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Abstract
The ability to chemically modify the surfaces of viruses and virus-like particles makes it possible to
confer properties that make them potentially useful in biotechnology, nanotechnology and
molecular electronics applications. RNA phages (e.g. MS2) have characteristics that make them
suitable scaffolds to which a variety of substances could be chemically attached in definite geometric
patterns. To provide for specific chemical modification of MS2's outer surface, cysteine residues
were substituted for several amino acids present on the surface of the wild-type virus particle.
Some substitutions resulted in coat protein folding or stability defects, but one allowed the
production of an otherwise normal virus-like particle with an accessible sulfhydryl on its surface.

Background
The ability of viruses to self-assemble into nanoscale par-
ticles of discrete size and definite geometry gives them
potential utility in a variety of nano- and biotechnology
applications. Efforts to adapt icosahedral virus particles
for use as templates for materials synthesis, as platforms
for the multivalent presentation of ligands, and even as
possible molecular electronic components have been
described recently [1–7]. Work reported to date has made
use of Cowpea Chlorotic Mottle Virus [1–4] and Cowpea
Mosaic Virus [5–7]. Experiments that explore the utility of
the RNA bacteriophage MS2 for similar purposes are pre-
sented here.

RNA bacteriophages represent attractive systems for engi-
neering new properties into viruses and virus-like parti-
cles. Each RNA phage particle is comprised of 180 copies
of a single coat protein polypeptide about 130 amino
acids in length, one copy of the maturase protein, and one
molecule of viral genome RNA. The coat protein itself pos-
sesses all the information needed for assembly into an
icosahedron with a diameter of about 25 nm. This means

that virus capsids can be produced by expression of the
coat gene from a plasmid in E. coli without the need for
other viral components. The coat protein dimer, the struc-
tural unit from which capsids are assembled, possesses a
high-affinity binding site for a specific RNA hairpin. Since
this hairpin can function as a packaging signal, it is
straight-forward to engineer the encapsidation of an arbi-
trarily chosen RNA by fusing it to this so-called pac site
and expressing it in an E. coli strain that also produces coat
protein [8].

RNA phage coat proteins are amenable to facile genetic
manipulation. It is, of course, a simple matter to introduce
any desired amino acid substitution by site-directed muta-
genesis of the coat protein cDNA clone, but systems also
exist that facilitate random mutagenesis and selection of
coat mutants having altered RNA binding [9] and particle
assembly [10] properties. A simple assay for correct parti-
cle assembly [11] makes it easy to screen out those
mutants that acquire undesired defects in protein folding
or assembly. Moreover, because coat proteins produced
from a plasmid in E. coli are fully competent for particle
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assembly, changes in coat protein structure that are
incompatible with the normal virus life cycle can be easily
introduced and propagated. This is an advantage not read-
ily available in some other systems. Moreover, cDNA
clones of viral RNA are infectious, making it easy to pro-
duce viable recombinant viruses that incorporate any
mutation that does not interfere with virus viability. Both
virus and virus-like particles are readily produced in large
quantities and high purity.

High resolution x-ray structures are available for a number
of RNA phages, including MS2 [12–18], so that desirable
sites for modification can be identified easily. Here I
describe the production of a bacteriophage MS2 coat pro-
tein mutant that displays a reactive thiol on the surface of
the virus-like particle. Thiols are among the most useful
functional groups found in proteins. It can bind a variety
of metals and reacts with a large collection of organic rea-
gents, thus making cysteines obvious targets for protein
modification reactions. Wild-type MS2 coat protein con-
tains two cysteines, but they are sequestered in the interior
of the protein where they should be relatively unreactive.
The introduction of an accessible cysteine on the surface
of the MS2 capsid therefore should create the opportunity
for multivalent display of a large number of different
potential ligands on its surface.

