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Abstract

Multifunctional nanoparticles

Background: Iron oxide nanoparticles (IONPs) have increasing applications in biomedicine, however fears over long
term stability of polymer coated particles have arisen. Gold coating IONPs results in particles of increased stability
and robustness. The unique properties of both the iron oxide (magnetic) and gold (surface plasmon resonance)
result in @ multimodal platform for use as MRI contrast agents and as a nano-heater.

Results: Here we synthesize IONPs of core diameter 30 nm and gold coat using the seeding method with a poly
(ethylenimine) intermediate layer. The final particles were coated in poly(ethylene glycol) to ensure biocompatibility
and increase retention times in vivo. The particle coating was monitored using FTIR, PCS, UV-vis absorption, TEM,
and EDX. The particles appeared to have little cytotoxic effect when incubated with A375M cells. The resultant
hybrid nanoparticles (HNPs) possessed a maximal absorbance at 600 nm. After laser irradiation in agar phantom a
AT of 32°C was achieved after only 90 s exposure (50 ugmL™"). The HNPs appeared to decrease T values in line
with previously clinically used MRI contrast agent Feridex®.

Conclusions: The data highlights the potential of these HNPs as dual function MRI contrast agents and nano-
heaters for therapies such as cellular hyperthermia or thermo-responsive drug delivery.
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Background

Iron oxide (magnetite, Fe30,) nanoparticles (IONPs)
have been the focus of extensive investigation over the
past decade [1-3]. Fe3O, possesses inherent magnetic
properties which are desirable for a large range of bio-
medical applications including cellular sorting [4], tar-
geted drug delivery [5], tissue engineering [6] and most
commonly as magnetic resonance imaging (MRI) con-
trast agents [7-10]. When used as a contrast agent the
high saturation magnetism of the IONPs results in
increased transverse relaxivity [11,12]. The increased
transverse relaxivity (decreased T, signal) is observed as
a darker area in an MRI scan [13]. Although a range of
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iron oxide nanoparticles such as Feridex® [14] and Reso-
vist® were previously clinically approved [15], on-going
concern was placed on the long term toxicity of these
particles in vivo [16]. Hence, recently both Feridex® and
Resovist® have been withdrawn from use in humans.
Degradation of iron oxide into iron ions in physiological
environments [17] has been reported to increase free
radical production in cells causing damage which may
lead to cell death [18-20]. Commonly IONPs are coated
with organic macromolecules such as poly(acrylic acid)
(PAA) [21], dextran [22] and poly(ethylenimine) (PEI)
[23] or inorganic coatings such as silica [24], carbon [25]
or precious metals (e.g. gold or silver) [26].

Gold is both chemically stable and biocompatible [27].
Gold nanoparticles (AuNPs) have been widely acknowl-
edged to possess unique optical properties [28]. When
nanoparticles of 10-100 nm in size are exposed to
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optical radiation, the electrons within the AuNPs
resonate causing them to absorb and scatter light [29].
This phenomenon is known as surface plasmon reson-
ance (SPR) where the optimal resonance wavelength is
determined by the nanoparticle construct (size, shape,
surface area, surface coating etc.) [28,29]. When nano-
particles are irradiated, the SPR absorption of Au nano-
particles is followed by rapid conversion of light into
heat [28]. In biomedicine this unique property can be
exploited for applications such as photo-thermal abla-
tion [29] and thermo-sensitive drug delivery [29]. Clinic-
ally, the optimal wavelengths for laser irradiation of
AuNPs are within the ‘biological near infrared region
(NIR, 750-1400 nm)’ [30]. Laser radiation within the
NIR window are capable of deep tissue penetration due
to the high transmission of water and haemoglobin
within these wavelengths [30], this can be exploited for
non-invasive or minimally invasive therapy. Other gold
nanostructures such as nano-shells and nano-spheres
have been reported [28], here the hollow architecture
improves SPR resulting in a stronger absorption in the
NIR region [31]. The increased absorption of gold nano-
shells is a result of the interactions between the plas-
mon, supported by both the inner and outer surfaces of
the shell [32,33]. The physical properties of gold nano-
shells are highly tuneable depending on shell thickness
and functionalization [34]. Increased shell thickness has
been shown to result in decreased absorption and hence
decreased heating [28,34].

