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Abstract

Background: Graphene is the 2D form of carbon that exists as a single layer of atoms arranged in a honeycomb
lattice and has attracted great interest in the last decade in view of its physical, chemical, electrical, elastic, thermal,
and biocompatible properties. The objective of this study was to synthesize an environmentally friendly and simple
methodology for the preparation of graphene using a recombinant enhanced green fluorescent protein (EGFP).

Results: The successful reduction of GO to graphene was confirmed using UV-vis spectroscopy, and FT-IR. DLS and
SEM were employed to demonstrate the particle size and surface morphology of GO and EGFP-rGO. The results

from Raman spectroscopy suggest the removal of oxygen-containing functional groups from the surface of GO and
formation of graphene with defects. The biocompatibility analysis of GO and EGFP-rGO in human embryonic kidney

Cell viability, Membrane leakage, Oxidative stress

(HEK) 293 cells suggests that GO induces significant concentration-dependent cell toxicity in HEK cells, whereas
graphene exerts no adverse effects on HEK cells even at a higher concentration (100 pg/mL).

Conclusions: Altogether, our findings suggest that recombinant EGFP can be used as a reducing and stabilizing
agent for the preparation of biocompatible graphene. The novelty and originality of this work is that it describes a
safe, simple, and environmentally friendly method for the production of graphene using recombinant enhanced
green fluorescent protein. Furthermore, the synthesized graphene shows excellent biocompatibility with HEK cells;
therefore, biologically synthesized graphene can be used for biomedical applications. To the best of our knowledge,
this is the first and novel report describing the synthesis of graphene using recombinant EGFP.
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Background

Graphene has a two-dimensional (2-D) nanostructure
with a single layer of carbon atoms and has attracted
much interest in recent years because of its unique
mechanical, thermal, catalytic, electronic, optical, and
biological properties [1-4]. Graphene and graphene-based
materials have been widely used in several applications in-
cluding bio-sensing [5], antibacterial compositions [6-8],
drug delivery [9], tissue scaffolds [10], catalysis [11], and
energy storage [12]. The production of graphene in large
quantities using an environmentally friendly approach is
essential but also a significant challenge [13].
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Several methods have been established for the synthe-
sis of graphene and its derivatives, including exfoliation
of graphite (Gt) [14], flash reduction [15], hydrothermal
dehydration [16], mechanical exfoliation [3], epitaxial
growth [17], photocatalysis [18], and photodegradation
[19]. Although several methods are available for the
preparation of graphene, solution-based chemical reduc-
tion of graphene oxide (GO) to graphene is considered
one of the most efficient methods for low-cost and
large-scale production of graphene [13]. Reduction of
GO by chemical methods seems to be promising, be-
cause of the low cost and potential for large-scale pro-
duction. Such methods are also appropriate for chemical
modification and subsequent processing. However, in
chemical methods, the use of hydrazine and hydrazine
derivatives as strong reducing agents for the formation
of graphene can be toxic or explosive, resulting in chal-
lenges for large-scale production. The resulting graphene
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also possesses very limited solubility or even irreversible
agglomeration during preparation in water and most or-
ganic solvents unless capping reagents are used owing to
the strong m—m stacking tendency between rGO sheets
[20,21]. To overcome the aggregation and solubility prob-
lems, several polymers or surfactants have been used, such
as poly(N-vinyl-2-pyrrolidone) [22], poly(sodium-4-styr-
ene sulfonate) [23], poly(allylamine) [24], and potassium
hydroxide [25]. Recently, Akhavan et al. [26] demonstrated
a possible route for inexpensive mass production of high-
quality graphene sheets from natural and industrial car-
bonaceous wastes.

The toxicity of GO and graphene has been studied in
various cell types such as neuronal cells [27], lung epi-
thelial cells [28], fibroblasts [29], primary mouse embry-
onic fibroblast cells [30], and cancer cells [31], and the
results vary across cell and material types.

Surface modification of graphene has been reported to
alter its toxicity [31], with reduced GO and carboxylated
graphene reported to be less toxic than GO or native
graphene [32]. Single-layer GO sheets were found to be
internalized and sequestered in cytoplasmic, membrane-
bound vacuoles in human lung epithelial cells and fibro-
blasts, with toxicity induced at concentrations above
20 pg/mL after 24 h [27,29]. Sanchez et al. [4] reported that
graphene-family nanomaterials (GFNs) can be either be-
nign or toxic to cells, and that the biological responses de-
pend on layer number, lateral size, stiffness, hydrophobicity,
surface functionalization, and concentration. In addition,
the biocompatibility and cytotoxicity depend on the type of
reducing agent used for the functionalization of GO.

