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Abstract

Background: The development of effective drug delivery systems capable of transporting small interfering RNA
(siRNA) has been elusive. We have previously reported that colorectal cancer tumor xenograft growth was arrested
following treatment with liposomal preparation of siDCAMKL-1. In this report, we have utilized Nanoparticle (NP)
technology to deliver DCAMKL-1 specific siRNA to knockdown potential key cancer regulators. In this study, mRNA/
miRNA were analyzed using real-time RT-PCR and protein by western blot/immunohistochemistry. siDCAMKL-1 was
encapsulated in Poly(lactide-co-glycolide)-based NPs (NP-siDCAMKL-1); Tumor xenografts were generated in nude
mice, treated with NP-siDCAMKL-1 and DAPT (y-secretase inhibitor) alone and in combination. To measure let-7a
and miR-144 expression in vitro, HCT116 cells were transfected with plasmids encoding the firefly luciferase gene
with let-7a and miR-144 miRNA binding sites in the 3'UTR.

Results: Administration of NP-siDCAMKL-1 into HCT116 xenografts resulted in tumor growth arrest, downregulation
of proto-oncogene c-Myc and Notch-1 via let-7a and miR-144 miRNA-dependent mechanisms, respectively. A
corresponding reduction in let-7a and miR-144 specific luciferase activity was observed in vitro. Moreover, an
upregulation of EMT inhibitor miR-200a and downregulation of the EMT-associated transcription factors ZEB1, ZEB2,
Snail and Slug were observed in vivo. Lastly, DAPT-mediated inhibition of Notch-1 resulted in HCT116 tumor
growth arrest and down regulation of Notch-1 via a miR-144 dependent mechanism.

Conclusions: These findings demonstrate that nanoparticle-based delivery of siRNAs directed at critical targets
such as DCAMKL-1 may provide a novel approach to treat cancer through the regulation of endogenous miRNAs.

Keywords: DCAMKL-1, miR-144, microRNA, siRNA, notch signaling, nanoparticles, HCT116, tumor xenograft, cancer
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Background

Colorectal cancer is the second most common tumor
type in the US and is the third leading cause of cancer-
related mortality, accounting for nearly 9% of all cancer-
related deaths [1]. In the gut, tumorigenesis arises from
the stem cell population located near the base of intest-
inal and colonic crypts [2]. We have recently reported
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that the putative intestinal stem cell marker musashi-1
(Msi-1) regulates Notch-1 in colorectal cancer [3]. Msi-
1 is a positive regulator of Notch signaling through
translational repression of m-numb mRNA (an inhibitor
of Notch signaling) [4].

The novel putative intestinal and pancreatic stem cell
marker DCAMKL-1 [5-7], a microtubule-associated
kinase is upregulated in colorectal and pancreatic can-
cers and plays a functional role in tumorigenesis
through regulation of the tumor suppressor microRNAs
(let-7a, miR-200a and miR-144) and their downstream
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targets such as c-Myc, KRAS, ZEB1, ZEB2 and Notch-1
[8,9].

Post-transcriptional silencing of disease-associated
genes using exogenous short interfering RNA (siRNA) is
an exciting new strategy to treat various human diseases
[10,11]. However, the clinical application of siRNA has
been hindered by its rapid degradation, nonspecific dis-
tribution and poor cellular uptake [12]. Consequently,
delivery systems capable of protecting and transporting
siRNA through both extracellular and intracellular bar-
riers to reach the site of action in the cytosol are
required for successful development of siRNA-based
therapeutics [13]. Nonviral siRNA delivery systems such
as cationic lipids, cationic polymers, and cell-penetrating
peptides have been studied intensively. However, the use
of cationic vectors for clinical applications has been
severely limited by their high toxicity, low serum stabi-
lity, nonspecific immune-stimulating effects, and poor
biodegradability [14].

The use of poly(lactide-co-glycolide) or PLGA nano-
particles (NPs) has emerged as a powerful potential
methodology for carrying both small and large mole-
cules of therapeutic importance, as well as scaffolds for
tissue engineering applications. This utility derives pri-
marily from: (a) physiologic compatibility of PLGA and
its monomers, polyglycolic acid (PGA) and polylactic
acid (PLA), all of which have been established to be safe
for human use for more than 30 years in various biome-
dical applications including drug delivery systems [15];
(b) the commercial availability of a variety of PLGA for-
mulations which allow for control over the rate and
duration of molecules released for optimal physiological
response [16,17]; (c) the biodegradability of PLGA mate-
rials, which provides for sustained release of the encap-
sulated molecules under physiological conditions, and
conversion of PLGA to nontoxic, low-molecular-weight
products that are readily eliminated [18]; and (d) the
ability to manufacture PLGA nanoscale particles (< 500
nm) for potential evasion of the immune phagocytic sys-
tem or fabrication into microparticles on the cellular
scale for targeted delivery of drugs or as antigen-pre-
senting systems [19]. This unique combination of prop-
erties coupled with flexibility during fabrication has led
to interest in modifying the PLGA surface for specific
attachment to cells or organs in the body [20,21] to sup-
port drug delivery and tissue engineering applications.

