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Abstract

repurposed for alternate functions.

High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to
maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic
apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have
been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL
that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this
review, various applications of ND technology are described, such as their use as miniature membranes for
solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND
harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro
and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application
of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium,
used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be

Background

The term high-density lipoprotein (HDL) describes a
continuum of plasma lipoprotein particles that possess a
multitude of different proteins and a range of lipid con-
stituents [1]. The major physiological function of HDL
is in Reverse Cholesterol Transport [RCT; [2]]. The
well-documented inverse relationship between plasma
HDL concentration and incidence of cardiovascular dis-
ease has generated considerable interest in development
of strategies to increase HDL levels. Aside from exercise,
moderate consumption of alcohol and a healthy lifestyle,
pharmacological approaches are being pursued with the
goal of enhancing athero-protection [3]. In addition to
these strategies, direct infusion of reconstituted HDL
(rHDL) into subjects has been performed [4]. The idea
is that parenteral administration of rHDL will promote
RCT, facilitating regression of atheroma. Indeed, Nissen
et al. [5] reported Phase II clinical trial results showing
a decrease in intimal thickness in patients treated with
rHDL harboring a variant apolipoprotein A-I
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While its structural properties and composition can be
rather complex, in its most basic form, HDL are rela-
tively simple, containing only phospholipid and apolipo-
protein (apo). The most abundant and primary
apolipoprotein component of plasma HDL is apoA-I.
Human apoA-I (243 amino acids) is well characterized
in terms of its structural and functional properties.
When incubated with certain phospholipid vesicles
in vitro, apoA-I induces formation of rHDL. The key
structural element of apoA-I required for rHDL assem-
bly is amphipathic o-helix. Indeed, other apolipopro-
teins, apolipoprotein fragments or peptides that possess
this secondary structure, can also combine with phos-
pholipid to form rHDL. In general, the product particle
is a nanometer scale disk-shaped phospholipid bilayer
whose periphery is circumscribed by two or more apoli-
poprotein molecules (Figure 1). Indeed, a defining char-
acteristic of members of the class of exchangeable
apolipoprotein is an ability to form rHDL. For the pur-
pose of this review, the protein/peptide component of
discoidal rHDL is termed the “scaffold” in recognition of
its function in stabilization of the otherwise unstable
edge of the bilayer.
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consistent with an ellipsoidal shape has been presented [59-61].
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Figure 1 Schematic diagram of rHDL structural organization. The complex depicted is comprised of a disk-shaped phospholipid bilayer that
is circumscribed by an amphipathic “scaffold” protein. Note: The exact structural organization of rHDL remains controversial. Recently, evidence
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Production of rHDL

Detailed structure-function studies of exchangeable apo-
lipoproteins have given rise to two general methods for
discoidal rHDL formation: detergent dialysis and direct
conversion. Whereas the detergent dialysis method [6]
has the advantage that a broad spectrum of bilayer
forming phospholipids can be employed, a disadvantage
relates to the potentially problematic detergent removal
step, which can be achieved by specific absorption or
exhaustive dialysis. On the other hand, while limited to
fewer phospholipid substrates, the direct conversion
method does not employ detergents. The types of phos-
pholipids commonly used in the direct conversion
method are synthetic, saturated acyl chain glyceropho-
spholipids such as dimyristoylphosphatidylcholine
(DMPC) or dimyristoylphosphatidylglycerol. These lipids
undergo a gel to liquid crystalline phase transition in
the range of 23°C. Normally, the phospholipid substrate
is hydrated and induced to form vesicles, either by
membrane extrusion or sonication. Incubation of the
phospholipid vesicle substrate with an appropriate scaf-
fold protein (e.g. apoA-I) induces self-assembly of
rHDL. It is likely that the reaction proceeds most effi-
ciently in this temperature range because defects created
in the vesicle bilayer surface serve as sites for apolipo-
protein penetration, bilayer disruption and transforma-
tion to rHDL. Among the apolipoproteins that have
been examined for their ability to transform phospholi-
pid bilayer vesicles into rHDL and function as a scaffold
are apoA-I, apoE, apoA-1V, apoA-V and apolipophorin
III. In addition, it is known that fragments of

apolipoproteins [7] or designer peptides [8] can substi-
tute for full-length apolipoproteins in this reaction.
Based on this description, it is evident that myriad com-
binations of phospholipid and scaffold can be employed
to formulate unique rHDL. These particles are readily
characterized in terms of size by non-denaturing polya-
crylamide gel electrophoresis and morphology by elec-
tron or atomic force microscopy (AFM).