Graphene has been used as a possible biocompatible
nanocarrier for delivering drugs [33] and also as a func-
tional biomaterial. Sun et al. [9] reported that non-toxic
PEGylated nano-graphene oxide could deliver water-
insoluble cancer drugs. Fan et al. [34] showed that gra-
phene/chitosan composites were biocompatible in L.929
cells and that the absence of metallic impurities in gra-
phene sheets makes them potential candidates as scaffolds
for tissue engineering. Furthermore, Chen et al. [35] re-
ported that graphene oxide (GO)/ultra-high-molecular-
weight polyethylene (GO/UHMWPE) composites showed
remarkably enhanced hardness and slightly improved
yield strength compared with pure UHMWPE. The
addition of small amounts of GO did not affect the at-
tachment and proliferation of MC3T3-E1 osteoblasts cul-
tured on GO/UHMWPE composite surfaces, indicating
its excellent biocompatibility. Akhavan et al. [36] re-
ported size-dependent cyto- and genotoxic effects of re-
duced graphene oxide nanoplatelets (rGONPs) rGONPs
on cells. A cell viability test showed significant cell death
on treatment with 1.0 pg/mL rGONPs with an average
lateral dimension (ALD) of 11+4 nm, whereas rGO
sheets an ALD of 3.8+0.4 pm exhibited a significant
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cytotoxic effect only at the high concentration of 100 pg/mL
after 1 h of exposure time. Akhavan et al. [37] demon-
strated the size-dependent cytotoxic and genotoxic effects
of reduced graphene oxide nanoplatelets on human mes-
enchymal stem cells (hMSCs). Furthermore, Akhavan
et al. [38] used ginseng extract-reduced GO to differentiate
stem cells. Park et al. [39] used graphene-as a substrate to
promote human neural stem cell adhesion and differenti-
ation into neurons. Lee et al. [40] reported that the strong
non-covalent binding ability of graphene allows it to act as
a pre-concentration platform for osteogenic inducers,
which accelerate the differentiation of mesenchymal stem
cells (MSCs) growing on it toward the osteogenic lineage.
Akhavan et al. [37] used graphene nanogrids as two-
dimensional selective templates for accelerated differenti-
ation of human MSCs (hMSCs) isolated from umbilical
cord blood into osteogenic lineages. The biocompatible
and hydrophilic graphene nanogrids showed high actin
cytoskeleton expression coinciding with the patterns of
the nanogrids. Akhavan and Ghaderi [41] introduced a re-
duced graphene oxide (rGO)/TiO, heterojunction film as
a biocompatible flash photo stimulator for the effective
differentiation of hNSCs into neurons. Graphene nano-
grids on a SiO, matrix containing TiO, nanoparticles
(NPs) were also applied as a photocatalytic stimulator to
accelerate the differentiation of human neural stem cells
(hNSCs) into two-dimensional neural networks [42].
Several environmentally friendly methods have been
developed using various biomolecules such as ascorbic
acid [43], amino acids [44], glucose [45], and bovine
serum albumin [46] as reducing agents or stabilizers. In
addition, microorganisms have also used to reduce GO,
including Shewanella [47], Escherichia coli [48,49],
Pseudomonas aeruginosa [8), Bacillus marisflavi [50],
and Ganoderma spp [21]. Some purified proteins have
also been used for synthesis of graphene, such as mela-
tonin [51], l-glutathione [52], and humanin [53]. Re-
cently, the synthesis of graphene has been increased
significantly because of the wide range of resources and
availability of simple, cost-effective, and environmentally
friendly approaches. The major problem encountered
during the synthesis of nanoparticles using biomass is
the isolation and purification of the nanoparticles from
the biomass, which requires many downstream process-
ing steps including sonication and ultracentrifugation to
attain maximum yield [54]. Moreover, endotoxin may be
present in the nanoparticles, which may limit the use of
the nanoparticles in medical applications [55]. Therefore,
this study attempted to use a recombinant protein.
Recombinant enhanced green fluorescent protein (EGEP)
(Gene Bank Accession no. U57607) is a protein composed
of 293 amino acid residues (32.7 kDa) that has an isoelec-
tric point of 6.2 and exhibits bright green fluorescence
when exposed to light in the blue to ultraviolet range.
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EGFP has been widely used as a biological reporter to
identify tissue and cells with target gene expression
[56,57]. Previous studies showed no obvious detrimental
effects of EGFP and no toxicity, i.e., it is biologically inert
[58,59]. In addition, EGFP was selected here as a reducing
and stabilizing agent for synthesis of graphene because it
is a natural protein from the jellyfish Aequorea victoria
and has been proven to be an excellent biological reporter
[60]. Thus, without any other toxic reagents added, the
raw material and reaction products are all environmentally
friendly, which should increase the efficiency and large-
scale synthesis of graphene. Additionally, EGFP contains
five cysteine amino acid residues, each containing a thiol
group that can be oxidized to form the disulfide derivative
cysteine, which functions as a nucleophile [61]. Protons
have high binding affinity to oxygen-containing groups,
such as hydroxyl and epoxide groups on GO, resulting in
the formation of H,O molecules [27,62]. The unique
chemical structure of EGFP makes it not only an ideal re-
ducing agent but also an effective capping agent. There-
fore, we addressed the following objectives: first, the
development of a simple, dependable, and environmen-
tally friendly approach for synthesis of graphene using re-
combinant EGFP; second, the characterization of GO and
EGFP-reduced GO; and finally, the evaluation of cellular
responses of GO and EGFP-rGO in human embryonic
kidney 293 cells.

Results and discussion

Synthesis and characterization of EGFP-rGO

As shown in Figure 1, EGFP-rGO was synthesized by a
two-step process, including an oxidation step and an
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EGEFP-based reduction step. In the first step, graphene
oxide was formed by the oxidation of graphite crystals
according to a modification of the Hummers method
[63]; the crystals were dispersible in water. In the second
step, a stable black aqueous suspension was obtained
through a chemical deoxidization process by using EGFP
as both a reducer and a stabilizer. Similarly, Wang et al.
[13] reported a simple method of reduction of GO to
rGO using the natural polymer heparin as both a redu-
cing agent and a stabilizer to produce a stable aqueous
suspension of heparin-rGO sheets. Fan et al. [34] fabri-
cated biocompatible graphene-reinforced chitosan com-
posites in which chitosan was significantly reinforced by
the addition of a small amount of graphene sheets. The
graphene/chitosan composites were biocompatible in the
1929 fibrosarcoma cell line.