When gold is used to coat IONPs the outer gold shell
acts as a barrier preventing core oxidation and enzym-
atic degradation [35]. Hybridization of IONPs with gold
results in a multimodal platform which benefits from
the unique properties of both materials [30,35]. The gold
exterior shell also provides an anchorage site for further
functionalization [30]. The ability to achieve accurate
real-time imaging complimentary to localized tissue
heating is highly advantageous for applications such as
tumour ablation and drug delivery [30,36]. Direct coat-
ing of gold nano-shells onto IONPs is often problematic
due to lack of control over physical characteristics such
as shell thickness and geometry [35]. Direct coating has
also been reported to decrease the saturation magnetisa-
tion, hence reducing the relaxivity of the IONP core and
reducing its ability to act as a MRI contrast agent [12].
These mechanisms are not well understood but may be
due to migration of gold atoms into the magnetic IONP
core [12]. Furthermore, increased shell thickness has an
unfavourable effect on longitudinal and transverse relax-
ivities [12].

Recently Goon and colleagues reported the fabrication
of iron oxide-gold core-shell hybrid nanoparticles
(HNPs) using a polymer intermediate separating the two
entities [27]. Addition of an organic intermediate layer
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between the IONP and gold shell is expected to prevent
gold migration into the core, increasing the saturation
magnetisation and relaxivity [12]. Gold coating of the
polymer coated IONPs is achieved by firstly attaching
gold seeds to the nanoparticle surface followed by subse-
quent reduction of gold onto the surface forming a
complete coat [27,37]. The seeding method allows for a
greater degree of control over shell thickness [27,37].

Here we report the synthesis and physicochemical
properties of FezO4-PEI-Au-PEG (HNPs). The IONP
core is firstly coated with poly(ethylenimine) (PEI, MW
750,000) which acts as an intermediate between the core
and shell. Gold coating is achieved via the seeding
method. A thiol (-SH) capped poly(ethylene glycol)
(PEG) is finally used to functionalize the gold surface.
PEG is an FDA approved polymer which is known to
disguise nanoparticles, masking them from the immune
system hence increasing blood circulation time [38].
Both chemical and biological characterization will be
carried out to determine the suitability of these particles
for biomedical use. Finally, the potential of these parti-
cles to act as multimodal platforms for use as ‘nano-
heaters’ and MRI contrast agents will be demonstrated
using laser irradiation and magnetic resonance using a
1.5 T clinical MRI.

Results
Synthesis and characterization of HNPs
The Fe3O, particles were successfully synthesized and
coated with PEI, gold and subsequently PEG. Inductively
coupled plasma — optical emission spectroscopy (ICP-
OES) was used to deduce the concentration based on the
total iron and gold content of the nanoparticles (NPs)
(Table 1). Fourier transform infrared spectroscopy (FTIR)
analysis of the freeze dried particles indicates that PEI at-
tachment to the iron oxide surface had occurred. The PEI
gave rise to —NH peaks at 3300, 1700 & 1600 cm™* and a
distinct C-N peak at 1000 cm™ (Figure 1). The broad peak
observed at 3100 cm™ was due to free water which was
still present in this hygroscopic polymer even after 8 h
freeze drying. After PEGylation of the gold coated poly-
mer, a peak was observed at 2800 cm™ which indicated
the presence of the PEG moiety due to the alkyl chain of
the polymer backbone. Additionally a small peak was
observed at 3400 cm™ which was due to the C = O stretch
of the bonds in the PEG moiety, these findings suggested
the surface functionalization of the HNPs was successful.
The ‘naked’ Fe;O, had a hydrodynamic radius of
1112 nm determined by photon correlation spectroscopy
(Table 1). This large value indicated that large aggregates
had formed in solution due to the inherent magnetic
properties of the IONPs. The TEM micrograph gave a
more realistic representation of the Fe;O, size which was
approximately 30 nm (Figure 2A). PEI coating of the
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Table 1 Physicochemical properties of reaction steps in HNP formation using photon correlation spectroscopy (PCS),
zeta potential measurement and inductively coupled plasma-optical emission spectroscopy (ICP-OES)