We have recently demonstrated that targeted inhibi-
tion of DCAMKL-1 resulted in induction of key tumor
suppressor miRNAs and subsequent abrogation of sev-
eral critical oncogenic pathways [8,9]. In this report, we
use PLGA NPs as a delivery vehicle for siDCAMKL-1 to
study the effect on colon cancer cells both in vitro and
in vivo.
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Results

DCAMKL-is increased in various human cancers

We performed immunohistochemical analyses on
human multi-cancer tissue microarrays (Tissue Array
Network, Rockville, MD). Immunoreactive minimal or
no DCAMKL-1 was detected in normal breast, colon,
pancreas and prostate (Figure 1A - left panels), whereas
an increased expression of DCAMKL-1 was detected in
the cytoplasm of epithelial cells and in the stroma of
breast, colon, pancreatic and prostate cancers (Figure
1A - right panels; brown staining, indicated by arrows).

Nanoparticle-based siRNA delivery

PLGA NPs have primarily been used as a vehicle for
pharmaceutical delivery of nucleotides, hormones, or
drugs to target tissues [22]. Here, we employed a PLGA
NP-based siRNA delivery approach as an alternative to
liposomal encapsulation, which we previously used
[3,9,23]. Figure 1B demonstrates a scanning electron
micrograph of PLGA nanoparticle-encapsulated siRNA.
Total RNA isolated from HCT116 cells treated with
NPs (containing 1.4 nM of siDCAMKL-1 and 10 nM of
siSCR) separately and transfection reagent (Ambion) for
48 h was subjected to real-time RT-PCR analysis for
DCAMKL-1. We observed a reduction in DCAMKL-1
mRNA following treatment with siDCAMKL-1 alone or
encapsulated in NPs; these results are similar to our
previous experimental observations [9]. Less siRNA (7-
fold) was required, however, when delivered encapsu-
lated in PLGA-NPs (Figure 1C).

DCAMKL-1 knockdown and DAPT-induced Notch
inhibition blocks tumor progression

We generated tumor xenografts by injecting HCT116 cells
(6 x 10°) subcutaneously into the flanks of NCr-nu/nu
athymic nude mice (see Methods). Starting on day 15,
post-injection of cells, the resulting tumors were treated
with NPs alone (control), NP-siSCR, NP-siDCAMKL-1,
DAPT alone, or NP-siDCAMKL-1+DAPT on every third
day for a total of five doses (Figure 2A). Tumor volumes
were measured at the time of treatments using a caliper
and tumor weight was measured after death® ® **, Admin-
istration of NP-siDCAMKL-1, DAPT, and NP-siD-
CAMKL-1+DAPT resulted in a significant reduction (p <
0.01) in tumor volume and weight compared with either
the control (NPs-alone) or NP-siSCR-treated tumors (Fig-
ure 2A, B and Additional File 1, Figure S1). mRNA analy-
sis demonstrated a significant downregulation (p < 0.01) of
DCAMKL-1 mRNA compared to control or NP-siSCR
treated tumors (Figure 2C). Similarly, a reduction in
DCAMKL-1 protein was observed in tumors treated with
NP-siDCAMKL-1, DAPT, and NP-siDCAMKL-1+DAPT
compared to control or NP-siSCR treated tumors (Figure
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Figure 1 DCAMKL-1 is overexpressed in various human tumors. (A) Immunohistochemistry of DCAMKL-1 (brown) in different human normal
and tumor tissues. Arrows indicate the cells positive for DCAMKL-1, insets are magnified images. (B) Electron microscopic photograph of
siDCAMKL-1 encapsulated PLGA-Nanoparticle. (C) DCAMKL-1 specific SIRNA (siDCAMKL-1) encapsulated in NPs (NP siDCAMKL-1), but not
scrambled siRNA (siSCR) encapsulated in NPs (NP siSCR) decreases DCAMKL-T mRNA expression in HCT116 cells. sSiDCAMKL-1 was also
transfected into HCT116 cells using Ambion transfection reagent. For C, values in the bar graph are given as average + SEM, and asterisks denote
statistically significant differences (P < 0.01) compared with control (NP alone).

NP siSCR NP siDCAMKL-1 sIDCAMKL-1
(1.4 nM) (10 nM)
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2D). These data taken together suggest that inhibition of
DCAMKL-1 and/or Notch-1 results in HCT116 tumor
xenograft growth arrest.

