alle-
viating anemia in rats with chronic kidney disease (CKD) 
[178]. Additionally, by using a lentiviral vector to trans-
fer the OCT-4 gene into human mesenchymal stem cells, 
overexpression of OCT-4 was achieved. Subsequently, 
EVs enriched with Oct-4 mRNA, termed EVs + Oct-4, 
were isolated. It was found that EVs + Oct-4 exhibited a 
greater inhibitory effect on the expression of Snail1 and 
enhanced the anti-apoptotic and proliferative effects on 
renal cells [179].

Unlike lentiviral transduction, adenoviral transfection 
is typically used for transient expression of the gene of 
interest because they do not integrate into the host cell 
genome but exist in the host cell as free circular DNA. 
In a study, the authors transfected an adenoviral vector 
expressing mouse CD26 (VirusCD26+) into a renal tubu-
lar epithelial cell line (TCMK-1). And then found that 
the isolated exosomes with overexpressed CD26 (Exo 
CD26+) could treat ischemia-reperfusion acute kidney 
injury (IR-AKI) by maintaining cell proliferation and 
reducing inflammation [180].

Genetic engineering can regulate the production and 
function of EVs at the genetic level, enabling them to 
continuously express specific therapeutic gene products. 

It allows for long-term, stable modification of the intrin-
sic composition and function of EVs. However, compared 
to other engineering techniques, genetic engineering 
is relatively complex to operate, and there are poten-
tial risks associated with gene editing and ethical issues. 
Controlling gene expression is challenging and may result 
in unpredictable gene expression changes.

In summary, significant strides have been made in 
the field of kidney disease research through the strate-
gic engineering of EVs. Enhancements in renal targeting 
and therapeutic efficacy have been achieved by employ-
ing techniques such as cargo loading, surface modifica-
tion, and genetic engineering. These approaches have 
endowed EVs with the ability to more precisely deliver 
therapeutic agents and modulate immune responses 
within the renal microenvironment (Fig. 5). As the field 
progresses, ongoing research is expected to further elu-
cidate the mechanisms of EVs action in renal pathophysi-
ology and expand their application in the therapeutic 
arsenal for kidney diseases. The continued development 
of these nanoscale therapeutics holds promise for the 
future, potentially offering patients a range of more pre-
cise, effective, and personalized diagnostic and treatment 
options.

Perspectives and challenges
EVs are emerging as promising agents in the advance-
ment of kidney disease diagnostics and therapeutics. 
However, translating EVs research from the bench to 
clinical practice is not without its challenges. Researchers 
are actively engaged in surmounting these hurdles and 
are exploring innovative approaches to harness the full 
therapeutic potential of EVs in renal pathologies. In the 
quest to standardize EVs research, a primary focus is the 
development of protocols for EVs production, charac-
terization, storage, and clinical assessment. A significant 
challenge lies in the heterogeneity of EVs [181]; those 
derived from different cellular origins can exhibit consid-
erable variability in size, composition, and functionality. 
This diversity complicates processes such as isolation, 
characterization, and quantification. Current method-
ologies, including ultracentrifugation, size exclusion 
chromatography, ultrafiltration, immunocapture, pre-
cipitation, and microfluidic technologies, are not with-
out their drawbacks, including low yields and impurities, 
which can impact subsequent analyses and applications 
[182]. Establishing standardized methods for EVs isola-
tion and analysis is essential for ensuring the reproduc-
ibility and comparability of research outcomes.

Additionally, there is an imperative need to validate 
techniques for the detection and quantification of spe-
cific EVs subpopulations, particularly those from unique 
cell types or bearing distinct molecular cargo [183]. 
At present, there are several mature single EV analysis 
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technologies, including nanoflow cytometry, the ExoView 
platform, super-resolution fluorescence imaging, sur-
face plasmon resonance (SPR) technology, and single-
particle dark-field imaging [184]. In addition, researchers 
from the University of Gothenburg in Sweden have pro-
posed a method that uses enzymatic treatment, differ-
ential centrifugation, and density gradient separation, 
followed by characterization with electron microscopy 
and RNA profiling, to directly isolate up to six differ-
ent EV subpopulations from tissues [185]. The research 
team from Zhongshan Hospital affiliated with Fudan 
University in Shanghai has developed HNCIB (High-
throughput Nano-bio Chip Integrated System for Liquid 
Biopsy), a technology capable of simultaneously detect-
ing and analyzing multiple biomarkers on the surface 
and within EVs [186]. Professor Zheng Lei’s team at Nan-
fang Hospital, Southern Medical University, has respec-
tively constructed a fluorescent aptamer sensor based on 
aptamer-functionalized metal-organic frameworks and 
cholesterol-triggered signal amplification-EV-ANCHOR 

[187], and a single-vesicle membrane protein expres-
sion profile analysis technology based on droplet digital 
immuno-PCR (ddiPCR) [188]. These can be used for the 
separation and detection of PD-L1EVs and the quanti-
tative detection analysis of specific EV subpopulations, 
providing a new strategy for the clinical diagnosis of can-
cer with EV subpopulations. The development of these 
technologies has provided new avenues and possibilities 
for the study and application of extracellular vesicles. 
With the continuous advancement and optimization of 
technology, it is expected that in the future, more effi-
cient and precise research and applications of extracellu-
lar vesicles will be realized.