Particle Hydrodynamic  Polydispersity ~ Zeta Potential Concentration determined by Inductively Coupled Plasma -
Radius nm +SD Index +SD mV +SD Optical Emission Spectroscopy mgmL™ (Average value, n=2)
Fe Au
Fes0,4 1112 (97) 0.763 (0.104) -16.9 (0.379) 14.5 -
FesO4-PEI 237 (2) 0.194 (0.030) +55.6 (0.702) 135 -
Fe304-PEI-AUsced 309 (12) 0.363 (0.016) +35.0 (0.115) 1.86 336
Fe30,4-PE-AUcont 132 (37) 0792 (0.156)  -23.3 (1.950) 274 353
Fes04-PEI-AuU-PEG 139 (71) 0.332 (0.072) -21.7 (0.551) 2.20 3.06
nanoparticles reduced the hydrodynamic radius to radius of the final particle was 139 nm (Table 1). We esti-

237 nm, this indicated an increase in solution stability,
and the significant decrease in polydispersity index from
0.763 to 0.194 confirmed this assumption (Table 1). The
TEM images of the Fe3O4-PEI showed a slight increase in
particle diameter to approximately 40 nm (Figure 2B).
Gold seeds were synthesised (Figure 2C) and attached
onto the Fe30,4-PEI surface by electrostatic interactions,
the resultant particles can be seen in Figure 2D & E. The
gold seeds gave rise to a unique ‘bobbly’ surface. EDX and
ICP analysis of the Fe304-PEI-Auge.q showed the presence
of both Au and Fe (Figure 3A & Table 1), the latter of
which was not observed in the EDX spectra of the com-
pletely coated NP (Figure 3B). The gold coated HNPs can
be seen in Figure 2F, these NPs possessed a large polydis-
persity index of 0.792, and this value indicated that there
were a large number of size populations in solution
(Table 1). This phenomenon is perhaps due to gold ag-
glomeration [39]. After surface functionalization with PEG
the PDI was reduced to 0.332 and the hydrodynamic

mated by examining the TEM images that the thickness of
the gold coating was approximately 10—15 nm.

The Fe3O, possessed a negative surface charge of
-16.9 mV determined by zeta potential measurement.
This negative value can be attributed to surface sulphate
associations from the synthesis precursors [20] (Table 1).
After PEI coating of the Fe;O, the zeta potential
increased to +55.6 mV due to the positive amine groups
of the polymer backbone; this large increase gives good in-
dication that coating was successful. The gold seeded and
fully coated NPs experienced a reduction in surface poten-
tial caused by the negatively charged gold atoms (+35.0
and -23.3 mV respectively) this was further reduced to
-21.7 mV after surface coating with PEG (Table 1). The
decrease in zeta potential after PEGylation can be attribu-
ted to the presence of —OH groups on the PEG coating as
previously reported [19,20].

Au NPs can absorb light and convert it into localized
heat for potential photo-thermal applications. UV-visible
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Figure 1 FTIR spectra of A) Fe30, (red), B) FE30,4-PEI (blue) and C) Fe30,4-PEI-Au-PEG (orange). Analysis carried out on Nicolett iS5 FTIR
with diamond tip iD5 ATR attachment (Thermo Scientific, UK). Samples were freeze dried prior to analysis and 64 scans were run.
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Figure 2 TEM images of A) Fe;0, B) Fe;0,4-PEl, C) Gold seeds, D) Fe304-PEI-AUeeq, E) Fe304-PEI-Augeeq (HR-TEM) and F) Fe304-PEI-Au oyt
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spectroscopy was used to obtain absorption spectra of
the particles (Figure 4) in order to determine the wave-
length at which maximum absorbance occurred (Apax)-
The An.x value is used as an indication of the wave-
length at which the surface plasmon resonance effect
will be optimal. The initial scan of PEI-coated iron oxide
cores produced featureless spectra indicating an absence
of surface plasmon resonance (SPR).The gold seed solu-
tion possessed a Ap.x of 480 nm, this was red shifted
upon conjugation to the Fe3O4-PEI surface to 520 nm
(however this was difficult to observe at the concentra-
tion tested, 1 mgmL™). After complete coating had been
achieved a small shift to 540 nm was observed, a further
red shift was observed after the final PEG coating had
been attached with a final A\, of 600 nm exhibited. The
red shifting occurring during each step of the synthesis
is further indication that the fabrication of HNPs had
been successful.