DCAMKL-1 mediated regulation of let-7a miRNA
To determine whether NP-based delivery of siD-
CAMKL-1 regulated let-7a miRNA as described

previously [8,9], HCT116 tumor xenografts (treated with
NPs alone, NP-siSCR, NP-siDCAMKL-1, DAPT alone,
and NP-siDCAMKL-1+DAPT) were analyzed for pri-let-
7a miRNA expression by real-time RT-PCR and nor-
malized using pri-U6 miRNA. Compared to control and
NP-siSCR treated tumors, there was a ~2-fold increase
in pri-let-7a miRNA expression in DCAMKL-1 siRNA-
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Figure 2 Knockdown of DCAMKL-1 and Notch inhibition arrests tumor growth. (A) HCT116 cells were injected into the flanks of athymic
nude mice and tumors were allowed to develop for 15 days. NP encapsulated siRNAs (siDCAMKL-1 and siSCR) were injected directly into the
tumors. Different goups of animals were injected with DAPT in corn oil (i.p) and NP-siDCAMKL-1+DAPT. Treatments were started on day 15 and
given every third day for a total of five injections (inset). Tumors were excised at day 30 and the tumor volumes are represented above from the
data collected at the time of every injection. A representative excised tumor at day 30 is shown on the right. (8) Representative photograph of
mice bearing the tumors from each group are shown. (C) The expression of DCAMKL-T mRNA in the tumors quantitated by real-time RT-PCR. (D)
DCAMKL-1 protein expression was assessed on tumor samples by Western blot analysis. For C, values are given as average + SEM, and asterisks
denote statistically significant differences (P < 0.01) compared with control (NP alone).
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treated tumors (Figure 3A). This was similar to our pre-
viously published data using DOPC-mediated delivery of
siDCAMKL-1 into HCT116 tumor xenografts. Further-
more, we observed a statistically significant increase in
the expression of pri-let-7a miRNA following treatment
with DAPT or NP-siDCAMKL-1+DAPT compared to
NPs alone or NP-siSCR treated tumors (Figure 3A). We
next performed a luciferase reporter gene assay to quan-
titatively measure the effect of siRNA-mediated downre-
gulation of DCAMKL-1 on /let-7a miRNA. HCT116 cells
were transfected with a plasmid containing firefly luci-
ferase gene with a complementary let-7a binding site at
the 3 UTR. Following transfection, cells were treated
with NPs alone, NP-siSCR, or NP-siDCAMKL-1 and
were subjected to luciferase activity measurement. A
dose-dependent reduction in luciferase activity was
observed in cells treated with 50 or 100 nM of NP-siD-
CAMKL-1 compared to control or NP-siSCR (Figure
3B). These data suggest that knockdown of DCAMKL-1
using NP-encapsulated siDCAMKL-1 results in downre-
gulation of let-7a miRNA downstream targets in
HCT116 cells. Subsequently, we evaluated the expres-
sion of proto-oncogene c-Myc (a downstream target to
let-7a miRNA) [9] in the HCT116 tumor xenografts. In
tumors treated with NP-siDCAMKL-1, DAPT, or NP-
siDCAMKL-1+DAPT compared to NPs alone (control)
or NP-siSCR, we observed a ~50% reduction in c-Myc
mRNA estimated using real-time RT-PCR and a reduc-
tion in c-Myc protein revealed by Western blot analysis
(Figure 3C). This downregulation was associated with
reduced c-Myc protein as determined by immunohisto-
chemical analyses (Figure 3D).

DCAMKL-1 regulates Notch-1 via a miR-144 dependent
mechanism
Upregulation of Notch receptors and their ligands have
been described in several cancers including cervical,
lung, colon, head and neck, renal and pancreatic cancer
[24-28]. Given the potential roles of Notch signaling in
adult stem cell regulation and tumorigenesis [29], we
determined the effect of NP-siRNA-mediated knock-
down of DCAMKL-1 on Notch-1 expression in HCT116
cell tumor xenografts. We observed a significant reduc-
tion in Notch-1 mRNA in tumor xenografts treated with
NP-siDCAMKL-1, DAPT, and NP-siDCAMKL-1+DAPT
compared to NPs alone (control) or NP-siSCR treated
tumors (Figure 4A). A reduction in the expression of
Notch-1 protein was observed by immunohistochemical
(Figure 4C) and Western blot analyses (Figure 4D).
Hairy and Enhancer of Split 1 (HES1) is a transcrip-
tion factor and target gene of the canonical Notch sig-
naling pathway [30]. It has been confirmed that HES1 is
the downstream effector of Notch-1 and Hedgehog sig-
naling pathways and that these pathways are frequently
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upregulated in tumors [31]. Compounds that inhibit
these pathways induce differentiation and apoptosis in
cancer cells; several are currently in clinical trials [32].
We observed a significant reduction in HES1 mRNA
(Figure 4B) and protein (Figure 4D) in the tumor xeno-
grafts treated with NP-siDCAMKL-1, DAPT, and NP-
siDCAMKL-1+DAPT compared to control or NP-siSCR
treated tumors.