The reduction of GO was confirmed using UV-vis ab-
sorption spectroscopy. As shown in Figure 1, the absorp-
tion peak of the GO dispersion was located at 230 nm
with a shoulder peak at about 300 nm, which was con-
sistent with previous reports [13,27,62]. After the reduc-
tion process, the peak was red-shifted to 258 nm and
the absorbance was increased dramatically in the entire
spectral region. This result suggests that GO was re-
duced by EGFP and that the aromatic structure of gra-
phene may be restored. Further evidence showed that
the UV-vis absorption spectrum of GO was character-
ized by the m—m* of the C = C plasmon peak at approxi-
mately 230 nm and a shoulder at approximately 300 nm
that is often attributed to n—n* transitions of the car-
bonyl groups [62,64]. With reduction by EGFP, the plas-
mon peak gradually red-shifted to approximately 258 nm,
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Figure 1 Synthesis and characterization of GO and EGFP-rGO by ultraviolet-visible spectroscopy. Spectra of GO exhibited a maximum
absorption peak at approximately 230 nm, which corresponds to a m-m transition of aromatic C-C bonds. The absorption peak for reduced GO
was red-shifted to 258 nm. At least three independent experiments were performed for each sample and reproducible results were obtained.
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indicating the restoration of sp® carbon and possible re-
arrangement of atoms [65]. Similar trends were also ob-
served for the reduction of GO by L-ascorbic acid [43,66],
L-cysteine [62], melatonin [51], heparin [13], dopamine
[67], and humanin [53].

FTIR spectra of GO and EGFP-rGO

The reduction of oxygen-containing functional groups of
GO by EGFP was confirmed by FT-IR spectroscopy.
Figure 2 shows the FT-IR spectra of GO and EGFP-rGO.
The presence of different types of oxygen-containing
groups in graphene oxide was confirmed at 3440 cm™
(O-H stretching vibrations), 1725 cm! (stretching vibra-
tions from C=0), 1225 cm™' (C-OH stretching vibra-
tions), and 1070 ¢m™! (C-O stretching vibrations), as
reported earlier [68,69]. In addition, the substitution of hy-
droxyl groups on the GO surface by carboxyl groups was
confirmed by the CH,-stretching vibration at 2,920 cm™
(lower spectrum) [70]. In contrast, the FT-IR spectrum of
graphene completely differs from that of GO. The FTIR
peak of EGFP-rGO showed O-H stretching vibrations,
stretching vibrations from C =0, C-OH stretching vibra-
tions, and C-O stretching vibrations at 3440, 1725, 1225,
and 1070 cm™, respectively, indicating that GO was sig-
nificantly reduced by the deoxygenation procedure. The
intensities of absorption peaks corresponding to oxygen
functional groups decreased and these functional groups
almost disappeared. Altogether, these results clearly con-
firm that the oxygen-containing groups were removed
during reduction using EGFP. These changes in EGFP-
rGO compared with GO in FT-IR spectra were identical
with those of earlier reports that used various reducing
agents such as hydrazine [14], vitamin C [66], L-cysteine
[62], heparin [13], and humanin [53].
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XRD analysis of GO and EGFP-rGO

To further characterize the crystal structures, the XRD
patterns of the exfoliated GO and EGFP-rGO were stud-
ied. The characteristic peak of GO appears at 11.7°, cor-
responding to a d-spacing of 0.76 nm resulting from the
formation of hydroxyl, epoxy, and carboxyl groups
(Figure 3). In contrast to GO, EGFP-rGO showed no
peaks at 11.7°, which indicates that most of the oxygen
functional groups of GO were removed. Compared with
pristine graphite (20 = 26.4°), the diffraction peak of ex-
foliated GO moved to 11.7° (002) with a layer-to-layer
distance (d-spacing) of 0.76 nm. This value was larger
than the d-spacing of pristine graphite (0.34 nm) be-
cause of the introduction of numerous oxygenated
functional groups on the carbon sheets [13]. After the
exfoliated GO was reduced by EGFP, the peak at 11.7°
disappeared, but a new diffraction peak appeared at 20 =
25.8° with a d-spacing of 0.36 nm, which was closer to the
typical (002) diffraction peak of graphite (20 =26.4°, d-
spacing of 0.34 nm). The higher interlayer spacing value of
exfoliated GO resulted from the introduction of numerous
oxygenated functional groups on the carbon sheets
[7,21,48]. The data obtained from this experiment suggest
that EGFP played an important role in the deoxygenation
of GO and also that the reduction of GO by EGFP was
consistent with earlier reports using various reducing
agents including vitamin C [66], L-cysteine [62], heparin
[13], and humanin [53].

