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Abstract
On the basis of the integral theorems about the mean curvature and Gauss curvature, geometric
conservation laws for cells or vesicles are proved. These conservation laws may depict various
special bionano structures discovered in experiments, such as the membrane nanotubes and
singular points grown from the surfaces of cells or vesicles. Potential applications of the
conservation laws to lipid nanotube junctions that interconnect cells or vesicles are discussed.

Background
Cell-to-cell communication is one of the focuses in cell
biology. In the past, three mechanisms for intercellular
communication, i.e. chemical synapses, gap junctions and
plasmodesmata, have been confirmed. Recently, new
mechanism for long-distance intercellular communica-
tion is revealed. Rustoms et al. [1] discover that highly
sensitive nanotubular structures may be formed de novo
between cells. Except for living cells, liposomes and lipid
bilayer vesicles with membrane nanotubes have also been
found in experiments [2-5]. Impressive photos of mem-
brane nanotubes interconnecting vesicles can be seen in
Ref.[3]. Another beautiful photo of a membrane nano-
tube generated from a vesicle deformed by optical tweez-
ers can be shown in Ref.[4].

The above long-distance bionano structures may be of
essential importance in cell biology and have drawn the
attentions of researchers in different disciplines. Many
annotations are concentrated on the formations of the
membrane nanotubes. Different force generating proc-
esses such as the movement of motor proteins or the
polymerization of cytoskeletal filaments have been sug-

gested to be responsible for the tube formations in cells
[6]. Of course, such annotations are absolutely necessary,
but may not be sufficient. Another question with equal
importance may be asked: Are there geometric conserva-
tion laws observed by such interesting bionano structures?

Methods and results
To answer the above question, geometrical method will
be used in this letter. As the first step, this paper will deal
with the simplest "representative cell-nanotube element"
(i.e. a cell or vesicle with membrane nanotubes). Then on
the basis of the "element", vesicles with membrane nano-
tubes interconnected by a 2-way or 3-way nanotube junc-
tion will be investigated.

Geometrically, a cell membrane or vesicle may be treated
as a curved surface or 2D Riemann manifold. The general-
ized situation of a smooth curved surface is shown in Fig.
1. Let n be the outward unit normal of the surface and C
be any smooth and closed curve drawn on the surface. On
this curve, let m be the unit vector tangential to the surface
and normal to the curve, drawn outward from the region
enclosed by C. Let t be the unit tangent along the positive
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direction of the curve. Vectors t, n and m form a right-
handed system (Fig. 1) with the relation m = t × n satis-
fied. On such a surface, there are the conventional integral
theorem about the mean curvature and a new integral the-
orem about the Gauss curvature [7]:

Here  and  are respectively the nor-

mal curvature and the geodesic torsion of curve C. ds =
mds is the vector element with ds the length element along
the curve C . H = (c1 + c2)/2 and K = c1c2 are respectively

the mean curvature and Gauss curvature with c1 and c2 the

two principle curvatures. dA = ndA is the element area vec-
tor in the normal direction of the curved surface and A is
the area enclosed by C. For smooth and closed curved sur-
faces, Eq.(1) and Eq.(2) will degenerate respectively to

 and . These integral theorems lay

the foundation for the conservation law for cells or vesi-
cles with membrane nanotubes or singular points.

Experiment [1] has shown that seamless transition is real-
ized at the interconnecting location between cell mem-
brane and membrane nanotube. From this information
one may suppose that the cell and nanotube together has
formed globally a smooth curved surface. If the tube is
open and long enough, the open end of the curved surface
may be idealized as part of a cylindrical surface with
boundary curve C (Fig. 2). For simplicity C is supposed to
be a plane curve perpendicular to the axis of the tube.
Thus on curve C τg = 0 will be met and the unit vector m
may be parallel to the axis of the tube. At last the left-hand
sides of Eq.(1) and Eq.(2) will become

Then Eq.(1) and Eq.(2) may be changed into

Here r is the radius of the tube. The unit vector m charac-
terizes the "direction of the membrane nanotube". These
are the geometric conservation laws for a cell or vesicle
with one open membrane nanotube. Eq.(5) means that
the integral of the mean curvature on the curved surface in
Fig. 2 is dominated not only by the direction of the mem-
brane nanotube but also by the radius of the tube. Eq.(6)
shows that the integral of the Gauss curvature on the same
curved surface is only determined by the direction of the
membrane nanotube but independent of the radius of the
tube. If the total number of membrane nanotubes on the
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A cell or vesicle with one membrane nanotube Figure 2
A cell or vesicle with one membrane nanotube.

Schematic of the curved surface with unit vectors m, t and n at its boundaryFigure 1
Schematic of the curved surface with unit vectors m, t and n 
at its boundary.
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cell or vesicle is ntube, then Eq.(5) and Eq.(6) may lead to

Of course, in a living cell the membrane nanotube is sel-
dom open and is usually closed at the tube's end point.
Practical examples for such situation can be found in
Refs.[1,4]. Geometrically this can be realized by letting the
curve C converge gradually (i.e. r → 0) and tangentially to
a point at the tube axis. Hence the cell or vesicle with a
closed membrane nanotube may be abstracted as a closed
surface with a singular point (Fig. 3a). In practice, more
than one singular point may exist on a cell or vesicle. A
typical example for two singular points on a vesicle has
been reported in Ref.[4] and may be schematically
expressed in Fig. 3b. A cell with a group of singular points
is displayed in Ref.[5]. If the total number of singular
points on the cell or vesicle is npoint, Eq.(7) and Eq.(8) may
be rewritten as:

Here mi is the direction of the ith singular point. These are
the geometric conservation laws for a cell or vesicle with
singular points. Eq.(9) means that the integral of the
mean curvature on the closed surface in Fig. 3 is always the
vector zero. Eq.(10) implies that the integral of the Gauss
curvature on the same surface is determined by the num-
bers and directions of singular points.

