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Abstract

several types of cancer cells.

Background: The hepatitis B virus core (HBc) particle is known as a promising new carrier for the delivery of drugs
and nucleic acids. However, since the arginine-rich domain that is located in the C-terminal region of the HBc
monomer binds to the heparan sulphate proteoglycan on the cell surface due to its positive charge, HBc particles
are introduced non-specifically into a wide range of cells. To avoid non-specific cellular uptake with the intent to
control the ability of cell targeting, we individually replaced the respective arginine (R) residues of the arginine-rich
domain located in amino acid positions 150-159 in glycine (G) residues.

Results: The mutated HBc particles in which R154 was replaced with glycine (G) residue (R154G) showed a drastic
decrease in the ability to bind to the heparan sulphate proteoglycan and to avoid non-specific cellular uptake by

Conclusions: Because this mutant particle retains most of its C-terminal arginine-rich residues, it would be useful in
the targeting of specificity-altered HBc particles in the delivery of nucleic acids.

Background
Hepatitis B virus core (HBc) particles have been studied
as promising virus-like particles (VLPs) to serve as car-
riers in drug delivery systems (DDSs) [1,2]. HBc particles
consist of 180 (T = 3) or 240 (T = 4) units of HBc mono-
mers that have the ability to form an icosahedral capsid
[3,4]. Coordinating salt and urea concentrations enable
control of the phases between assembly and disassembly
of the HBc capsid [5]. HBc monomers are composed of
two distinct domains: i) an assembly domain (amino acid
residues (aa) 1-149) that drives particle formation, and
ii) an arginine-rich domain (aa 150-183) that recognizes
the cell surface heparan sulphate proteoglycan with an
electrostatic interaction [6]. The heparan sulphate proteo-
glycan is known as a major physiological ligand for many
heparin-binding proteins [7]. Additionally, the arginine-
rich domain behaves as a binding site for nucleic acids, be-
cause of its positively charged residues [8,9].

It has been demonstrated that the engineered HBc
monomer deleting the entire arginine-rich domain (aa
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150-183) could associate and form a particle structure but
it could not bind the cells [10,11]. In particular, the aa
150-162 of HBc is necessary, whereas the aa 163-183 is
dispensable for heparan sulphate proteoglycan-mediated
cell attachment, even though the aa 160-183 is useful as
the binding site to nucleic acid medicine [12]. Thus, there
is no doubt that the arginine residues in aa 150-159 serve
the cell binding and the uptake. However, the question re-
mains as to which of the aa 150-159 in the arginine-rich
domain will bind to the heparan sulphate proteoglycan.
To employ HBc particles for the targeted cell-specific de-
livery of nucleic acids, it is important to understand the ar-
ginine residues involved in the non-specific cellular uptake
of HBc particles.

In this research, we performed site-directed mutagen-
esis for the HBc monomer to identify the amino acid
residues concerned in the binding to the heparan
sulphate proteoglycan. Each arginine (R) residue among
aa 150-159 of the arginine-rich domain in the HBc
monomer was individually replaced with a glycine (G)
residue, and the cellular uptakes of the mutated HBc
particles were evaluated. The HBc particle introducing
the R154G mutation showed a drastic decrease in all
capacities of cellular uptake for HeLa, NuE and A431
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cells. Our results would be useful in the engineering of
HBc particles to serve as carriers with cell-specific tar-
geting for nucleic acid delivery.

Results and discussion

Wild-type and singly mutated (respectively replacing R
with G among aa 150-159 in the arginine-rich domain)
HBc monomers (Additional file 1) were expressed in E.
coli, and the proteins were extracted with lysis buffer as
well as with dissociation buffer. HBc dimers were then
purified by affinity chromatography. It has been proved
that the C-terminal histidine-tag on HBc monomer had no
significant adverse effect on the particle formation and the
cell binding [11]. The expression of each HBc monomer
(21 kDa) was confirmed by western blot analysis using
anti-His6 antibody (data not shown). The particle forma-
tion was confirmed by atomic force microscopy (AFM),
scanning electron microscope (SEM) and dynamic light
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scattering (DLS) (Figure 1). These results indicated that
point-mutations replacing R with G in the arginine-rich
domain (150-159 aa) did not affect the self-assembly
capacity of the HBc dimers.