Size distribution analysis of GO and EGFP-rGO

Size distribution analysis was performed to elucidate the
state of GO and EGFP-rGO in an aqueous solution
using DLS measurement [71] with a concentration of
250 pg/mL. The average hydrodynamic diameter (AHD)
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Figure 2 Fourier transform infrared spectroscopy spectra of GO and EGFP-rGO.
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Figure 3 XRD patterns of GO and EGFP-rGO. In the XRD pattern of GO (top panel), the strong and sharp peak at 26 = 11.7° corresponds to an
interlayer distance of 7.6 A. EGFP-rGO (bottom panel) has a broad peak centered at 26 = 25.8°, which corresponds to an interlayer distance of
3.6 A These XRD results are related to the reduction of GO by EGFP and the process of removing intercalated water molecules and oxide groups.
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of GO and EGFP-rGO was 2288 +20 nm and 2607 +
32 nm, respectively (Figure 4). However, after the reduc-
tion of GO with EGFP, the AHD increased and was rela-
tively larger than that of GO. This obvious change of
size distribution suggests that EGFP not only acted as a
reducing agent to prepare rGO but also functionalized
on the surface of the resulting rGO. Similar results were
observed for heparin and biopolymer-functionalized
reduced graphene oxide [13,72]. Graphene nanoplates
functionalized with isocyanate showed the effective
hydrodynamic diameter size of 560+ 60 nm. Lammel
et al. [73] reported that the hydrodynamic diameter of
GO functionalized with carboxyl graphene nanoplatelets
increased from 385 to 1,110 nm. Liu et al. [74] reported
that aqueously dispersed graphite (Gt), graphite oxide
(GtO), graphene oxide (GO), and reduced graphene
oxide (rGO) had sizes of 5,250, 4,420, 560, and 2,930 nm,
respectively. A similar trend was observed for GO reduced
by Pseudomonas aeruginosa [8), Bacillus marisflavi [50],
Ginkgo biloba [70], and Ganoderma spp [21]. The size of
EGFP-rGO was slightly larger than that of GO, indicating
that EGFP not only acted as a reducing agent but also was
functionalized on the surfaces of the resulting rGO, lead-
ing to an increased size [75]. Similarly, Wang et al. [13]
found that the average size of heparin-reduced graphene
oxide was larger than that of GO under the same experi-
mental conditions. Altogether, our data and data from
other groups suggest that EGFP used as a reducing agent
plays an important role in increasing the size of rGO.

Surface properties of GO and EGFP-rGO

Zeta potential is an important factor for characterizing
the dispersion stability of colloids because the magnitude
and sign of the effective surface charge associated with
the double layer around the colloid, and it directly influ-
ences the electrostatic interaction between different gra-
phene sheets [76,77]. Zeta potential measurements were
carried out in aqueous solutions of the GO and EGFP-
rGO in function of pH is important to determine the
surface charge of the sheets (Figure 5). The results show
that GO sheets are highly negative charged with an aver-
age -29.7 mV at pH range between 2 and 10. This value
is attributed to the presence of oxygen species at the
surface of GO. On the contrary, EGFP-rGO, shows posi-
tive zeta potential values for the same pH range, which
is suggest that the lower charge density of this type of
graphene. Interestingly, recombinant proteins treated GO
sheets resulted in the reduction and almost complete
elimination of the oxygen functionalities at the surface of
graphene materials.

Surface morphology analysis of GO and EGFP-rGO by SEM
The surface morphology of the GO and EGFP-rGO sam-
ples was analyzed using SEM. As shown in Figure 6A,
the GO samples contain several layers of sheets, and fur-
ther the sheets are aggregated and crumpled sheets are
closely associated with each other to form a continuous
conducting network. The edges of the GO sheets ap-
peared crumpled, folded, and closely restacked with one
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Figure 4 Size distribution analysis of GO and EGFP-rGO. Aqueous dispersions of GO and EGFP-rGO were characterized by DLS analysis using
a particle size analyzer at the scattering angle 6 = 90°. The data show the average values from triplicate measurements. The sample
concentrations were all 250 pg/mL.

another because of the oxidation process [78]. Jeong GO. In contrast to GO, on SEM the EGFP-rGO samples
et al. [79] reported that at higher concentrations, the resemble transparent and rippled silk waves (Figure 6B).
surfaces of GO sheets have a soft-carpet-like morph- He and Gao [80] reported that Gt appears to pile up in
ology, possibly because of the presence of residual H,O  thick cakes, whereas GO is exfoliated into thin large
molecules and hydroxyl or carboxyl groups attached to  flakes with wavy wrinkles. Previously, we observed on
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Figure 5 Zeta potential of as-prepared GO and EGFP-rGO as a function of pH, in aqueous dispersions at a concentration of ~0.05 mg ml™".
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SEM that GO consisted of individual sheets closely
associated with each other, with a silky and leaf-like
structure, whereas Ginkgo biloba extract-reduced GO
(Gb-rGO) sheets showed thin layers of nanosheets and
were mainly comprised of larger, wavy forms [70]. The
graphene sheets were found to possess a curled morph-
ology consisting of a thin, wrinkled, paper-like structure,
with fewer layers (approximately four layers) and a large
specific surface area [81]. Graphene nanosheets were
functionalized with long chains and polymers, resulting
in coarse and hairy surfaces with blurry edges of the
flakes [80]. Previously, we reported using SEM that GO
was present as multilayered, wavy, folded flakes, whereas
fungal extract-reduced graphene oxide showed several
layers stacked on top of one another similarly to sheets
of paper, with a silky, wrinkled, and flower-like curling
morphology [70]. This difference in morphology be-
tween the folded, stacked structure of GO and transpar-
ent and rippled silk wave structure of graphene suggests
that EGFP played an important role in the reduction of
GO to graphene. The data obtained from this study sug-
gest that synthesis of graphene using biological mole-
cules was similar to that of graphene sheets prepared
from Gt powder through oxidation followed by rapid
thermal expansion in a nitrogen atmosphere [81].

Raman spectroscopy analysis of GO and EGFP-rGO

Raman spectroscopy is used to characterize the struc-
tural electronic properties of graphite and graphene-
based materials [21,82,83]. Raman spectra are also used

to measure induced enormous structural changes during
chemical oxidation of pristine graphite and the reduction
of GO to rGO [83]. In the Raman spectra, the G band
resulting from first-order scattering of the E,; phonons
of sp® carbon atoms and the D band originating from
the breathing mode of k-point photons of A;, symmetry
are the two main characteristic features of graphene-
based materials [84-86]. In the Raman spectrum of GO,
the G band is broadened and shifted to 1615 cm™. In
addition, the D band at 1359 cm™' becomes prominent,
indicating a reduction in the size of the in-plane sp* do-
mains, possibly because of extensive oxidation-induced
defects in the sheets (Figure 7). The Raman spectrum of
the rGO reduced by EGFP also contains both G and D
bands located at 1607 and 1351 cm ™, respectively; how-
ever, the D/G intensity ratio (2.149) is increased com-
pared to that in GO upon reduction. This change
suggests a decrease in the average size of the sp® do-
mains upon reduction of the exfoliated GO [14,84].