Discussions
The above geometric conservation laws may be of poten-
tial applications to a kind of special bionano structures —
lipid nanotube junctions. In recent years, the formation of
vesicle-nanotube networks has become a focus [3,8]. In
such networks, lipid nanotube junctions have been fre-
quently used to interconnect vesicles and change net-
work's topologies. However, our knowledge about this
amazing bionano structure is still very limit. This limita-
tion may be overcome in some extent with the aid of the
geometric conservation laws. Here N vesicles with N lipid
nanotubes interconnected at a junction will be studied
(Fig. 4a). In this structure, every vesicle is supposed to
have just one lipid nanotube and each vesicle-nanotube
subsystem may be regarded as an open curved surface Ai
with a boundary Ci (Fig. 4b). According to Eq.(5) and
Eq.(6), one has

Once Ai are connected at Ci (i = 1,2,......, N), the N-way
nanotube junction may be generated through dynamic
self-organizations. At equilibrium state, the vesicle-nano-
tube-junction system together may globally form a
smooth and closed surface A on which the geometric con-
servation laws must be obeyed:

Eq.(13) and Eq.(14) are geometric regulations for the N-
way nanotube junction. Here two special cases will be
explored. The first case is N = 2 (Fig. 5a), which is corre-
spondent to two vesicles A1 and A2 with lipid nanotubes
connected at the tubes' ends C1 and C2 (Fig. 5b). Eq.(13)
and Eq.(14) will lead to
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Cells or vesicles with one or two singular pointsFigure 3
Cells or vesicles with one or two singular points.  (a) One 
singular point, (b) Two singular points.
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r1m1 + r2m2 = 0  (15)

m1 + m2 = 0  (16)

Eq.(15) and Eq.(16) may be equivalent to

r1 = r2  (17)

α1 = α2 = 180°  (18)

Eq.(17) and Eq.(18) mean that the interconnecting sec-
tion should be smooth and seamless. In another word, the
axis of the nanotube should be a smooth curve. If this con-
clusion is combined with physical law, it may be further
found that only straight nanotube instead of curved one is
permissible, because the shortest distance between two
points is the straight length and thus the straight nano-
tube may possess the lowest energy. In fact, all lipid nan-
otubes in experiments are straight without exceptions.
This result may be used to direct micromanipulation.
Practically, a lipid nanotube is drawn from one vesicle
and then connected with another through various tech-
nologies such as micropipette-assisted technique and
microelectrofusion method [8]. Theoretically, another
possible micromanipulation process may exist: Two lipid
nanotubes may be drawn simultaneously from two vesi-
cles and then "welded" at the tubes' ends. In this case,

Eq.(17) and Eq.(18) may tell us how to do successfully,
i.e. not only the radii but also the axes of the two nano-
tubes should be kept consistent at the "welded" location.

Smooth and closed curved surface abstracted from two vesi-cles with two nanotubes interconnected by a 2-way nano-tube junctionFigure 5a
Smooth and closed curved surface abstracted from two vesi-
cles with two nanotubes interconnected by a 2-way nano-
tube junction. (B) Two curved surfaces A1 and A2 with 
boundaries C1 and C2, cut from the junction in Fig. 5a.

Smooth and closed curved surface A, abstracted from N vesicles with N nanotubes interconnected by a N-way nanotube junc-tionFigure 4a
Smooth and closed curved surface A, abstracted from N vesicles with N nanotubes interconnected by a N-way nanotube junc-
tion. (B) The curved surface Ai with a boundary Ci, cut from the junction in Fig. 4a.
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The second case is N = 3 (Fig. 6a), which is correspondent
to three vesicles A1, A2 and A3 with lipid nanotubes con-
nected at the tubes' ends C1, C2 and C3 (Fig. 6b). In this
case Eq.(13) and Eq.(14) will give

r1m1 + r2m2 + r3m3 = 0  (19)

m1 + m2 + m3 = 0  (20)

Eq.(19) and Eq.(20) will assure

r1 = r2 = r3  (21)

α1 = α2 = α3 = 120°  (22)

Eq.(21) and Eq.(22) imply that the 3-way nanotube junc-
tion should be symmetric. Geometrically, the length of
the nanotubes in the symmetric 3-way nanotube junction
is the shortest among all possible 3-way junctions. Hence
physically the symmetric one may be of the lowest energy.
Fortunately, Eq.(21) and Eq.(22) coincides with experi-
ments [3,8] very well.

In the cases of N ≥ 4, the problems will become very com-
plicated and will be explored in succeeding papers.

Conclusion
In biology, many biostructures are constructed according
to very simple geometrical regulations. This seems to be
also true for cells or vesicles with membrane nanotubes or
singular points. Once such laws are well understood,
researchers in bionanotechnology field may benefit a lot
from them.
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