We previously found a predicted binding site for miR-
144 in the Notch-1 3° UTR (at the 189™ base pair)
(http://www.microrna.org: a resource for microRNA tar-
gets and expression) (Additional File 2, Figure S2) [8].
To investigate the role of DCAMKL-1 in regulating
Notch-1 via miR-144 miRNA in colorectal cancer,
HCT116 tumor xenografts were analyzed for pri-miR-
144 miRNA expression by real-time RT-PCR. Compared
to control and NP-siSCR-treated tumors, there was a 3-
fold increase in pri-miR-144 miRNA expression in NP-
siDCAMKL-1-treated tumors (Figure 4E). These data
suggest that DCAMKL-1 negatively regulates pri-miR-
144 miRNA in human colorectal cancer cells. Further-
more, tumors treated with DAPT and NP-siDCAMKL-1
+DAPT demonstrated an 8-fold increase in pri-miR-144
miRNA expression compared to control and NP-siSCR-
treated tumors.

To evaluate these findings quantitatively, we per-
formed a luciferase reporter gene assay using HCT116
cells containing the firefly luciferase gene with a com-
plementary miR-144 binding site in the 3'UTR. A statis-
tically significant reduction in luciferase activity was
observed following DCAMKL-1 knockdown (Figure 4F),
indicating that DCAMKL-1 may be a posttranscriptional
regulator of miR-144 miRNA downstream targets in col-
orectal cancer. Taken together, these data strongly sug-
gest that Notch-1 is a downstream target of miR-144
miRNA and that DCAMKL-1 regulates posttranscrip-
tional control of Notch-1.

siRNA-mediated knockdown of DCAMKL-1 inhibits
Epithelial-to-Mesenchymal Transition via a miR-200a
dependent mechanism

Epithelial-to-Mesenchymal Transition (EMT) is a phe-
notypic conversion in fibrotic diseases and neoplasia
[33,34]. Recent studies have suggested that mesenchymal
gene profiles in tumors are predictive of poor outcome
in colorectal, breast, and ovarian cancers [35,36].
Furthermore, recent reports suggest that the downregu-
lation of several miRNAs (miR-200a, miR-200b, miR-
200c, miR-141, and miR-429) is an essential feature of
EMT [37]. Consequently, induction of these miRNAs
results in inhibition of EMT [37-39]. We subjected the
HCT116 tumor xenografts to miR-200a miRNA expres-
sion analysis by real-time RT-PCR. NP-siRNA-mediated
knockdown of DCAMKL-1 resulted in upregulation of
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pri-miR-200a (Figure 5A) and downregulation of ZEB1
and ZEB2 with upregulation of E-cadherin (Figure 5B)
in the HCT116 tumor xenografts. We did not observe
any difference in expression of pri-miR-200a miRNA
following treatment with DAPT compared to control or
NP-siSCR treated tumors (Figure 5A). These data sug-
gest that Notch-1 inhibition alone was insufficient to
induce endogenous miR-200a at the dose tested.

We observed a significant downregulation of Snail and
Slug in tumor xenografts treated with NP-siDCAMKL-1,
DAPT, and NP-siDCAMKL-1+DAPT compared to
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Figure 5 Inhibition of DCAMKL-1 and Notch signaling inhibits
EMT. (A) siRNA-mediated knockdown of DCAMKL-1 in tumor
xenografts results in increased expression of pri-miR-200a MiRNA.
Tumor xenografts treated with NP-siDCAMKL-1, DAPT and
SiIDCAMKL-1+DAPT demonstrated a downregulation of EMT
transcription factors ZEB1, ZEB2 and increased the expression of E-
cadherin mRNA (B), decreased snail and slug mRNA expression (C).
Values in the bar graph are given as average + SEM, and asterisks
denote statistically significant differences (P < 0.01) compared with

control (NP alone).

control or NP-siSCR treated tumors (Figure 5C). These
data taken together suggest that knockdown of
DCAMKL-1 may inhibit EMT via a miR-200a-depen-
dent mechanism in human colorectal cancer [8].

Discussion

The use of PLGA NPs has emerged as a powerful,
potential approach for carrying small and large mole-
cules for therapeutic applications because of PLGA’s
biodegradability, slow-release of encapsulated payloads
and enhanced cellular uptake [40]. PLGA has been
approved by the FDA for human use [41]. In this report,
we have demonstrated that (a) DCAMKL-1 siRNA
encapsulated in PLGA nanoparticles (siDCAMKL-1
NPs) exhibit significant knockdown of DCAMKL-1
mRNA in HCT116 cells; (b) siDCAMKL-1 NPs are
similarly potent or more than free liposomal
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encapsulated siDCAMKL-1 in the ability to down-regu-
late tumorigenesis, pro-proliferative and oncogenic fac-
tors such as c¢-Myc, in tumor xenografts; (c)
siDCAMKL-1 NPs are similarly effective in increasing
tumor suppressor miRNA /et-7a; (d) siDCAMKL-1 NPs
are effective in increasing miR-144 and downregulating
Notch-1 and (e) siDCAMKL-1 NPs may serve as a use-
ful vehicle for the delivery of anti-cancer therapy via its
effects on EMT through its interaction with miR-200a.