Results
Introduction of surface cysteines and their effects on coat 
protein structure
Based on their accessibility on the surface of the viral cap-
sid, five different amino acids of MS2 coat protein were
selected initially for cysteine substitution (Figure 1). Three
of the five (glycine13, glycine14, and threonine15) are
located in the so-called AB-loop, a short β-turn that con-
nects the A and B β-strands of coat protein. The other two
(aspartic acid114 and glycine115) reside in a loop con-
necting the two coat protein α-helices. Each of these five
amino acids was converted to cysteine by site-directed
mutagenesis and the mutant genes were cloned in the
plasmid called pET3d [19] and introduced into E. coli
strain BL21(DE3/pLysS for over-expression. Each mutant
was screened by SDS gel electrophoresis for the ability to
produce more or less normal amounts of coat protein in
the soluble fraction of cell lysates, and by agarose gel elec-
trophoresis under native conditions for correct assembly
of a virus-like particle. These criteria allow us to determine
whether the mutants produce properly folded coat pro-
teins. Four of the five mutants, G13C, G14C, D114C and
G115C, failed these tests (Figure 2). In these cases no
virus-like particles were detected and the coat proteins
were found predominantly in the insoluble fraction of cell
lysates.

In past work it has frequently been possible to suppress
the effects of mutations on MS2 coat protein folding/sta-
bility by incorporating them into so-called single-chain
dimers. Because of the proximity of the N-terminus of one
subunit of the coat protein dimer to the C-terminus of the
other subunit, it is possible to genetically fuse them into a
single polypeptide chain. Covalently linking the two
monomers in this manner makes the dimer relatively
resistant to the destabilizing effects of many amino acid
substitutions and even of peptide insertions [20–23]. In
an effort to revert their effects on coat protein structure,
the G13C, G14C, D114C and G115C mutations were
incorporated into single-chain dimer constructs. How-
ever, in none of these cases was the ability to produce
active coat protein restored (results not shown).

In contrast to the destabilizing substitutions, the T15C
mutant (where threonine15 is replaced by cysteine) pro-
duced significant quantities of soluble coat protein that
assembled into particles with the same electrophoretic
mobility as wild-type virus. Assembly into a virus-sized
particle was verified by the behavior of the T15C mutant
upon chromatography in Sepharose CL-4B. As seen in Fig-
ure 3, wild-type MS2 and the T15C mutant particles both
eluted in a discrete, symmetric peak at the same position.
Figure 4 shows the structure of a portion of the viral capsid
with the location of residue 15 indicated in red. It illus-
trates how the existence of the T15C mutant should make
it possible to attach chemically a variety of substances in a
defined geometric array on outside of the particle. Intro-
duction of cysteine at other sites would allow variations in
this pattern, each of them adhering to the constraints of

A view of the MS2 coat protein dimer with its two polypep-tide chains shown as blue and red ribbonsFigure 1
A view of the MS2 coat protein dimer with its two polypep-
tide chains shown as blue and red ribbons. The positions of 
amino acids altered in this study by site-directed mutagenesis 
are shown as yellow (glycine13), green (glycine14), magenta 
(threonine15), cyan (glycine113) and white (aspartic 
acid114). For details of the structure of MS2 coat protein see 
refs. 12 and 13.
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icosahedral geometry, but allowing different relative spac-
ings of the functional group.

Accessibility and reactivity of the new cysteine
T15C virus-like particles were purified from E. coli, using
methods that included gel filtration chromatography on
Sepharose CL-4B and that were described previously for
the wild-type virus-like particle [9]. Note that although
the reducing agent dithiothreitol (DTT) was present in the
cell lysis solution, it was absent from the chromatography
buffer. Therefore, when column-purified capsids were
concentrated by ultracentrifugation, it was under condi-
tions that allow the formation of disulfide bonds. Upon

attempting to redissolve the pelleted T15C particles it was
immediately apparent that their behavior was different
from wild-type. Whereas wild-type particles dissolve read-
ily in water, the mutant capsids were insoluble. Agarose
gel electrophoresis also indicated the formation of large
aggregates, because mutant particles failed to enter the gel
(Figure 5). Treatment with 10 mM DTT led to the imme-
diate dissolution (within a few minutes) of the aggregate
and to the restoration of wild-type electrophoretic behav-
ior. Thus, concentration of the capsids under non-reduc-
ing conditions allowed efficient inter-particle disulfide
cross-linking. At intermediate DTT concentrations, gel
electrophoresis produced a ladder of species representing
intermediately aggregated states, i.e. capsid dimers, trim-
ers, tetramers and so forth. When the aggregates were sub-
jected to SDS gel electrophoresis in the absence of
reducing agent (with NEM included to prevent thiol-
disulfide interchange during sample preparation) about
3% of the coat protein was present in the form of a
disulfide linked dimer, consistent with the idea that each
capsid in the aggregate is cross-linked on average to about
5 others (data not shown).