Over the past decade, discoidal rHDL have been repur-
posed for applications beyond its physiological role in
lipoprotein metabolism. This review describes active
areas of research that have evolved from our basic under-
standing of rHDL structure and assembly. Whereas
rHDL has been modified to re-task it for alternate pur-
poses, its basic structural elements, including disk shape,
nanometer scale size and a planar bilayer whose periph-
ery is stabilized by a scaffold, are preserved. In this man-
ner, rHDL serve as a platform capable of packaging
transmembrane proteins in a native-like membrane
environment, solubilization and delivery of hydrophobic
drugs/biomolecules and presentation of contrast agents
for magnetic resonance imaging of atherosclerotic
lesions. In an effort to distinguish engineered rHDL from
classical rHDL, the term nanodisk (ND) is used to
describe rHDL formulated to possess a transmembrane
protein, drug or non-natural hydrophobic moiety.

ND as a miniature membrane environment for
solubilization of transmembrane proteins

The bilayer component of ND provides a native-like
environment for study of transmembrane proteins in
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isolation. The concepts being developed on this research
front are that Type 1, Type 2 or Type 3 membrane pro-
teins can be inserted into ND with retention of their
native conformation/biological activity. As with a cell
membrane, the inserted protein would align such that
its transmembrane segment(s) spans the bilayer while
their soluble, extra-membranous portions, exist in the
aqueous environment (Figure 2). If correctly inserted, it
is anticipated that specific biological or enzymatic prop-
erties of the protein will be preserved. The surface area
of a 20 nm diameter ND particle is ~300 nm?, ample
area to accommodate several molecules of a multiple
pass transmembrane protein. Advantages of ND versus
detergent micelles include a more natural environment
and the absence of detergent related effects on confor-
mation or activity of the subject protein. While lipo-
somes are amenable to study of transmembrane
proteins, these complexes suffer from having an inacces-
sible inner aqueous space, protein orientation issues,
size variability and lack of complete solubility.

Several groups have successfully generated membrane
protein-containing ND, including cytochrome P450 s,
seven-transmembrane proteins, bacterial chemorecep-
tors and others [[9-12] for reviews]. Advantages of ND
for this purpose include particle size homogeneity,
access to both sides of the membrane and greater con-
trol over the oligomerization state of the inserted pro-
tein. The power and potential of this technology is
illustrated by the following specific examples:

a. Bacteriorhodopsin
Bacteriorhodopsin (bR) from the purple membrane of
halobacterium halobium is a prototype integral
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membrane protein. This 247 amino acid, light-driven
proton pump possesses a covalently bound molecule of
retinal. Elegant electron crystallography methods were
developed and employed by Henderson and Unwin to
decipher the structure of bacteriorhodopsin at near
atomic resolution [13]. The protein is comprised of a
bundle of seven ~25 residue a-helical rods that span the
bilayer while charged residues at the surface of the mem-
brane contact the aqueous solvent. In its native form bR
exists as trimers that organize into a two-dimensional
hexagonal array in the plane of the membrane. In 2006,
Bayburt et al. [14] assembled bR into ND. Under the
conditions employed each ND contained three bR mole-
cules. Small angle X-ray scattering analysis provided
evidence that bR embeds in the ND bilayer while
evidence of trimer formation was obtained by near UV
circular dichroism spectroscopy of the retinal absor-
bance bands. In further study of this system, Blanchette
et al. [15] used atomic force microscopy to image and
analyze bR-ND. The self-assembly process employed by
these authors generated two distinct ND populations,
bR-ND and empty-ND, as distinguished by an average
particle height increment of 1.0 nm for bR-ND. When
bR is present during assembly, ND diameters are larger
suggesting the inserted protein influences the dimen-
sions of the product ND.