In general, NP-mediated delivery has been considered
to enhance the bioavailability of an active component
such as a drug, while limiting toxicity. Thus, nanoparti-
cle delivery systems are promising tools for treatment of
many diseases including cancer [42,43]. We initially con-
structed and subsequently characterized PLGA nanopar-
ticles containing siDCAMKL-1 (siDCAMKL-1 NPs)
because in PBS at 37°C, they displayed a release profile,
characteristic of an initial burst followed by a relatively
constant release until day 28 after treatment [44]. This
pattern, known as a burst release, is characteristic of
hydrophilic drugs encapsulated inside polymeric nano-
particles. The burst release may be explained by the fact
that the hydrophilic drug has readily escaped or diffused
into the aqueous medium under a concentration gradi-
ent. The relatively constant release that follows is pri-
marily due to the hydrolysis of the ester bonds between
the individual monomers which results in the degrada-
tion of the nanoparticles and hence the sustained release
and bioavailability of sSiDCAMKL-1 NPs [44].

While chitosan (polysaccharide and a cationic natural
polymer) has been used for nucleic acids complexation
[45], here we chose to utilize the poly-cationic polymer
poly (ethylenimine) (PEI) primarily due to its physical
structure and potential for a high degree of protonation
which aids the PEI-siRNA complex in avoiding degrada-
tion [46]. Consequently, we rationalized that the intro-
duction of PEI, into the PLGA matrix could improve
the retention of anionic siRNA molecules to encapsulate
siRNA molecules in nanoparticles rather than to adsorb
on the surface. In addition, PEI is a highly branched
cationic polymer that has been used successfully to
transfect a variety of cells with relatively low cytotoxicity
when complexed with DNA, demonstrating transfection
efficiencies significantly better than those seen with
other transfection techniques [46,47].

In the efficiency studies comparing siDCAMKL-1 and
siDCAMKL-1 NPs, we used equal amounts of free and
encapsulated siDCAMKL-1. We calculated the amounts
of the encapsulated siDCAMKL-1 to be approximately
7.45 pg siDCAMKL-1 per mg of PLGA NPs. For any
amount of free siDCAMKL-1, we used an equal amount
of encapsulated siDCAMKL-1 regardless of the amount
of the PLGA present. We then, conducted pilot studies
to select the most appropriate treatment period of the
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HCT116 cells with siDCAMKL-1. In these studies, we
initially treated the cells for various time periods, ran-
ging from 2 h to 72 h, with various concentrations of
siDCAMKL-1 NPs and the equivalent free sibDCAMKL-1
concentration. We observed that NP based-siDCAMKL-
1 required 7-fold less siRNA to obtain an equivalent
downregulation of DCAMKL-1 mRNA.

The Notch signaling pathway is frequently activated in
many human cancers [48,49]. NP-based-DCAMKL-1
knockdown in HCT116 tumor xenografts resulted in a
marked decrease in Notch-1 mRNA (50%), which con-
tains a putative predicted binding site for miR-144 in
the 3'UTR. miR-144 is a regulator of embryonic alpha-
hemoglobin (o.-E1), through targeting the 3’-UTR of
Kriippel-like factor D gene and positively regulates ery-
throid differentiation in hematopoietic stem cells [50].
Next we evaluated the expression of miR-144 in
HCT116 tumor xenografts treated with NP-siDCAMKL-
1. There was a 3-fold increase in miR-144 and a corre-
sponding ~40% reduction in Notch-1 mRNA and pro-
tein, which was further confirmed by the luciferase-
based reporter assay.

Pharmacological inhibition of Notch using y-secretase
inhibitor has been demonstrated to block tumor develop-
ment in various cancers including that of the pancreas
[48]. In this report, we have confirmed that DAPT-
mediated inhibition of Notch resulted in tumor growth
arrest. Given the inhibitory effect of NP-siDCAMKL-1
on Notch, we evaluated the effects of DAPT on miR-144.
Surprisingly, we observed an 8-fold increase in miR-144
and a reduction in DCAMKL-1 mRNA following treat-
ment of tumor xenografts with DAPT. While the exact
mechanism is unknown, we speculate that DAPT may
act on DCAMKL-1 directly, resulting in the induction of
miR-144. These data taken together suggest that both
DAPT and/or NP-siDCAMKL-1 act on similar pathways.
Additionally, the Notch-1 downstream effector HES1
mRNA and protein were decreased following treatment
of xenografts with NP-siDCAMKL-1. Here for the first
time, we report that DCAMKL-1 regulates Notch-1 via a
miR-144 dependent mechanism in colorectal cancer.