Biocompatibility of HNPs

Cell viability of A375M cells incubated with HNPs was
determined by Trypan blue exclusion assay (Figure 5A).
In general, the particles exhibited a dose and time respon-
sive effect on cell viability. No significant reduction in via-
bility was observed over the 7 day period up to 25 pgmL™
(p>0.05) and the HNPs did not exhibit apparent toxicity
to those cells after 5 day incubation at concentrations up
to 50 ugmL™ (p>0.05). After 5 day incubation with the
highest concentration of particles (100 ugmL’l) an 18-20%
decrease in viability was observed (p<0.05). These results
indicate that the HNPs did not possess a highly toxic na-
ture. Cellular uptake of HNPs in A375M cells was imaged
by silver enhanced staining. The silver reagents become
nucleated upon contact with the gold coating of the HNPs
that were degraded by acid treatment resulting in precipi-
tation of metallic silver viewed as a dark brown-to-black
signal under the bright field light microscope. Figure 5B1
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shows fixed A375M control cells. No dark spots due to
nanoparticle presence was evident. Figure 5B2 shows cells
incubated with 50 pgmL™' for 24 h (95% viability,
Figure 5A). A large number of dark dots over the image
indicate nanoparticle presence. These particles appear to
be mostly inside the cell or on the cell surface, as repre-
sented by those indicated by the arrows. Some particles
appear in the surrounding areas this may be due to the

adhesive nature of polymer-coated nanoparticles. Al-
though we washed the cell cultures thoroughly before fix-
ation and further processing we still could not achieve a
complete elimination of nanoparticles that attached to the
cell culture surface. We appreciate that this is a problem
that many studies have encountered when dealing with
cell incubation with polymer-coated nanoparticles. When
compared with the control cells, the cells incubated with
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Figure 4 Representative UV-vis absorbance spectra (arbitrary units, a.u.) of nanoparticles of Fe;0,4-PEl, Au seeds, Fe304-PEI-Auceq,
Fe304-PEI-Aucoa: and FesO4-PEI-Au-PEG.
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Figure 5 Cellular interactions of HNPs with A375M cells. A) Cell viability estimated by Trypan blue exclusion assay. Cells incubated with
particles (6.25 — 100 ugmL") for O 24, m72, m120 and m168 h (n=3, +SE). Values of viability of treated cells were expressed as a percentage of
that from corresponding control cells. B) Cellular uptake of in A375M cells. Particles (50 ugmL™") incubated for 24 h before fixation and silver
enhanced staining. Arrows indicate nanoparticles that bound to the cells (on cell membrane or inside the cells). * Denotes significant values
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HNPs appear to be of similar physiology indicating that
no morphological changes occurred upon nanoparticle
exposure.

Plasmonic hyperthermia of HNPs in response to laser
treatment

In order to investigate the potential of the HNPs as nano-
heaters, suspensions of HNPs in agar were irradiated with
532 nm light emitted by a continuous wave laser. This
wavelength was chosen as it was relatively close to the
Amax value of the PEG coated HNPs (600 nm) determined
by UV spectroscopy (Figure 4). The agar phantom was
used to mimic physiological conditions. We observed a
localized heating of the sample in the region exposed to
laser radiation by thermocouple measurement. The heat-
ing in samples with no HNPs present was negligible.

To test the localization of the laser induced heating, a
second thermocouple was fixed on the edge of the phan-
tom sample 14 mm from the laser focal point. No
temperature increase (or decrease) was recorded from
this thermocouple during laser irradiation (data not
shown). This indicated that heating only occurred in the
region exposed to the laser radiation. Indeed translation

of the sample across the laser beam qualitatively indi-
cated the same result (data not shown). The ability to
deliver a localized treatment is desirable so that sur-
rounding healthy tissues do not experience secondary
heating resulting in unwanted damage [28].

Figure 6A shows the change in temperature (AT) of the
agar gels containing the HNPs (0.4, 2, 10, 50 pgmL™), AT
takes into account any temperature change in the control
sample (Equation 1 in the Methods). The gels were heated
for 20, 40 and 90 s. At concentrations of 0.4-2 pgmL ™", AT
was approximately 5 °C after 20 s laser irradiation; upon
longer laser exposure a small incremental time dependant
increase was observed however, this was not significant
(p>0.05) . At 10 uygmL™ & 50 ugmL™ the AT significantly
increased upon longer laser exposure (40 s & 90 s) when
compared to 20 s irradiation. At 50 pgmL™' the AT
increased significantly at all exposure times compared to
the AT data obtained for other concentrations (p <0.05).
Hence, the AT, (31 °C) was observed at the highest
concentration (50 ugmL™) and longest exposure duration
(90 s).