b. Cytochrome P450

Baas and coworker [16] reported on structural and func-
tional characterization of cytochrome P450 3A4 (CYP
3A4)-ND. Solution small angle X-ray scattering of CYP
3A4-ND provided evidence that CYP 3A4 retains hydro-
xylation activity. In other work, Das and Sligar [17]

Figure 2 Diagram of a ND particle with an embedded transmembrane protein. The bilayer component of the ND provides a miniature
bilayer membrane that can accommodate one or more transmembrane proteins in a native-like conformation.
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incorporated cytochrome P450 reductase (CPR) into ND
and investigated its ability to transfer electrons from
NADPH to microsomal P450 s. The redox potential of
CPR’s FMN and FAD cofactors shifted to more positive
values in ND compared to a solubilized version of the
reductase in which the N-terminal membrane spanning
domain was cleaved. Moreover, when anionic lipids
were used to alter the membrane composition of CPR-
ND, the redox potential of both flavins became more
negative, favoring electron transfer from CPR to cyto-
chrome P450.

c. B2-adrenergic receptor

Leitz et al. [18] reported on ND harboring {32-adrenergic
receptor. Evidence that the receptor adopts a native like
conformation within the ND milieu was obtained from
study of its G-protein coupling activity.

d. Hydrogenase

Baker et al. [19] reported the physical characterization
and hydrogen-evolving activity of ND assembled with
hydrogenase obtained from the thermophilic Archea,
Pyrococcus furiosus. Insofar as this class of membrane
bound enzyme is capable of ex vivo hydrogen produc-
tion from starch or glucose, this work may impact
development of bioengineered hydrogen generation
methods for renewable energy production.

e. SecYEG

In bacteria, protein transit across the cytoplasmic mem-
brane is mediated by translocase [20]. Translocase con-
sists of the transmembrane protein conducting channel,
SecYEG, a soluble motor protein, SecA, and the chaper-
one, SecB. Nascent proteins destined for secretion are
bound by SecB and directed to SecYEG- associated
SecA. Protein translocation is subsequently driven by
SecA through repeated cycles of ATP binding and
hydrolysis wherein the target protein is threaded
through the SecYEG pore. Alami et al. [21] successfully
reconstituted SecYEG into ND and used these particles
to study the interaction of SecYEG and its cytosolic
partner, SecA. SecYEG-ND were able to trigger dissocia-
tion of SecA dimers and associate with the SecA mono-
mer, leading to activation of SecA ATPase. Thus,
SecYEG-ND represent a novel means to investigate the
role of bacterial protein transport via translocase.

f. Anthrax toxin

Katayama et al. [22] obtained structural insight into the
mechanism whereby protective antigen (PA) pore for-
mation mediates translocation of the enzymatic compo-
nents of anthrax toxin across membranes. Two
populations of PA pores, in vesicles and ND, were
reconstructed from electron microscopic images at 22 A
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resolution. Fitting the X-ray crystallographic coordinates
of the PA pre-pore revealed a prominent flange, formed
by convergence of mobile loops that function in protein
translocation. Identification of the location of functional
elements of the PA pore from electron microscopic
characterization of ND embedded PA represents an
innovative use of ND technology.

g. VDAC-1
The voltage-dependent anion channel (VDAC) is an
essential protein in the eukaryotic outer mitochondrial
membrane, providing a pore for substrate diffusion.
High-resolution structures of VDAC-1 in detergent
micelles and bicelles have been reported using solution
NMR and X-ray crystallography. These studies have
resolved longstanding issues related to VDAC membrane
topology and provide the first eukaryotic 3-barrel mem-
brane protein structure. At the same time, the structure -
function basis for the voltage gating mechanism of
VDAC-1 or its modulation by NADH remain unresolved.
To address these issues Raschle et al. [23] conducted
electron microscopy and solution NMR spectroscopy on
VDAC-1-ND. Electron microscopy provided evidence for
formation of VDAC-1 multimers, while high-resolution
NMR spectroscopy revealed that VDAC-1 is properly
folded and manifests NADH binding activity. Thus, ND
offer a new approach for study of the biophysical proper-
ties of VDAC-1 under native-like conditions.