The accessibility of the new cysteine is further illustrated
by its reaction with thiol-specific chemical reagents. For
simplicity only the results obtained when capsids are
reacted with fluorescein-5-maleimide are shown here, but

A. Agarose gel electrophoresis of the soluble fractions of lysates of E. coli cells producing the wild-type (WT) and each of the mutant coat proteins (lanes 1–6)Figure 2
A. Agarose gel electrophoresis of the soluble fractions of 
lysates of E. coli cells producing the wild-type (WT) and each 
of the mutant coat proteins (lanes 1–6). Since the particles 
contain host cell-derived RNA, they can be stained with 
ethidium bromide and visualized under UV illumination. Cel-
lular nucleic acids are also visible as a faster-running smear. 
Lane 1 – wild-type, lane 2 – G13C, lane 3 – G14C; lane 4 – 
T15C, lane 5 – G113C, lane 6 – D114C. B. SDS gel electro-
phoresis of protein extracted from the same cells. Here are 
shown the contents of both the soluble (s) and pellet (p) 
fractions of crude cell lysates. Samples are labeled as in A, 
except for the addition of lane 0, which is a control that pro-
duces no coat protein.

Elution profiles of wild-type and T15C virus-like particles from a Sepharose CL-4B columnFigure 3
Elution profiles of wild-type and T15C virus-like particles 
from a Sepharose CL-4B column. The presence of coat pro-
tein in individual fractions was determined by SDS polyacryla-
mide gel electrophoresis followed by staining with coomassie 
blue and densitometry. Void volume is at fraction 11. A pro-
tein roughly the size of the coat protein monomer (lysozyme, 
MW about 14,000) elutes at position 33.
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Two views of a portion of the surface of the viral particle showing the exposure of threonine15 and the pattern of its displayFigure 4
Two views of a portion of the surface of the viral particle showing the exposure of threonine15 and the pattern of its display. 
Polypeptide chains are shown as ribbons. The position of threonine15 is indicated in red space-fill. Note that the structure 
shown here (downloadable as 1GAV.pdb from http://www.rcsb.org/pdb/, the protein data bank website) is actually that of GA, 
a close MS2 relative with a highly similar structure [18]
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similar results were obtained from reaction with 5,5'-
dithio-bis(2-nitrobenzoic acid) (DTNB) to form the 5-
thio-2-nitrobenzoyl derivative [24], by reaction with
Na2SO3 in the presence of DTNB [25] to produce the thi-
osulfonate derivative, and when reacted with iodoacetic
acid to form the carboxymethyl derivative. Wild-type and
T15C capsids were reacted with fluoroscein-5-maleimide
under conditions described in Materials and Methods and
the products were subjected to electrophoresis in agarose
gels and photographed under UV illumination both
before and after staining with ethidium bromide, which
gives an orange fluorescence to all the capsids because of
the RNA each contains. Reaction with fluorescein-5-male-
imide imparts green fluorescence to the mutant particle
(Figure 6A). In addition, its electrophoretic mobility
increases, consistent with the addition of negative charges
to the capsid (fluorescein has a carboxyl group). The mod-
ification is specific for the T15C mutant – wild-type MS2

remains unmodified – and is abolished when the reagent
is inactivated by prior addition of DTT to the reaction.
When subjected to electrophoresis in SDS-polyacrylamide
gels a single fluorescent product is observed for the T15C
mutant (Figure 6B). Staining of the gel with coomassie
blue shows that attachment of fluorescein alters the
mobility of coat protein, allowing an estimation of the

Agarose gel electrophoresis of MS2-T15C virus-like particles treated with DTT at the indicated concentrationsFigure 5
Agarose gel electrophoresis of MS2-T15C virus-like particles 
treated with DTT at the indicated concentrations. The mate-
rial on the left is extensively aggregated and does not enter 
the gel. Material on the right is fully reduced and possesses 
the electrophoretic behavior characteristic of MS2 itself (see 
Figures 2 and 6).