The major effects of deoxygenation are the restoration
of the sp? network and the introduction of small and
isolated aromatic domains, and these effects are respon-
sible for the observed increase in the ID/IG ratio in rGO
[66,83,86,87]. Wang et al. [82] suggested that the G band
is broadened and shifted upward to 1,595 cm™, and the
increased intensity of the D band at 1,350 cm™ could be
attributed to the significant decrease in the size of the
in-plane sp> domains resulting from oxidation and ultra-
sonic exfoliation, in addition to the partially ordered
graphite crystal structure of graphene nanosheets. The
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Figure 7 Raman spectroscopy analyses of GO and EGFP-rGO samples. Raman spectra were obtained using a laser excitation of 532 nm at a
power of, T mW. The figure shows representative Raman spectra of GO and EGFP-rGO samples after removal of the fluorescent background. The
intensity ratios of the D-peak to the G-peak were 1.8 and 2.149 for GO and EGFP-rGO, respectively. At least three independent experiments were
performed for each sample and reproducible results were obtained.

Raman spectra of graphene-based materials also show a
two-dimensional (2D) band that is sensitive to the stacking
of graphene sheets. It is well known that the two-phonon
(2D) Raman scattering of graphene-based materials is use-
ful to differentiate monolayer graphene from multilayer
graphene as it is highly sensitive to the stacking of graphene
layers [14,88,89]. Another characteristic of single-layer gra-
phene is the relatively strong Raman intensity of the 2D
band with respect to the G-band [90]. Usually, a Lorentzian
peak for the 2D band of monolayer graphene sheets is ob-
served at 2,679 cm ™, whereas this peak is broadened and
shifted to a higher wave number in the case of multilayer
graphene [14,88,89]. We observed the 2D band at 2699 cm
!, which is the same as the previously reported peak pos-
ition for single-layer graphene [90,91]. Thus, our sample
could consist of single-layer graphene flakes.

It should be noted that this ratio is higher than those
reported for rGO produced using various reducing
agents such as L-cysteine [62], dextran [92], baker’s yeast
[93], DTT [83,94], and NaBH, [95]. The Raman spec-
troscopy analyses described here agree with those of previ-
ous studies that used various biomolecules and organisms
to reduce GO to graphene, such as L-cysteine [62], Baker’s
yeast [93], heparin [13], Escherichia coli [48], P. aeruginosa
[8], Humanin [53], Ganoderma spp [21], and Ginkgo biloba
[70].

Biocompatibility of GO and EGFP-rGO

The HEK cell line has been extensively used as an ex-
pression tool for recombinant proteins [96]. Therefore,
we used the HEK cell line as a model system to study
the effect of GO and EGFP-rGO. Figure 8 shows the

biocompatibility of EGFP-rGO in HEK cells assessed
using the WST assay. GO exhibited concentration-
dependent toxicity compared to untreated control cells,
whereas EGFP-rGO-treated cells showed no significant
toxicity when compared to untreated cells. Several stud-
ies have shown interactions between dispersed graphene
and GO sheets in various cell types such as monolayer
cultures of neuronal cells [27], lung epithelial cells [28],
fibroblasts [30,47], and human breast cancer cells [21].
Single-layer GO sheets were found to be internalized and
sequestered in cytoplasmic, membrane-bound vacuoles by
human lung epithelial cells or fibroblasts, and they induced
toxicity at concentrations above 20 pg/mL after 24 h
[28,29,94,97]. Limited literature is available on the biocom-
patibility of graphene [4]. GFNs have been suggested to be
useful as biosensors [98], tissue scaffolds [10], carriers for
drug delivery and gene therapy [99], antibacterial agents
[7,8], and bio-imaging probes [27] because of their unique
features over other types of nanomaterials, including their
high specific surface area, which allows high-density bio-
functionalization and drug loading. The results from our
study indicate that EGFP-rGO can be used as a biocompat-
ible material. Altogether, the results from our study and
those from other groups suggest that EGFP-rGO can be
used in various biomedical applications.

Effect of EGFP-rGO on LDH leakage

LDH (lactate dehydrogenase) is present in all types of
cells and LDH leakage is a useful index for cytotoxicity
on the basis of loss of membrane integrity, a hallmark of
necrosis [100]. Based on the percentage of the maximum
LDH release, in the present study EGFP-rGO was
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differences from the control group by the Student’s t-test (P < 0.05).
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Figure 8 Effects of GO and EGFP-rGO on cell viability of human embryonic kidney 293 cells. Cell viability of human kidney cells was
determined using WST-8 assay after 24 hours exposure to different concentrations of GO or EGFP-rGO. The results represent the means of three
separate experiments, and error bars represent the standard error of the mean. GO- and EGFP-rGO-treated groups showed statistically significant
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considered non-toxic to cells, whereas GO showed tox-
icity to the cells in a concentration-dependent manner
when compared to untreated cells (Figure 9). Significant
LDH release was observed after 24 h of exposure to GO
at higher concentrations, whereas graphene had no ef-
fect on the release of LDH. Thus, the LDH assay results
were consistent with the cell-viability assay results. The
toxicity of graphene materials depends on their size,
shape, composition, surface charge, and surface chemistry,

in addition to the target cell type [101]. Zhang et al. [27]
observed that graphene aggregates/agglomerates that
had sedimented onto the surface of rat PCI2 cells
caused an increase in LDH leakage only at the highest
exposure concentration (100 pg/mL). Our earlier find-
ings also suggest that at higher concentrations, TEA-
rGO has no significant toxicity in mouse embryonic
fibroblast cells [102]. Therefore, EGFP-derived graphene
is also biocompatible.