Figure 6B shows a representation of the real time
temperature response pattern of the 50 pugmL™ sample
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over the various irradiation times. The data further illus-
trates the time responsive nature of the heating effect.
After laser irradiation the sample exposed to the laser
for 20 s took almost 2 min to return to room
temperature, after 40 s irradiation the sample took ap-
proximately 3 min (Figure 6B). After 4 min the particles
heated for 90 s had not returned to their original
temperature. These data thus provide important infor-
mation for the choice of nanoparticle concentration and
irradiation times for further studies where toxicity and
AT would be the key elements.

T, & T, MR relaxivity determined by magnetic resonance
imaging (MRI) of HNPs

Figure 7 shows the longitudinal (A) and transverse (B)
relaxation rates (1/T;) as a function of concentration of
Fe in mM. The corresponding longitudinal and trans-
verse relaxivities r; and r, were calculated from the gra-
dient of the straight lines fitted to those data. In both

graphs the relaxation rates (1/T;) for the sample with the
highest concentration of Fe (1.79 mM) had to be omit-
ted as it deviated largely from the linear fit to the rest of
the data. This deviation might be explained either with
agglomeration of nanoparticles at such high concentra-
tions or with the larger error introduced in the calcula-
tion of the T, for that particular sample due to the
much lower signal-to-noise ratio of the MR images
obtained at longer TE.

This procedure of determination of r; and r, renders a
transverse relaxivity of 132.2 mM™* st (Figure 7B). This
value was similar to the relaxivity of previously clinically
used Feridex®. Feridex® is a superparamagnetic nano-
particle coated with dextran; the transverse relaxivity of
Feridex® is reportedly 133 mM™ s at 1.5 T magnetic
field strength [40]. This data suggests that the gold coat-
ing on the surface of the IONPs does not impede their
ability to act as magnetic resonance contrast agents. The
relaxivity r; of the HNPs was calculated to be
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linear fit to the experimental data. The relaxivities r1 and r2 were calculated as the gradient to the straight lines fitted to the experimental data.

0243 mM* s? (Figure 7A). This notably small r;
resulted in ry/r, ratio of 0.0018. The reason for the small
r; value is not fully understood; perhaps the architecture
of the HNPs may contribute to this phenomenon.

Discussion

In this study we successfully synthesized iron oxide-gold
hybrid core-shell nanoparticles. The iron oxide cores
appeared to be monodisperse and around 30 nm in size
(Figure 2A). Polymer coating was achieved using poly
(ethylenimine) confirmed with FTIR and zeta potential
measurement (Figure 1 & Table 1). Gold seeding was
achieved using 2 nm gold nanoparticles and subse-
quently iterative gold reduction onto the nanoparticle
surface resulted in formation of a full gold shell. Each
step in the reaction was monitored with TEM (Figure 2),
EDX analysis (Figure 3) and zeta potential measurement
(Table 1). A gold coating of 10-15 nm thickness was
achieved. However, this could be tailored in future to in-
crease or decrease the thickness with further investiga-
tion of optimal physical properties for different purposes
[28,34]. Finally, the hybrid particles were coated with
PEG and had a hydrodynamic radius of 139 nm deter-
mined using PCS (Table 1). The red shifted UV-vis ab-
sorbance spectra also confirmed complete gold coating
with final A« of 600 nm (Figure 4). Previous studies on
gold nano-shells have reported that the \,,, can be red
shifted into the infrared region 800—1200 nm [29]. Our
particles did not appear to achieve such large shift. The
absorbance peak obtained was very broad and spanned
from 500—-700 nm. The broad absorbance peak and the
lack of shift up to the infrared region are perhaps due to
the synthesis route, the presence of organic polymer
layer between the gold coat and magnetic core and the
variations in shell thickness or HNP diameter. Our
results were however, comparable with others that a

Amax between 500-600 nm was achieved [12,27,35,36].
Ongoing work is being carried out in our lab to optimize
particle parameters and external coatings in order to
achieve narrower absorbance and further red shifted
HNPs.