Recently, inhibition of Notch signaling has been
shown to attenuate EMT [51]. In our study, following
treatment with DAPT and/or NP-siDCAMKL-1, we
observed a reduction in EMT transcription factors Snail,
Slug, ZEB1 and ZEB2.

miRNAs have emerged as important developmental
regulators and control critical processes such as cell fate
determination and cell death [52]. There is increasing
evidence that several miRNAs are mutated or poorly
expressed in human cancers and may act as tumor sup-
pressors or oncogenes [53,54]. Here we report that NP-
siDCAMKL-1 upregulates miR-200a, let-7a and miR-
144 in the colorectal cancer tumor xenograft model.
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Furthermore, induction of pri-miR-200a resulted in
downregulation of ZEB1, ZEB2, Snail and Slug in color-
ectal tumor xenografts. These data strongly support a
direct regulatory role for DCAMKL-1 in cancer via
miRNA dependent mechanisms. As recently reported,
the induction of EMT in human mammary epithelial
cells resulted in a “stem cell-like” phenotype character-
ized by a CD44™€" and CD24'" cell surface marker
expression pattern. Furthermore, these cells formed
mammospheres, colonies in soft agar and tumors in
nude mice more aggressively than non-EMT induced
cells. These studies demonstrate a direct link between
the induction of EMT and the gain of stem cell-like
properties [55]. These recent findings lend support to
our hypothesis that EMT in the stem cell population
may play a critical role in tumorigenesis [8].

Finally, we have shown here that targeting a key regu-
latory molecule (DCAMKL-1) utilizing NP-based deliv-
ery of siRNA results in colorectal cancer tumor
xenograft growth arrest through the upregulation of sev-
eral tumor suppressor miRNAs. Induction of micro-
RNAs that coordinately inhibit critical oncogenic genes
could lead to the development of novel anti-cancer ther-
apeutics that attack multiple pathways and processes
that are essential for cancer growth, invasion and metas-
tasis in colon and perhaps other cancers.

Methods

Reagents

All cell culture reagents were purchased from Sigma
Aldrich (St. Louis, MO, USA). PLGA was purchased
from Lakeshore Biomaterials (Birmingham, AL, USA) as
a 50:50 monomer ratio with a molecular weight of 58
kDa and inherent viscosity of 0.43 dl/g.

Cell culture

Human colon cancer HCT-116 cells were obtained from
the American Type Culture Collection and propogated
in Dulbecco’s modified Eagle medium supplemented
with 10% fetal bovine serum and 1% penicillin-strepto-
mycin in a humidified chamber at 37°C and 5% CO,.

Small interfering RNAs

DCAMKL-1 siRNA (si-DCAMKL-1) sequence targeting
the coding region of DCAMKL-1 (accession No.
NM_004734) (GGGAGUGAGAACAAUCUACtt) and
scrambled siRNAs (si-SCR) not matching any of the
human genes were obtained (Ambion Inc, Austin, TX)
and transfected using siPORT" "~ NeoFX' (Ambion).

Synthesis and characterization of DCAMKL-1 siRNA NPs

Poly(lactide-co-glycolide) acid nanoparticles (PLGA NPs)
were synthesized using a double emulsion solvent eva-
poration technique [44,56]. First siRNA (DCAMKL-1 or
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scrambled) was condensed on the cationic polymer poly
(ethyleneimine) (PEI, 5% w/v) to form an siRNA-PEI
complex. siRNA-PEI (200 pl) was added to 30 mg
PLGA in 1 ml chloroform (CHCIl3) and vortexed. This
primary emulsion was then transferred into 5 ml of 2%
(w/v) polyvinyl alcohol (PVA), which serves as a surfac-
tant, and the entire solution was sonicated on ice for 1
min using a probe sonicator (Misonix XL-2000, New-
town, CT). The organic solvent in the final solution was
allowed to evaporate overnight with continuous stirring.
NPs were recovered by centrifugation at 20,000 xg for
20 min at 4°C. The supernatant was stored for later
assay. The pellet consisting of aggregated NPs was
washed three times in water to remove any residual
PVA and free, i.e., non-encapsulated, siRNA. NPs were
then resuspended in water, freeze-dried for 24 h and
then stored at -20°C for later use. The amount of encap-
sulated siRNA was quantified using a spectrophotometer
(DU-800, Beckman Coulter, Brea, CA). The size, poly-
dispersity index, and zeta-potential measurements of
synthesized siRNA NPs were determined using diffrac-
tion light scattering (DLS) utilizing Zeta PALS (Broo-
khaven Instruments, Holtsville, NY). Surface
morphology of the NPs was examined using a JOEL-
JSM-880 scanning electron microscope. Loading effi-
ciency was calculated using the following formula:

Mass of siRNApnps

Loading Efficiency(%) = Mass of SIRNAg
ot

* 100
where siRNAyp; is the amount of siRNA encapsulated

inside PLGA NPs, and siRNA,, is the total amount of
siRNA added.