300
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Figure 9 Effects of GO and EGFP-rGO on lactate dehydrogenase activity in human embryonic kidney 293 cells. Lactate dehydrogenase
activity was measured at 490 nm, using the cytotoxicity detection lactate dehydrogenase kit. The results represent the means of three separate
experiments, and error bars represent the standard error of the mean. GO- and EGFP-rGO-treated groups showed statistically significant differences
from the control group by the Student’s t-test (P < 0.05).
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Effects of EGFP-rGO on oxidative stress

The DCF assay was performed to investigate the toxicity
of nanomaterials attributable to ROS generation. Follow-
ing exposure of HEK cells for 24 h to GO and EGFP-
rGO, the state of oxidative stress in the cells was
observed. As shown in Figure 10, the ROS generation in-
creased in a concentration-dependent manner as the
concentration of GO was increased, whereas EGFP-rGO
had no significant impact, even at high concentrations,
when treated cells were compared to untreated cells.
These results were consistent with the results from the
WST-8 assay and LDH assay, suggesting that toxicity in
cells exposed to GO may result from oxidative stress
mediated by ROS generation. It was previously shown that
exposure to multiwalled carbon nanotubes (MWCNTSs)
resulted in a concentration-dependent cytotoxicity in
cultured human embryonic kidney cells, which was associ-
ated with increased oxidative stress [103]. Zhang et al. [104]
reported that surface functionalization (e.g., PEGylation)
of single-walled carbon nanotubes (SWCNTs) reduced the
ROS-mediated toxicological response in PC-12 cells. In-
duction of oxidative stress is considered to be one of the
principal mechanisms underlying nanomaterial toxicity
[105]. Lammel et al. [73] demonstrated that GO and
carboxyl graphene nanoplatelets (CXYG) induce the
generation of intracellular ROS in a concentration- and
time-dependent manner in the human hepatocellular car-
cinoma cell line HepG2. GO-mediated cell death is caused
by increased intracellular ROS levels originating from
mitochondrial damage [73]. Stern et al. [106] suggest that
several nanomaterials cause cell death through autophagy
and lysosomal dysfunction. Qu et al. [107] reported that

Page 10 of 16

ROS production was independent of surface modification
on QDs and that ROS did not account for the cytotoxicity
of QD-PEG-NH, particles in J774A.1 cells. Recently, Wu
et al. [108] investigated the toxicity of graphene oxide in
Caenorhabditis elegans at adult day 10 and found that
prolonged exposure to 0.1 mg/L GO did not induce the
noticeable intestinal autofluorescence or intestinal ROS
production compared with the control; however, pro-
longed exposure to 10-100 mg/L GO resulted in intestinal
autofluorescence and intestinal ROS production. Chong
et al. [109] assessed the effect of graphene quantum dots
(GQD) using various measures such as cell viability, cell
apoptosis and necrosis, and LDH and ROS levels, and
found that over 95% and 85% of HeLa cells and A549
cells, respectively, remained alive after 24 h of incubation
with GQD-PEG, even when the GQD concentration in-
creased to 160 pg/mL. Furthermore, they suggested that
the low cytotoxicity resulted from PEGylation or the in-
herent properties of the GQD sample. Graphene nanopar-
ticles, depending on the synthesis method, can exhibit
different morphologies, chemical properties, and physical
properties. Earlier studies also suggest that graphene nano-
particles show diverse responses in cells and tissues de-
pending on their morphology and synthesis method [110].

Effect of EGFP-rGO on cell morphology

Biocompatibility is important for the development of
new nanomaterials for biological and biomedical applica-
tions [50]. In addition to the biochemical assays de-
scribed above, we evaluated the morphology of the cells
treated with GO and EGFP-rGO. The effect of EGFP-
rGO on cell morphology was determined using higher
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Figure 10 Effects of GO and EGFP-rGO on generation of ROS in human embryonic kidney 293 cells. The relative fluorescence of
2',7"-dichlorofluorescein was measured using a spectrofluorometer with excitation at 485 nm and emission at 530 nm. The results represent the
means of three separate experiments and the error bars represent the standard error of the mean. Treated groups GO, showed statistically
significant differences from the control group, as determined by Student’s t-test (P < 0.05).
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concentrations of GO and EGFP-rGO (100 pg/mL), and
the cells were seeded at the same density of 1 x 10* cells
per plate. After 24 and 48 h of incubation, we observed
the morphology of cells, and surprisingly, EGFP-rGO
had no apparent effect; the cells were healthy (Figure 11);
conversely, GO-treated cells were unhealthy, and the
structure of the cells was contracted (Figure 11). Cheng
et al. [67] reported that biopolymer-functionalized rGO
exhibits an ultralow hemolysis ratio and significant cyto-
compatibility in human umbilical vein endothelial cells
(HUVECs), even at a high concentration of 100 pg/mL.
Talukdar et al. [71] evaluated the effect of various types
of graphene materials such as graphene nano-onions
(GNOs), graphene oxide nanoribbons (GONRs), and
graphene oxide nanoplatelets (GONPs) on the viability
and differentiation of human mesenchymal stem cells
(MSCs). They found that the cytotoxic effect was
concentration-dependent but not time-dependent. In
our study, concentrations lower than 50 pg/mL showed
no significant differences compared to untreated controls.
Our data suggest that EGFP-rGO at up to 100 pg/mL has
no effect on cell viability, LDH, ROS generation, or on
cell morphology. Our earlier studies demonstrated both
cytotoxicity and biocompatibility of graphene materials
in various cell types. Altogether, our findings and those
of other research groups suggest that the cytotoxicity
or biocompatibility of graphene materials is dependent
on physicochemical properties such as the density of
functional groups, size, and conductivity, in addition to
the type of reducing agents used for the deoxygenation
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of GO, degree of functionalization, and cell type
[50,75]. Finally, graphene materials prepared using re-
combinant EGFP could be useful for potential biomed-
ical applications.