A. Agarose gel electrophoresis of capsids unstained (on the left) and stained with ethidium bromide and photographed under UV illuminationFigure 6
A. Agarose gel electrophoresis of capsids unstained (on the 
left) and stained with ethidium bromide and photographed 
under UV illumination. Lane 1 is unreacted MS2, lane 2 is 
MS2 modified by reaction with fluorescein-5-maleimide, lane 
3 is unreacted T15C, lane 4 is T15C reacted with fluores-
cein-5-maleimide. B. SDS gel electrophoresis of the same 
samples shown in A. On the left is the gel stained with 
coomassie brilliant blue and at right it is illuminated in the 
UV.
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extent of its modification. Clearly, the great majority
(about 80–90%) of the T15C coat protein undergoes reac-
tion under these conditions. Longer reaction times (up to
1.5 hours) at a higher temperature (37°C) did not alter
this pattern. Failure to modify the wild-type coat protein
indicates that the other cysteines (residues 46 and 101)
are not detectably accessible for reaction under these
conditions.

Discussion
Single amino acid substitutions frequently have global
effects on protein folding and stability. Considering their
locations in the coat protein structure it is not surprising
that some substitutions of AB loop residues disrupted
folding. The loop makes a tight turn and the glycines
present at positions 13 and 14 are probably needed to pre-
vent the crowding that results when amino acids with
bulkier side chains are introduced here. Moreover, the
defects caused by the G13C and G14C substitutions must
be fairly severe, since they are not reverted by their incor-
poration into single-chain coat protein dimers. Genetic
fusion of the subunits of the dimer was shown previously
to revert the destabilizing effects of variety of mutations,
including a wide range of amino acid substitutions at dif-
ferent locations on the β-sheet [21,22], temperature-sensi-
tive mutations occurring at numerous sites through-out
the structure (unpublished observations), and even
insertions into the AB-loop sequence itself [23]. The T15C
mutation, on the other hand is tolerated structurally.
Cysteine is a slightly smaller amino acid than the threo-
nine it replaces and so would not be expected to introduce
stereochemical difficulties of the sort that likely explain
the G13C and G14C defects.

It is less obvious why the substitutions at residues aspartic
acid114 and glycine115 lead to folding-defects, but these
residues also are involved in a turn of the polypeptide, this
one connecting the two coat protein alpha-helices. The
severity of the defects conferred by the cysteines intro-
duced here is also indicated by the failure to revert them
in single-chain dimers.

As these results illustrate, amino acid substitutions can
disrupt protein folding and stability with an annoyingly
high frequency. It should be noted, though, that at least
two different strategies are available for efforts to render
the substitutions tolerable. The first is to create single-
chain dimers of the mutant proteins [20–23]. Although
this was ineffective in the cases of the four defective
mutants described here, it has in the past proven an effi-
cient and simple means of reverting coat protein folding
defects and will likely be useful for many of the other
defects one might encounter. Moreover, since single-chain
dimers allow independent control of the amino acid
sequences in the two halves of the "dimer", it provides a

means to alter by one-half the number of thiols on the
virus surface, giving an added level of control over the
density of modifiable sites. A second strategy for reversion
of folding/stability defects is to isolate mutations at sec-
ond sites that suppress those defects. A gel diffusion
method that allows one to distinguish bacterial colonies
that produce soluble, properly assembled coat protein
from those that do not has been described elsewhere [10].