Immunohistochemical analysis

Human multi-cancer tissue microarrays (Tissue Array
Network, Rockville, MD) and tumor xenograft tissues
were subjected to immunohistochemical analyses. Heat-
Induced Epitope Retrieval was performed on 4 um for-
malin-fixed paraffin-embedded sections utilizing a pres-
surized Decloaking Chamber (Biocare Medical) in
citrate buffer (pH 6.0) at 99°C for 18 min. Brightfield:
Slides were incubated in 3% hydrogen peroxide at room
temperature for 20 min. After incubation with primary
antibody [DCAMKL-1 C-terminal (Abcam Inc., Cam-
bridge, MA) or c-Myc (Santa Cruz Biotechnologies Inc.,
Santa Cruz, CA) or Notch-1 (Santa Cruz Biotechnolo-
gies)], the slides were incubated in peroxidase-conju-
gated EnVision™+ polymer detection kit (DAKO).
Slides were developed with diaminobenzidine (Sigma).

Microscopic Examination
Slides were examined utilizing a Nikon 80i microscope
and DXM1200C camera for brightfield analysis.
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Fluorescent images were taken with PlanFluoro objec-
tives, utilizing CoolSnap ES2 camera (Photometrics).
Images were captured utilizing NIS-Elements software
(Nikon).

Xenograft tumor model

Male athymic nude mice (NCr-nu/nu) were purchased
from the National Cancer Institute-Frederick Cancer
Research and Development Center (Frederick, MD) and
housed in pathogen-free conditions. They were cared
for in accordance with guidelines set forth by the Amer-
ican Association for Accreditation of Laboratory Animal
Care and the U.S. Public Health Service Commissioned
Corps’ “Policy on Human Care and Use of Laboratory
Animals.” All studies were approved and supervised by
the Institutional Animal Care and Use Committee.
HCT116 cells (6 x 10°) were injected subcutaneously
into the flanks of 4- to 6-wk-old male athymic nude
mice (three mice per group). Tumors were measured
using a caliper and the volume was calculated as (length
x width?) x 0.5. The tumors reached 1000 mm® 15 days
after injection of cells. NPs were reconstituted in sterile
normal saline and injected directly into the tumors.
DAPT was reconstituted in corn oil, which was injected
intraperitoneally. In combination treatments, NPs were
injected intratumorally and DAPT was injected i.p, at
the same time points. Each animal bearing the tumor
was injected on days 15, 18, 21, 24, and 27 with one of
the following preparations - 50 pl (5 pM) of siRNA-NP
preparation [either NP alone (control), NP-siScrambled
(siSCR), or NP-siDCAMKL-1], or 10 mg/kg of DAPT
alone, or a combination of NP-siDCAMKL-1 and
DAPT. All mice were killed on day 30 [9].

Real-time Reverse Transcription-Polymerase Chain
Reaction analyses
Total RNA isolated from tumor xenografts and HCT116
cells was subjected to reverse transcription using Super-
script™ II RNase H-Reverse Transcriptase and random
hexanucleotide primers (Invitrogen, Carlsbad, CA). The
complementary DNA (cDNA) was subsequently used to
perform real-time polymerase chain reaction (PCR) by
SYBR™ chemistry (SYBR Green I, Molecular Probes,
Eugene, OR) for specific transcripts using gene-specific
primers and JumpStart™ Taq DNA polymerase (Sigma-
Aldrich). The crossing threshold value assessed by real-
time PCR was noted for the transcripts and normalized
with B-actin messenger RNA (mRNA). The quantitative
changes in mRNA were expressed as fold-change rela-
tive to control with + SEM value.

The following primers were used:

B-actin: forward: 5’-GGTGATCCACATCTGCTG-
GAA-3,
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reverse: 5’-ATCATTGCTCCTCCTCAGGG-3;

DCAMKL-1: forward: 5- CAGCAACCAGGAATG-
TATTGGA -3,

reverse: 5’- ctcaactcggaatcggaagact-3’;

ZEB1: forward: 5-AAGAATTCACAGTGGAGA-
GAAGCCA-3,

reverse: 5’-CGTTTCTTGCAGTTTGGGCATT-3;

ZEB2: forward: 5-AGCCGATCATGGCGGATGGC-3,
reverse: 5-TTCCTCCTGCTGGGATTGGCTTG-3’;

E-cadherin: forward: 5-CCTCCCATCAGCTGCCC-3,,
reverse: 5-GTGATGCTGTAGAAAACCTT-3}

Snail: forward: 5-AAGGCCTTCTCTAGGCCCT-3,
reverse: 5-CGCAGGTTGGAGCGGTCAG-3’;

Slug: forward: 5-TGCTTCAAGGACACATTA-3,
reverse: 5-CAGTGGTATTTCTTTAC-3;