Cell viability assays indicated that the HNPs did not
possess high cytotoxic effect on A375M cells over 7 day
exposure (Figure 5). When compared to the cell viability
data of polymer coated iron oxide [20] this was compar-
able to our previous study where we showed that after
7 days incubation with 100 pgmL™" MNP-PEI-PEG only
resulted in a 20% reduction in viability [20] (cell viability
determined on three cell lines with similar observations).
This finding indicates that the presence of the gold coat-
ing, or increased size particle diameter had little impact
on the cytotoxic profile of these particles. Reports have
suggested that gold coating protects the iron oxide core
from enzymatic degradation which may result in free
radical production [35]. Our findings provide increased
confidence for the long term in vivo effects of these
HNPs. Further stability studies and more in vitro assays
are currently under way in our lab.

Few studies have demonstrated the heating effect of
iron oxide-gold HNPs. Hirsh et al. previously developed
core-shell iron oxide-gold hybrid particles [41]. The par-
ticles were administered into tumour tissue in mice and
exposed to laser irradiation (820 nm, 4 Wcm™, 5 mm
spot diameter, < 6 min). Their experiments showed that
irradiation of nanoshell-loaded tumours resulted in an
average temperature increase of 37.4 °C after 4—6 min
exposure. Hirsh reported that this temperature increase
was above the threshold temperature at which irrevers-
ible tissue damage occurs [41]. Upon laser irradiation at
532 nm our HNPs showed a time and concentration de-
pendant heating effect (Figure 6). This wavelength was
outside the Ay, determined by UV spectroscopy
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(600 nm), however as previously mentioned the broad
absorbance peak of the HNPs allowed that at 532 nm a
degree of absorbance and scattering was still achieved.
The data obtained hence demonstrate the potential of
the HNPs for future use as nano-heaters. To determine
the optimal heating effects for these particular particles
further irradiation at 600 nm is on-going. We found that
at the highest concentration (50 ugmL™) and laser ex-
posure time (90 s) the HNPs absorbed the light resulting
in a AT of 32 °C. This increase was significantly larger
than at the other concentrations tested (0.4, 2 & 10
ugmL’l) (p <0.005). Our data was obtained in nanoparti-
cles suspended in an agar phantom, whilst this was an
in vitro assay, the agar was used to mimic in vivo tissue
conditions. We appreciate that for in vivo applications,
nanoparticle concentrations of 5-10 pgmL™ would be
much more realistic than 50 pgmL™ [42]. The heating
effect of HNPs with particle concentrations at 5-10
ugmL™ is now under more in-depth investigation.

Our results showed that our ‘custom made’ iron oxide
coated with gold possessed a r, (132 mM™ s™) compar-
able with previously clinically administered Feridex®
(133 mM™* s) [40]. Our data also suggests that the
HNPs also resulted in a T; reduction resulting in ry/ry
ratio of 0.0018. Previously, it has been suggested that
gold coating of IONPs results in quenched contrast abil-
ity [12]. These results suggest that the magnetic proper-
ties of our HNPs after gold coating are in line with
clinical standards and thus have a potential use as con-
trast agents. These findings coupled with the laser irradi-
ation data highlight that the unique physical properties
of the magnetic IONP and gold nano-shell (SPR) are
preserved using a polymer ‘cushion’ layer between the
core and shell. These findings along with the cell viabil-
ity data indicate that our HNPs have clinical potential as
multimodal platforms for a range of biomedical applica-
tions such as image guided cellular hyperthermia or
thermo responsive drug delivery. On-going work in our
lab is currently being carried out in order to further ex-
ploit the properties of these HNPs.

Conclusions

This study demonstrates the potential of HNPs com-
posed of an iron oxide core, poly(ethylenimine) inter-
mediate and gold coating in controlled, highly localized
tissue heating and as MRI contrast agent. The data indi-
cate that the presence of the polymer spacer does not
hinder the ability of the HNPs to act as multimodal plat-
forms for use as nano-heaters and in MR imaging. More
work is needed to further tune and exploit the potential
of these hybrid structures in terms of the thickness of
the gold shell, the cellular uptake and hyperthermia and
the manipulation of laser treatment to obtain the opti-
mal effects.
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Methods