The biological functions and mechanisms of action of 
EVs in kidney diseases are not yet fully elucidated. While 
numerous roles have been identified, the underlying 
signaling pathways and molecular mechanisms neces-
sitate further exploration [189]. This deeper understand-
ing will be pivotal in revealing the integral roles of EVs 
in the etiology and progression of renal diseases, thereby 

Fig. 5  Engineering strategies for EVs. Three distinct engineering strategies—cargo loading, surface modification, and genetic engineering—are utilized 
to enhance the therapeutic efficacy and targeting specificity of extracellular vesicles derived from various sources

 



Page 17 of 25Li et al. Journal of Nanobiotechnology          (2024) 22:583 

providing a robust theoretical foundation for the devel-
opment of novel therapeutic interventions. The utiliza-
tion of EVs as biomarkers also presents its own set of 
challenges. For example, in studies employing uEVs as 
biomarkers, the protocols for urine collection and pres-
ervation, as well as the methodologies for the isolation 
of urinary EVs and the elimination of contaminants, are 
critical [190]. Furthermore, while certain studies suggest 
that specific molecules within EVs could serve as diag-
nostic indicators for kidney diseases, the specificity and 
sensitivity of these biomarkers require additional valida-
tion. The establishment of standardized detection meth-
ods and reference ranges is imperative to ensure their 
reliability and reproducibility in clinical settings.

The therapeutic application of EVs is an area that 
requires further exploration. Although preliminary stud-
ies indicate that EVs can function as drug delivery sys-
tems or therapeutic agents, their safety and efficacy must 
be comprehensively evaluated through preclinical and 
clinical trials. Currently, there is a dearth of extensive 
clinical trials for EVs. Rigorous clinical trials are indis-
pensable for corroborating existing research findings and 
for the transformation of EVs into viable clinical thera-
pies [15, 191]. Optimizing the loading and delivery of EVs 
is another critical challenge. The selection of appropriate 
loading methods, enhancement of drug or bioactive mol-
ecule loading efficiency within EVs, and the optimiza-
tion of delivery routes and targeting are all focal points 
of research. Advances in the engineering of EVs offer new 
opportunities to augment the therapeutic efficacy of EVs 
in renal diseases [159, 192, 193]. Techniques such as gene 
editing and synthetic biology provide avenues for modi-
fying EVs to improve their efficacy and targeting speci-
ficity. While preclinical studies have demonstrated the 
potential benefits of EVs in AKI and CKD, the long-term 
efficacy and durability of EVs therapy remain uncertain. 
Further research is essential to elucidate the in vivo lifes-
pan of EVs, the duration of drug efficacy, and the safety 
and efficacy of repeated administrations.

The application of EVs in kidney disease holds great 
promise but is also confronted with significant chal-
lenges, including the development of accurate diag-
nostic markers, in-depth exploration of therapeutic 
mechanisms, optimization of targeted delivery systems, 
long-term safety and efficacy evaluation, translational 
research and regulatory approval for market launch, etc. 
To effectively tackle these challenges, it is imperative to 
sustain ongoing research efforts and to foster technologi-
cal innovation. Interdisciplinary collaboration is pivotal 
in propelling the study of EVs in kidney disease. The study 
of EVs spans fields such as biology, medicine, chemis-
try, and physics, necessitating a collaborative approach 
among experts from diverse disciplines to address the 
issues and challenges effectively. In conclusion, as an 

emerging field, the study of extracellular vesicles offers 
novel perspectives and methodologies for the diagnosis 
and treatment of kidney diseases. Despite the challenges, 
with ongoing technological advancements and in-depth 
research, the prospects for the application of EVs in renal 
medicine are expected to expand significantly (Table 2).
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Table 2  Abbreviations
Abbreviation Full name Abbreviation Full name
EVs Extracellular vesicles MSC-EVs Mesenchymal stem cells-EVs
AKI Acute Kidney Injury CKD Chronic Kidney Disease
DKD Diabetic Kidney Disease TECs Renal tubular epithelial cells
Mφ-EVs Macrophage-derived EVs CP-AKI Cisplatin-induced AKI
Atg9b Autophagy-related gene 9B BSA Bovine serum albumin
CHAC1 Cationic amino acid transporter