Conclusion

Commonly, the reduction of GO using chemical redu-
cing agents is harmful to human health and the environ-
ment, and aggregation is another problem that occurs
during the reduction process. Here, we show the synthe-
sis of biocompatible graphene using recombinant EGFP.
EGFP is one of the most widely used tools in biology be-
cause of its stability and lack of toxicity. In the present
study, we explored the potential application of EGFP for
a different purpose other than the tagging usually re-
ported in the literature. We have developed a simple, de-
pendable, and environmentally friendly method for the
fabrication of reduced GO. Our findings suggest that
GO induced significant concentration-dependent de-
creases in the viability of HEK cells, whereas graphene
exerted no toxic effects on HEK cells at a concentration
of 100 pg/mL. Therefore, it is concluded that the use of
a biological substrate in a simple and environmentally
friendly approach for synthesis of graphene resulted in
significant deoxygenation of suspended GO suspensions,
thus providing a suitable substitute for chemical redu-
cing agents and potentially enabling biomedical applica-
tions of graphene-based materials. This work may
provide additional insight into graphene synthesis.

W .
Figure 11 The effect of GO and EGFP-rGO on morphology of human embryonic kidney 293 cells. The microscopy images of human
kidney cells were treated with concentrations of GO and EGFP-rGO (100 ug/ml) for 24 hours.

EGFP-rGO

J - y A -




Gurunathan et al. Journal of Nanobiotechnology 2014, 12:41
http://www.jnanobiotechnology.com/content/12/1/41

Materials and methods

Materials

Gt powder, NaOH, KMnO4, NaNOj3 anhydrous ethanol,
98% H,SO4, 36% HCI, and 30% H,O, aqueous solution
were purchased from Sigma-Aldrich (St Louis, MO,
USA). Penicillin-streptomycin solution, trypsin-ethylene-
diaminetetraacetic acid solution, Dulbecco’s Modified
Eagle Medium (DMEM), and 1% antibiotic-antimycotic
solution were obtained from Gibco (Life Technologies,
Carlsbad, CA, USA). Fetal bovine serum and the in vitro
toxicology assay kit were purchased from Sigma-Aldrich.
Enhanced green fluorescent protein was purchased from
Bio-vision (Cat.No. 4999-100; Milpitas, California, USA).

Synthesis of GO

GO was synthesized as described previously [21,57]. In a
typical synthesis process, natural Gt powder (2 g) was
added to cooled (0°C) H,SO, (350 mL), and then
KMnO, (8 g) and NaNOj3 (1 g) were added gradually
while stirring. The mixture was transferred to a 40°C
water bath and stirred for 60 min. Deionized water
(250 mL) was slowly added and the temperature was in-
creased to 98°C. The mixture was maintained at 98°C
for a further 30 minutes and the reaction was terminated
by the addition of deionized water (500 mL) and 30%
H,O, solution (40 mL). The color of the mixture chan-
ged to brilliant yellow, indicating the oxidation of pris-
tine Gt to Gt oxide. The mixture was then filtered and
washed with diluted HCI to remove metal ions. Finally,
the product was washed repeatedly with distilled water
until pH 7.0 was achieved, and the synthesized Gt oxide
was further sonicated by ultrasonication for 30 min.

Preparation of EGFP-rGO

Reduction of GO was performed as described previously
[21,41] with suitable modifications. Using GO as a pre-
cursor, EGFP-rGO was prepared using EGFP as both a
reducing agent and a stabilizer. In a typical procedure,
reduced GO (rGO) was obtained from the reaction of
EGFP with GO. A mixed aqueous solution containing
EGEFP (100 pg/mL) and GO (1 mg/mL) was ultrasonicated
for 15 min, and the mixture was maintained at 40°C for
1 h. The mixture was then cooled to room temperature
and ultrasonicated for a further 15 min. After being vigor-
ously stirred for 5 min, the mixture was stirred in a water
bath (90°C) for 1 h. The resulting stable black dispersion
was then centrifuged and washed with water three times.
A homogenous EGFP-rGO suspension was obtained with-
out aggregation. Finally, the obtained EGFP-rGO sheets
were redispersed in water before further use.