h. Hemagglutinin

Influenza virus infection causes significant mortality and
morbidity in human populations. Hemagglutinin (HA) is
the major protein target of the protective antibody
response induced by influenza viral infection. The influ-
enza virion grows by budding from the plasma membrane
of an infected cell. The outer envelope of influenza virus
consists of a lipid bilayer into which the integral mem-
brane glycoprotein, HA, inserts. Whereas recombinant
HA is relatively easy to produce, its efficacy as a vaccine is
limited by an inability to retain a native, membrane-bound
conformation. Bhattacharya et al. [24] generated recombi-
nant HA-ND (influenza virus strain A/New Caledonia/20/
99; HIN1) and investigated its ability to confer immunity
upon influenza virus challenge. HA-ND vaccination
induced a robust antibody response with a high hemagglu-
tination inhibition titer. The finding that HA-ND vaccina-
tion conferred a level of protection comparable to
Fluzone® and FluMist°® following HIN1 challenge, suggests
this approach is worth pursuing in greater detail.

Vehicle for solubilization and delivery of
hydrophobic biomolecules

Aside from study of membrane bound proteins, another
application of ND technology is as a vehicle for
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transport/delivery of small hydrophobic biomolecules/
drugs [25]. To date, several bioactive compounds,
including the macrolide polyene antibiotic, amphotericin
B (AMB), the isoprenoid, all trans retinoic acid (ATRA)
and the polyphenol, curcumin, have been successfully
integrated into the ND milieu (Figure 3). On the basis
of studies characterizing drug incorporation efficiency,
retention of biological activity and ease of formulation,
it is apparent that ND constitute a platform for solubili-
zation, transport and delivery of hydrophobic bioactive
molecules. Recent success in the design and production
of targeted-ND offer a means to expand the capability
of this approach [26].

Amphotericin B
AMB has been used clinically for nearly half a century.
It is an amphoteric molecule that interacts with
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membrane sterols (preferably 24 substituted sterols such
as ergosterol), forming pores that facilitate leakage of
cell contents. Clinical application of this potent antifun-
gal is limited by poor oral bioavailablility, infusion-
related toxicity and nephrotoxicity [27]. Using the direct
solubilization method, AMB-ND have been formulated
with high incorporation efficiency [28,29]. AMB-ND
inhibited growth of Saccharomyces cerevisiae as well as
several pathogenic fungal species [28]. Furthermore,
compared to AMB-deoxycholate, AMB-ND display atte-
nuated red blood cell hemolytic activity and decreased
toxicity toward cultured hepatoma cells. In vivo studies
in immunocompetent mice revealed that AMB-ND are
nontoxic at concentrations up to 10 mg/kg AMB, and
show efficacy in a mouse model of candidiasis at con-
centrations as low as 0.25 mg/kg [28]. Taken together,
these results indicate that AMB-ND constitute a novel

OCHs

i N R

H3CO

Figure 3 Structure of small hydrophobic molecules. The water insoluble molecules shown, including amphotericin B, all trans retinoic acid
and curcumin, have been successfully incorporated in ND with retention of biological activity.
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formulation that effectively solubilizes the antibiotic and
elicits strong in vitro and in vivo antifungal activity, with
no observed toxicity at therapeutic doses.

AMB-ND have also been examined for efficacy in
Leishmania major infected mice [30,31]. Membranes of
these protozoal parasites contain episterol and, as such,
are susceptible to AMB. When L. major-infected mice
were treated with AMB-ND, enhanced efficacy was
observed. Mice administered AMB-ND at 1 or 5 mg/kg
displayed decreased lesion size and parasite burden. At
5 mg/kg AMB-ND induced complete clearance of the
infection, with no lesions remaining and no parasites
isolated from infected animals. By contrast, liposomal
AMB, at the same dose, was far less effective. The ability
of AMB-ND to induce clearance of L. major parasites
from a susceptible strain of mice without an appreciable
change in cytokine response suggests AMB-ND repre-
sent a potentially useful formulation for treatment of
intrahistiocytic organisms.