Synthesis of HNPs

Nitrogen was bubbled through a solution of sodium hy-
droxide and potassium nitrate dissolved in deionised
water at 90 °C for 1 h. Iron sulphate dissolved in
sulphuric acid (0.01 M) was added to the reaction and
the mixture was stirred for 24 h at 90 °C under nitrogen.
After this time the reaction was rapidly cooled on ice
and the particles were washed 6 times with deionised
water and magnetically separated from solution. The re-
sultant particles (500 mg) were stored at 4 °C. Fe30, so-
lution (5 mL) was added to 50 mL of PEI solution (5
mgmL™) and sonicated for 2 h. The particles were sepa-
rated from free PEI in solution using a high powered
magnet and extensive washing with deionised water. The
resultant particles (500 mg) were re-suspended in 5 mL
deionised water. Deionised water (400 mL) was stirred
on ice. Chloroauric acid (HAuCly, 4%, 375 pL) was
added to the water followed by 0.2 M sodium carbonate
(Nay,COg, 500 pL). The solution was stirred for 5 min
before addition of sodium borohydride (NaBH, 0.5
mgmL™”, 5 mL). The solution turned a deep red colour
and was stirred for another 10 min. Fe3O4-PEI (2 mL,
20 mg) was added to the gold nano-seed solution
(90 mL) previously prepared. The solution was stirred at
room temperature for 2 h. The magnetic particles were
separated from solution and stabilised by stirring in a so-
lution of 0.1 mgmL™ PEI (MW 2000) for 10 min. Finally,
the particles (20 mg) were washed extensively with water
before re-suspending in 2 mL deionised water. Gold was
reduced onto the particle surface forming a complete
shell. A solution of sodium hydroxide (NaOH, 0.01 M,
110 mL) was stirred with the particle solution. To this
0.5 mL of 1% HAuCl, was added followed by hydroxyl
amine (NH,OH-HCI, 0.75 mL, 0.2 M). Four consecutive
iterative reductions were carried out by addition of 1%
HAuCl, (0.5 mL) and 0.2 M NH,OH-HCI (0.25 mL)
with 10 min intervals. The final solution was left stirring
for 0.5 h before washing in deionised water (x5) and
magnetic separation from solution. The particles were
resuspended in 10 mL deionised water. A solution of
Fe304-PEI-Au (2 mL) was stirred with O-[2-(3- Mercap-
topropionyl amino) ethyl]-O’-methylpolyethylene glycol
(PEG-Thiol, 1 mgmL™) for 1 h at 60 °C. The HNPs were
washed with deionised water and separated from solu-
tion using a high powered magnet. The resultant parti-
cles (5 mg) were resuspended in 5 mL deionised water.

Characterization of HNPs

The iron and gold content of the samples was deter-
mined using the inductively coupled plasma (ICP). An
acid digestion was carried out on the samples using con-
centrated nitric acid with heating up to 100 °C (1:1 sam-
ple:acid). A calibration was carried out using iron
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standard and gold standard solutions 0.5 — 5 mgmL™
(R=0.9999). The samples were diluted with deionized
water prior to analysis. A control sample of deionised
water was also run. Nanoparticle solutions in distilled
water were placed in an ultrasonic bath for 10 min be-
fore analysis. Hydrodynamic diameters and polydisper-
sity index measurements were carried out using a
photon correlation spectrometer (PCS, Zetasizer Nano-
7S, Malvern Instruments, UK). All measurements were
conducted in triplicate at 25 °C and an average value
was determined. The zeta potential of the nanoparticles
solutions was then analysed to determine their surface
charge using the same instrument. Samples diluted in
deionised water were dropped onto copper grids (2 pL)
and allowed to dry at room temperature. The grids were
loaded into the TEM and directly imaged using a JEOL
1200 EX- FDL5000 microscope (Jeol, Japan). High reso-
lution images were captured on a high resolution TEM
(HR-TEM), Jeol JEM 2010 (Jeol, Japan). EDX analysis
was collected from the HR-TEM images using Link ISIS
software. Polymer coated HNP solutions (5 mL) were
freeze dried. The resulting powder was run on the FTIR
using a diamond tipped attenuated total reflectance at-
tachment (Nicolette iS5 with iD5 ATR, Thermo-Fisher
UK). A background scan was run with no sample
present. The samples were scanned 64 times and the
average spectra recorded. Peak absorbance of samples
was determined using a Tecan microplate reader with
integrated cuvette port (Infinite M200, Tecan). Aqueous
samples were analysed in quartz cuvettes, absorbance
scans were carried out between 300 — 700 nm.