The sites modified in this study were chosen because they
are highly exposed on the virus surface, but a number of
other sites in coat protein are also located in potentially
suitable positions, and some of them are likely to be more
tolerant of substitution than those tested so far. The capac-
ity to introduce cysteines at alternative positions would
allow one to alter the relative geometric arrangement of
reactive sites, an additional parameter that should influ-
ence the properties of specific modified virus-like parti-
cles. The procedure outlined here serves as a guide to the
identification of residues whose substitution is tolerated.

Wild-type MS2 coat protein has two cysteines, one at posi-
tion 46 and the other at 101. Under the conditions used
in this study, no evidence that these cysteines were modi-
fied by fluoroscein-5-maleimide was observed. This selec-
tivity is a little surprising in view of the previous
demonstrations that cysteine46 is somewhat susceptible
to reaction with sulfhydryl-specific reagents [26,27] even
though, like cysteine101, it is relatively buried within the
coat protein tertiary structure. However, those prior stud-
ies were conducted using isolated coat protein dimers.
Here intact virus-like particles were used. They apparently
afford greater protection to cysteine46. Alternatively,
because it is bulkier than the reagents used in the previous
studies (e.g. N-ethylmaleimide), the fluoroscein-5-male-
imide reagent might not as easily gain access to
cysteine46.

Conclusions
The ability to chemically modify specific sites on virus
particle surfaces is a potentially powerful approach to the
production of new materials for biotechnology, nanote-
chnology and molecular electronics. It makes possible the
use of the virus-like particle as a scaffold for the attach-
ment of a large variety of substances including metals,
organics, peptides, and nucleic acids in a regular geomet-
ric array. Thus, one can think of these virus-like particles
as self-assembling and highly regular nanospheres, poten-
tially susceptible to a wide range of chemical modifica-
tions at specific surface locations. They may be suitable for
use in applications currently employing small spheres
constructed by other, less controlled means. The ability to
specifically encapsidate and protect arbitrarily chosen
RNAs within such particles suggests additional
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applications. Experiments are currently underway to
explore some of the possibilities.

Methods
Mutations were introduced into the MS2 coat sequence
using mismatched oligonucleotide primers (from Inte-
grated DNA Technologies) in a PCR-based overlap exten-
sion method [28,29]. The mutations were constructed
using the following codon changes. G13C (GGC to UGC),
G14C (GGA to UGU), T15C AGU to UGU), D114C (GAU
to UGU) and G115C (GGA to UGU). The resulting PCR
products were cloned as XbaI-BamHI fragments in the T7
expression vector called pET3d [19] thus creating a series
of derivatives of the plasmid called pETCT [10]. The nucle-
otide sequences of each of the mutant coat genes were
determined at the UNM Center for Genetics in Medicine.
Coat proteins were produced by over-expression in strain
BL21(DE3)/pLysS [10,19]. The presence of virus-like par-
ticles in crude cell lysates was determined by electrophore-
sis in 1% agarose gels in 50 mM potassium phosphate, pH
7.0 as described previously [11]. Coat proteins were puri-
fied by methods described in detail elsewhere [9]. These
methods include chromatography in Sepharose CL-4B
followed by pelleting of the virus from peak fractions by
centrifugation at 25,000 rpm in the SW28 rotor overnight.
Electrophoresis of purified virus-like particles was con-
ducted in 1% agarose and 40 mM Tris-acetate, 2 mM
EDTA, pH 8.0. Production of crude cell lysates, their sep-
aration into soluble and insoluble fractions, and their
analysis by SDS gel electrophoresis have been also
detailed in previous reports [10,11].

Fluorescein labeling was conducted by reaction for 30
min. at room temperature in 20ul of 50 mM potassium
phosphate pH7.0, 1 mM EDTA, 1 mM fluorescein-5-male-
imide (from Helix, Inc.). Proteins were present at concen-
trations in the 0.5 to 2 mg/ml range. Reactions were
terminated by the addition of DTT to a concentration of
50 mM. Unreacted controls were performed by adding
DTT to the reaction before the protein. The products were
subjected to electrophoresis in agarose gels under native
conditions in 40 mM Tris-acetate, 2 mM EDTA, pH 8.0,
and in SDS-polyacrylamide gels. Fluoresceinated products
were detected by photography under UV illumination.
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