All trans retinoic acid

Retinoids, such as ATRA, are useful agents in cancer
therapy as they exhibit a central role in cell growth, dif-
ferentiation, and apoptosis [32,33]. Its beneficial actions
have been well documented for treatment of acute pro-
myelocytic leukemia [34]. ATRA binding to nuclear hor-
mone receptors transactivates target genes, leading to
cell growth arrest or apoptosis [35-37]. At the same
time, ATRA is insoluble in water, toxic at higher doses
and has limited bioavailability [38]. Pharmacological
levels can cause retinoic acid syndrome and neurotoxi-
city, particularly in children [39]. Redmond et al. [40]
formulated ATRA into ND. Subsequently, Singh et al.
[41] evaluated effects of ATRA-ND on Mantle cell lym-
phoma (MCL), a subtype of non-Hodgkin’s lymphoma
that arises from uncontrolled proliferation of a subset of
pregerminal center cells located in the mantle region of
secondary follicles [42]. In cell culture studies, compared
to free ATRA, ATRA-ND more effectively induced reac-
tive oxygen species generation and led to a greater
degree of cell death. Mechanistic studies revealed that
ATRA-ND enhanced G1 growth arrest, up-regulated
p2land p27 and down-regulated cyclin D1. At ATRA
concentrations that induce apoptosis, expression levels
of retinoic acid receptor-o. and retinoid X receptor-y
increased. Taken together, evidence indicates that incor-
poration of ATRA into ND enhances the biological
activity of this retinoid.

Curcumin

Known chemically as diferuloylmethane, curcumin is a
hydrophobic polyphenol derived from rhizome of tur-
meric (Curcuma longa), an East Indian plant. Curcumin
possesses diverse pharmacologic effects including anti-
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inflammatory, anti-oxidant and anti-proliferative activ-
ities [43,44]. Furthermore, curcumin is non-toxic, even
at relatively high doses [45]. Despite this, clinical
advancement of curcumin has been hindered by poor
water solubility, short biological half-life and low bioa-
vailability following oral administration. Ghosh et al.
[46] formulated curcumin-ND at a 6:1 phospholipid:cur-
cumin molar ratio. When formulated in ND, curcumin
is water-soluble and gives rise to a characteristic absor-
bance spectrum. AFM analysis revealed curcumin-ND
are disk-shaped particles with a diameter < 50 nm. In
cell culture studies, curcumin-ND induced enhanced
HepG2 cell growth inhibition compared to free curcu-
min. Moreover, curcumin-ND were a more potent indu-
cer of apoptosis in cultured MCL cells than free
curcumin.

Contrast agent enriched ND for medical imaging
Given that cardiovascular disease is the major cause of
mortality in North America, there is a pressing need for
noninvasive imaging of atherosclerotic lesions. One of
the most promising techniques currently available is
magnetic resonance imaging (MRI). In the case of cardi-
ovascular disease, MRI can be used to identify and char-
acterize plaque deposits. In this way it facilitates
diagnosis, choice of therapy as well as assessment of the
effectiveness of a given intervention. The utility of MRI
is significantly enhanced by the use of paramagnetic
ions [47]. A popular paramagnetic ion used as a contrast
agent for MRI is the chemical element gadolinium (Gd;
atomic number 64). Gd*>* chelates are widely used
because they provide positive contrast (imaging bright-
ening) in anatomical images rather than negative con-
trast. Furthermore, Gd has no known biological role and
Gd?*-chelates are generally considered nontoxic. An
example of an amphiphilic Gd** chelator is diethylene-
triaminepentaacetate-dimyristoylphosphatidylethanola-
mine (Gd*>*-DTPA-DMPE) (Figure 4). The lipophilic
DMPE moiety of this chelator provides a means to
tether Gd®>* to ND. In addition to amphiphilic Gd**
chelates, ND have also been modified with lipophilic
fluorophores, extending their use to fluorescence ima-
ging techniques.