regulator homolog 1
NF-κB Nuclear Factor kappa B

SOCS-1 Suppressor of cytokine signaling-1 HSA Human serum albumin
TLR4 Toll-like receptor 4 CCL2 Chemokine Ligand 2
HIF-1α Hypoxia-inducible factor 1α KIM-1 Kidney injury molecule-1
PS Phosphatidylserine OMVs Outer membrane vesicles
Shh Sonic hedgehog STAT3 Signal transducer and activator of transcription 3
PTEN Phosphatase and tensin homolog Fibro-EVs Fibroblast-derived EVs
MVs Microvesicles Bcl-2 B-cell lymphoma-2
RIF Renal interstitial fibrosis MAPK1 Mitogen-activated protein kinase 1
TIMP2 Tissue Inhibitor of metalloproteinases 2 LRG1 Leucine-rich α-2-glycoprotein 1
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand CBS Cystathionine-β-synthase
HG High glucose MCs Mesangial cells
ROS Reactive oxygen species ERK Extracellular signal-regulated kinase
ARF6 ADP-Ribosylation Factor 6 uEVs Urinary extracellular vesicles
I/R-AKI Ischemia/Reperfusion AKI S-AKI Sepsis-AKI
NHE3 Na/H exchanger isoform 3 NGAL Neutrophil gelatinase-associated lipocalin
α1-AT Alpha-1-antitrypsin T2DM Type 2 Diabetes Mellitus
WT1 Wilms’ tumor protein 1 ESRD End-Stage Renal Disease
IgAN IgA Nephropathy TBMN Thin basement membrane nephropathy
LN Lupus Nephritis MPs Podocyte-derived microparticles
SLEDAI SLE disease activity index EH Essential hypertension
PTC Peritubular capillary EMPs Endothelial microparticles
EMT Epithelial-mesenchymal transition MIC Microalbuminuria
MAC Macroalbuminuria ACR Albumin-to-creatinine ratio
RCC Renal Cell Carcinoma BKVN BK virus nephropathy
VLA-4 Very late antigen-4 LFA-1 Lymphocyte function-associated antigen-1
PDK4 Pyruvate dehydrogenase kinase 4 ATF-6 Activating transcription factor 6
HSP Heat shock protein PFUS Pulsed focused ultrasound
PRP Platelet-rich plasma YAP Yes-associated protein
IRAK1 Interleukin-1 receptor-associated kinase 1 3’-UTR 3’-Untranslated region
ECM Extracellular matrix CK1δ Casein kinase 1δ
β-TrCP β-transducin repeat-containing protein UUO Unilateral ureteral obstruction
RIPK1 Receptor-interacting serine/threonine-protein kinase 1 PGAM5 Phosphoglycerate mutase family member 5
BIP Binding immunoglobulin protein Sema3A Semaphorin 3 A
mTOR Mammalian target of rapamycin KLF6 Krüppel-like factor 6
PFKM Phosphofructokinase SIRT1 Sirtuin 1
Keap1 Kelch-like ECH-associated protein 1 Nrf2 Nuclear factor erythroid 2 related factor 2
DRP1 Dynamin-related protein 1 ARE Antioxidant response element
ELAVL1 embryonic lethal abnormal vision RUNX1 Runt-related transcription factor 1
CM Cardiomyocyte ATG13 Autophagy-related protein 13
hAECs Human amniotic epithelial cells DUSP1 Dual specificity phosphatase 1
BUN Blood urea nitrogen RGD Arginine-glycine-aspartic
SPIONs Superparamagnetic iron oxide nanoparticles DSA Donor-specific antibodies
KMSCs Kidney Mesenchymal Stem Cells BNIP3 BCL2 interacting protein 3
FOXO Forkhead box O
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TLR4	� Toll-like receptor 4
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TRAIL	� Tumor necrosis factor-related apoptosis-inducing ligand
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WT1	� Wilms’ tumor protein 1
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SPIONs	� Superparamagnetic iron oxide nanoparticles
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FOXO	� Forkhead box O
MSC-EVs	� Mesenchymal stem cells-EVs
CKD	� Chronic Kidney Disease
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HSA	� Human serum albumin
CCL2	� Chemokine Ligand 2
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CK1δ	� Casein kinase 1δ
UUO	� Unilateral ureteral obstruction
PGAM5	� Phosphoglycerate mutase family member 5
Sema3A	� Semaphorin 3 A
KLF6	� Krüppel-like factor 6
SIRT1	� Sirtuin 1
Nrf2	� Nuclear factor erythroid 2 related factor 2
ARE	� Antioxidant response element
RUNX1	� Runt-related transcription factor 1
ATG13	� Autophagy-related protein 13
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