Twist: forward: 5-GTCTGGAGGATGGAGGG-3,
reverse: 5-TCCTTCTCTGGAAACAATGAC-3;

c-Myc:  forward: 5-CACACATCAGCACAAC-

TACGCA-3,
reverse: 5-TTGACCCTCTTGGCAGCAG-3;;

Notch-1:
GAATG-3,

forward: 5-CGGGTCCACCAGTTT-

reverse: 5-GTTGTATTGGTTCGGCACCAT-3'.

miRNA Analysis

Total RNA isolated from tumor xenografts and HCT116
cancer cells was subjected to reverse transcription with
Superscript II RNase H-Reverse Transcriptase and ran-
dom hexanucleotide primers (Invitrogen). The cDNA
was subsequently used to perform real-time PCR by
SYBR chemistry for pri-let-7a, pri-miR-144, and pri-
miR-200a transcripts using specific primers and Jump-
Start Taq DNA polymerase. The crossing threshold
value assessed by real-time PCR was noted for pri-let-
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7a, pri-miR-144, and pri-miR-200a miRNAs and nor-
malized with U6 pri-miRNA. The changes in pri-miR-
NAs were expressed as fold-change relative to control
with + SEM values [9].

The following primers were used:

pri-Ue6: forward: 5-CTCGCTTCGGCAGCACA-3,

reverse: 5-AACGCTTCACGAATTTGCGT-3’;

pri-let-7a: forward: 5-GAGGTAGTAGGTTGTA-
TAGTTTAGAA-3,

reverse: 5-AAAGCTAGGAGGCTGTACA-3;

pri-miR-144: forward: 5-GCTGGGATATCATCATA-
TACTG-3,

reverse: 5-CGGACTAGTACATCATCTATACTG-
3

pri-miR-200a: forward: 5-TTCCACAGCAGCCCCTG-
3,

reverse: 5-GATGTGCCTCGGTGGTGT-3.

Western blot analysis

HCT116 cells or tumor xenograft samples treated with
siRNA or siRNA-NPs were lysed and the concentration
of protein was determined by the BCA protein assay kit
(Pierce Biotechnology Inc., Rockford, IL). Forty ug of
the protein was size separated in a 7.5-15% SDS polya-
crylamide gel and transferred onto a nitrocellulose
membrane with a semidry transfer apparatus (Amer-
sham-Pharmacia, Piscataway, NJ). The membrane was
blocked in 5% non-fat dry milk for 1 h and probed over-
night with rabbit anti-DCAMKL-1 antibody (Abcam
Inc) or with rabbit anti-c-Myc, rabbit anti-Notchl or
rabbit anti-HES1 antibody (Cell Signaling Danvers, MA).
Actin, used as a loading control was identified using a
goat polyclonal IgG (Santa Cruz Biotechnology Inc).
Subsequently, the membrane was incubated with anti-
rabbit or anti-goat IgG horseradish peroxidase-conju-
gated antibodies (Amersham-Pharmacia) for 1 h at
room temperature. The proteins were detected using
ECL™ Western Blotting detection reagents (Amersham-
Pharmacia).

Luciferase reporter gene assay

HCT116 cells were transfected with a plasmid contain-
ing the firefly luciferase (Photinus pyralis) gene with a
complementary let-7a (or miR-114) binding site at its’
3’untranslated region (UTR) obtained from Signosis Inc
(Sunnyvale, CA). The cells were also co-transfected with
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the Renilla luciferase expressing plasmid pRL-TK (Pro-
mega) as an internal control. Following transfection, the
cells were treated with NPs alone, NP-siSCR, or NP-siD-
CAMKL-1 and subjected to luciferase activity measure-
ment. Luciferase activity was determined as per the
manufacturer’s instructions (Dual-Luciferase Reporter
Assay System; Promega) using a Biotek Synergy III
multi plate reader (BioTek, Winooski, VT) as described
previously [9]. The activity, normalized to Renilla luci-
ferase activity, is presented as relative luciferase units
relative to control with + SEM values. Assays were per-
formed in triplicate wells and experiments were repeated
three times.

Statistical analysis

All experiments were performed in triplicate. Results are
reported as average + SEM unless otherwise indicated.
Data were analyzed using the Student’s ¢-test. Results
were considered statistically significant when p < 0.01.

Additional material

Additional file 1: Figure S1. Downregulation of DCAMKL-1 and
Notch signaling decreases tumor xenograft weight. NP-siDCAMKL-1
and DAPT treatment resulted in significantly decreased tumor weight
when compared to control and NP-siSCR treated tumors. Values are
given as average + SEM, and asterisks denote statistically significant
differences (P < 0.01) compared with control (NP alone).

Additional file 2: Figure S2: Notch-1 mRNA has putative binding
site for miR-144. Representation of the putative binding site for miR-144
at 189" base pair position on Notch-1 mRNA 3'UTR (source: httpy//WWW.
microrna.org).
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