Skajaa et al. [48] have summarized progress toward
establishing ND as a vehicle for delivery of diagnostic
agents to vulnerable atherosclerotic plaques in mouse
models of atherosclerosis. For example, Frias et al. [49]
injected Gd**-ND into mice with atherosclerotic lesions.
Subsequent MRI analysis revealed a clear enhancement
of plaque contrast. Likewise, Cormode et al. [50] used
Gd>*-ND to enhance contrast in macrophage-rich areas
of plaque in a mouse model of atherosclerosis. Cormode
et al. [51] incorporated gold, iron oxide, or quantum dot
nanocrystals into ND for computed tomography,
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Figure 4 Structures of specialized lipids. Gd>*-DTPA-DMPE (diethylenetriaminepentaacetate-dimyristoylphosphatidylethanolamine) is an
amphiphilic Gd** chelator useful in magnetic resonance imaging; DMPC (dimyristoylphosphatidylcholine) is a glycerophospholipid commonly
employed as a structural lipid in ND; Rhod-PE (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyllammonium
salt) is a lipophilic fluorophore useful in fluorescence imaging techniques.

magnetic resonance, and fluorescence imaging, respec- and examined their ability to bind His-tagged proteins
tively. By including additional probes in these particles, (Figure 5). The nickel-chelating lipid, DOGS-NTA-Ni
unique functionalities were introduced. Importantly, the  (1,2-dioleoyl-sn-glycero-3-{[N-(5-amino-1-carboxypentyl)
in vitro and in vivo behavior of such ND mimicked the iminodiacetic acid] succinyl}(nickel salt), was incorporated
behavior of native HDL. into ND at varying amounts. Gel filtration chromatogra-
Chen et al. [52] introduced a targeting moiety into  phy, native PAGE and AFM analysis revealed that
Gd**-ND in an effort to improve macrophage uptake. A His-tagged proteins bind to these modified ND in a
carboxyfluorescein-labeled apoE-derived peptide, termed  nickel-dependent manner. In an example of the utility of
P2fA2, was used as scaffold in Gd**-ND. Macrophage this approach, DOGS-NTA-Ni-ND were employed as a
uptake was studied in J774A.1 macrophages and MRI stu-  substrate for binding His-tagged West Nile virus envelope
dies were performed in apoE (-/-) mice. In vivo studies  protein [55]. The observation that envelope protein immu-
showed a more pronounced and significantly higher signal  nogenicity increased upon conjugation to ND suggests
enhancement with the apoE peptide while confocal micro-  they may be useful as a vaccine to prevent West Nile ence-
scopy studies revealed that P2fA2 Gd**-ND co-localize  phalitis. In a modification of this general approach Borch
with intraplaque macrophages. In another application, et al. [56] generated ND harboring ganglioside GM;. Sub-
Chen et al. [53] functionalized Gd**-ND with an o,8  sequent studies with GM;-ND showed they possess the
3-integrin-specific pentapeptide as a means to target ND  capacity to recognize and bind its soluble interaction part-
to angiogenic endothelial cells. Subsequent studies revealed  ner, cholera toxin B subunit. Finally, sphingosine-1-phos-
preferential uptake of the targeted ND by endothelial cells. ~ phate (S1P) is a naturally occurring bioactive lipid that
elicits effects on mitogenesis, endothelial cell motility, cell
Other applications survival and differentiation. Matsuo et al. [57] examined
As the applications described above continue to be devel-  the effect of SIP-ND on tube formation in endothelial
oped and improved, additional new uses of ND technology  cells. The effect of SIP-ND on endothelial cells observed
have emerged recently. For example, Fischer et al. [54] in this study vividly illustrates the utility of incorporating
incorporated synthetic nickel-chelating lipids into ND  bioactive lipids into the ND platform.
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Figure 5 Capturing His-tagged proteins on the surface of ND. Incorporation of the nickel-chelating lipid, DOGS-NTA-Ni (1,2-dioleoyl-sn-
glycero-3-{[N-(5-amino-1-carboxypentyl) iminodiacetic acid] succinyl}(nickel salt) into ND confers the ability to stably and specifically bind His
tagged proteins.
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