Characterization of GO and EGFP-rGO
GO and EGFP-rGO were characterized according to
methods described previously [41]. UV-visible spectra
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were recorded using a WPA Biowave II spectrophotom-
eter (Biochrom, Cambridge, UK). The particle sizes of
the GO and EGFP-rGO dispersions were measured
using a Zetasizer Nano ZS90 instrument (Malvern In-
struments, Worcestershire, UK). X-ray diffraction (XRD)
analyses were performed in a Bruker D8 DISCOVER
X-ray diffractometer (Bruker AXS GmBH, Karlsruhe,
Germany). The X-ray source was 3 kW with a Cu target,
and high-resolution XRD patterns were measured using
a scintillation counter (A = 1.5406°A). The XRD was run
at 40 kV and 40 mA, and samples were recorded at 20
values between 5° and 80°. The dried powder of GO and
EGFP-rGO was diluted with potassium bromide and the
Fourier transform infrared spectroscopy (FTIR) (Perkin
Elmer Inc., USA) and spectrum GX spectrometry were
recorded within the range of 500-4000 cm-'. A JSM-
6700 F semi-in-lens field emission scanning electron
microscope was used to acquire SEM images. The solid
samples were transferred to a carbon tape held in an
SEM sample holder, and then the analyses were per-
formed at an average working distance of 6 mm. Raman
spectra of GO and EGFP-rGO were measured using a
WITEC Alpha300 laser with a wavelength of 532 nm.
Calibration was initially performed using an internal sili-
con reference at 500 cm ' and gave a peak position
resolution of less than 1 cm™. The spectra were mea-
sured from 500 to 4500 cm ™. All samples were depos-
ited onto glass slides in powdered form without using
any solvent.

Cell culture and exposure of cells to GO and EGFP-rGO
Human embryonic kidney 293 cells were cultured in
DMEM supplemented with 10% FBS and 100 U/mL
penicillin-streptomycin in a humidified incubator main-
tained at 37°C and 5% CO,. At approximately 75% con-
fluence, cells were harvested using 0.25% trypsin and
subcultured in 75 cm? flasks, 6-well plates, or 96-well
plates depending on the intended use. Cells were
allowed to attach to the substratum for 24 h prior to
treatment. The medium was replaced three times per
week, and cells were passaged at subconfluency. Cells
were prepared in 100 pL aliquots at a density of 1 x 10°/
mL and plated in 96-well plates. After the cells were cul-
tured for 24 h, the medium was replaced with medium
containing GO or EGFP-rGO at different concentrations
(0-100 pg/mL). After incubation for an additional 24 h,
cells were analyzed for viability, lactate dehydrogenase
(LDH) release, and reactive oxygen species (ROS) gener-
ation. Cells not exposed to GO or EGFP-rGO served as
the control. Further, morphology of cells treated with
GO or EGFP-rGO or untreated was examined using an
OLYMPUS IX71 microscope (Japan) using appropriate
filter sets.
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Cell-viability assay

The WST-8 assay was performed as described previously
[29]. Typically, 1 x 10* cells were seeded in a 96-well
plate and cultured in DMEM supplemented with 10%
FBS at 37°C under 5% CO,. After 24 h, the cells were
washed with 100 pL of serum-free DMEM two times
and incubated with 100 pL of different concentrations of
GO or EGFP-rGO suspensions in serum-free DMEM.
After 24 h of exposure, the cells were washed twice with
serum-free DMEM, and 15 pL of WST-8 solution was
added to each well containing 100 pL of serum-free
DMEM. After 1 h of incubation at 37°C under 5% CO,,
80 pL of the mixture was transferred to another 96-well
plate because residual GO or EGFP-rGO can affect the
absorbance values at 450 nm. The absorbance of the
mixture solutions was measured at 450 nm using a mi-
cro plate reader. Cell-free control experiments were per-
formed to determine whether GO and EGFP-rGO react
directly with the WST-8 reagents. Typically, 100 pL of
GO or EGFP-rGO suspensions with different concentra-
tions (0-100 pg/mL) were added to a 96-well plate and
10 pL of WST-8 reagent solution was added to each
well; the mixture was incubated at 37°C under 5% CO,
for 1 h. After incubation, the GO or EGFP-rGO was
centrifuged and 100 pL of the supernatant was trans-
ferred to another 96-well plate. The optical density was
measured at 450 nm.

Membrane integrity

The cell membrane integrity of human embryonic kid-
ney 293 cells was evaluated by determining the activity
of lactate dehydrogenase (LDH) leaking out of the cells
according to the manufacturer’s instructions (in vitro
toxicology assay kit, TOX7, Sigma, USA) and also as de-
scribed previously [21]. Briefly, the cells were exposed to
various concentrations of GO and EGFP-rGO (0-
100 pg/mL) for 24 h, and then 100 pL per well of each
cell-free supernatant was transferred in triplicate into
wells in a 96-well plate, and 100 pL of the LDH assay re-
action mixture was added to each well. After 3 h of incu-
bation under standard conditions, the optical density of
the color generated was determined at a wavelength of
490 nm using a micro plate reader.

Determination of ROS

ROS were estimated according to a method described
previously [43]. Intracellular ROS were measured based
on the intracellular peroxide-dependent oxidation of
2,7’-dichlorodihydrofluorescein diacetate (DCFH-DA,
Molecular Probes, USA) to form the fluorescent com-
pound 2;7’-dichlorofluorescein (DCF), as previously de-
scribed. Cells were seeded onto 24-well plates at a
density of 5x 10* cells per well and cultured for 24 h.
After washing twice with PBS, fresh medium containing
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different concentrations of GO or EGFP-rGO (0-
100 pg/mL) was added and the cells were incubated for
24 h. The cells were then supplemented with 20 uM
DCFH-DA, and incubation continued for 30 min at 37°C.
The cells were rinsed with PBS, 2 mL of PBS was added to
each well, and the fluorescence intensity was determined
using a spectrofluorometer (Gemini EM) with excitation
at 485 nm and emission at 530 nm.

Statistical analyses

All assays were carried out in triplicate and the experi-
ments were repeated at least three times. The results are
presented as means + SD. All experimental data were
compared using the Student’s t test. A p value less than
0.05 was considered statistically significant.
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