Biological testing of HNPs

A375M human melanoma cells were cultured in RPMI
media supplemented with 10% foetal bovine serum
(FBS) and 1% penicillin streptomycin (Penstrep) (Invitro-
gen, UK). The cell viability after incubation with the
nanoparticles was determined via direct counting of the
viable cells. Cells were grown in 6 well plates and incu-
bated with the magnetic nanoparticles for 24, 72, 120
and 168 h periods. After this time the cells were washed
with phosphate buffered saline (PBS) and detached from
the well using trypsin. The cells were suspended in fresh
media. Trypan blue was added to an equal volume of
cell suspension and mixed. 10 pL of trypan blue — cell
mixture was pipette into the counting chamber and
placed in the automated cell counter (Countess™, Invi-
trogen, UK). The number of viable cells was recorded
and expressed as a percentage compared to total cells
(100%).

Cellular uptake of nanoparticles was observed using
silver enhanced staining. Briefly, A375M cells were
seeded into 6 well plates containing glass coverslips
(150,000 cells/well) and grown until 50-60% confluence.
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Coated magnetic nanoparticles were added to the wells
so that the final concentration was 50 ugmL™. The cells
were incubated for 24 h, the media was removed and
cells were washed with PBS 3 times. Cells were fixed
with icy methanol for 10 min followed by treatment of
2.5% HCI (10 min). Cells were washed and treated with
LI silver enhanced staining reagents (Invitrogen, UK) for
30 min. Cells were then washed with PBS and coverslips
mounted on glass slides. The samples were imaged on a
Olympus IX71 light microscope (Olympus, UK) using
X40 magnification and Hamamatsu Orca-05 G camera
attachment (Hamamatsu, Japan).

Laser irradiation of HNPs in agar gel

HNPs were evenly dispersed in 2% agar at concentra-
tions of 0.4, 2, 10 and 50 pgmL™. The gels were formed
in shallow, 35 mm diameter plastic petri dishes. For ex-
posure, the gel phantom samples at room temperature
(22 °C) were exposed to 532 nm continuous wave laser
beam emitted by a solid state laser system (Laser
Quantum, UK). The 1.1 Watt laser beam was collimated
at 7 mm diameter and passed through the centre of the
gel, hence the power density of laser irradiation on the
sample was ~2.86 Wcm™. The real time temperature
change in the gel was monitored by a pair of thermocou-
ples (0.076 mm diameter, T-type, PFA coated, Omega,
UK). One thermocouple was positioned at the centre of
the gel (in the laser beam) and the second at the edge. A
thermocouple logger (TCO08 Pico Technology, UK) con-
verted the voltage difference to the real-time change in
temperature. The gel samples were positioned in the
laser beam using an x,y,z translation stage (Newport,
USA) and irradiated by the beam for fixed durations of
20, 40, 90 seconds which were timed using a stopwatch.
A control sample of 2% agar was used to measure the
temperature change when no nanoparticles were
present. The temperature change in the samples was
determined as:

AT = (Tﬁnal - Tinitial) — T4 control (1)

Magnetic resonance imaging of HNPs

HNPs (0.05 -100 pugmL™) were evenly dispersed 2% agar
and placed into 7 mL bijou vials (SLS, UK). The relaxiv-
ity measurements were carried out at 19 °C in a 1.5 T
clinical MRI scanner (Signa HDx, GE, USA) using GE’s
receive-only 8-channel head coil. T; and T, relaxation
times were determined using the Inversion Recovery
Spin-Echo (IRSE) and Spin-Echo (SE) sequences, re-
spectively. The imaging parameters were as follows
IRSE: repetition time (TR)=15 s; echo time
(TE) =10 ms; acquisition matrix =128x128; field of view
(FOV) =14 cm; band width (BW)=15.63 kHz; number
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of excitations (NEX) 1; slice thickness =10 mm and in-
version time (TI) of 100, 200, 400, 600, 800,1000, 1200,
1400 1600, 1800, 2000, and 2200 ms. The SE parameters
were as above with TE of 10, 20, 30, 50, 100, 150, 350,
500,750, and 1000 ms. Regions of interest (ROI) were
selected in each vial over the image set and Ti (i=1 and
2) values were calculated from the three-parameter non-
linear least squares fit of the mean signal intensities vs.
time (TT and TE respectively) data. The associated relax-
ivities (r; in mM™ s') were obtained from the gradient
of the linear least-squares fit of the relaxation rates (R;=
1/T;) versus concentration of Fe (mM).
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