To evaluate the cell-binding capability of singly mu-
tated HBc particles, each HBc particle was labelled with
Alexa Fluor 488. HeLa, A431 and NuE cells were then
treated with the labelled HBc particles. After washing
the cells to remove the non-bound HBc, the green fluor-
escence of the cells was analyzed using a flow cytometer.
The fluorescence intensity of the cells treated with wild-
type HBc particles was measured in relative fluorescence
units (RFUs) (Figure 2). Although the relative ability of
all singly mutated HBc particles to bind with NuE cells
was lower than the ability to bind to HeLa and A431
cells, the relative binding of wild-type HBc and the mu-
tants was consistent among different cell types. The re-
placement of the R residues at aa 157, 158 and 159
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Figure 1 Analyses of purified HBc particles. (A) Atomic force microscope images of HBc-WT particle (left) and HBc-R154G particle (right). Scale
bar: 50 nm. (B) Scanning electron microscope images of HBc-WT particle (left) and HBc-R154G particle (right). Scale bar: 100 nm. (C) Size distribution
using DLS analysis. The average size of the HBc-R154G particle was 28.7 nm.
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Figure 2 Relative fluorescence units (RFU) of HeLa, NuE and

A431 cells treated with Alexa Fluor 488-labeled HBc particles.

(Final concentration of Alexa Fluor 488-labeled HBc particles: 10 pg/ml)
Black bars, Hela cells; grey bars, NUE cells; and, striped bars, A431 cells.

(R157G, R158G and R159G) showed a comparatively
higher cell binding ability compared with other HBc mu-
tants. The mutations of R residues at aa 150, 151, 152
and 154 (R150G, R151G, R152G and R154G) in HBc
considerably decreased the cell binding ability. Among
them, the R154G mutation of HBc was the most effect-
ive in decreasing the cell binding ability to all three cell
types, while its potency was fairly close to those of
R150G, R151G and R152G. Thus, the R154 residue and
its peripheral R residues (aa 150-152) in the arginine-
rich domain are critical to the cell binding ability of HBc
particles, and the HBc-R154G particles would be useful
in the development of an engineered HBc particles for
the targeted cell-specific delivery of nucleic acids.

Proteins possessing either an arginine-rich domain or
a protein transduction domain (PTD) will bind to the
heparan sulfate proteoglycan on a cell surface [13,14].
To examine the binding affinity of mutated HBc parti-
cles with a heparan sulfate proteoglycan, we performed
surface plasmon resonance (SPR) analysis (Figure 3).
The binding curve of the HBc-R154G particle was lower
than that of wild-type HBc particles, which agreed with the
results found using a flow cytometer. The value of &,
showed a 1.5-fold difference between WT-HBc (1.45 x 107)
and HBc-R154G (9.44 x 10°) particles. These results in-
dicated that the arginine residue at aa 154 is surely in-
volved in binding to the cell surface of a heparan sulfate
proteoglycan.

To evaluate the effect of R154G mutation on cellular
uptake, HeLa, NuE and A431 cells were treated with HBc-
WT and HBc-R154G particles labelled with Alexa Fluor
488. After incubation for 3 h, the cells were observed by
confocal laser-scanning microscope (CLSM) (Figure 4).
Green fluorescent signals of HBc-WT particles were ob-
served clearly in all three cell types. In contrast, the green
fluorescence of HBc-R154G particles was little observed in
any three cell types. This result indicated that the HBc-
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R154G particles showed the decrease of the non-specific
cellular uptake ability for three different cell types.

Conclusions

Wild-type HBc particles have the ability to bind to a wide
range of cells due to the C-terminal arginine-rich domain
that interacts with the cell surface of a heparan sulfate
proteoglycan. Arginine residues located within aa 150-159
among the arginine-rich domain were thought to be re-
lated to the interaction [12]. Therefore, singly mutated
HBc particles in which each arginine residue (aa 150-159)
was replaced with glycine residues were prepared. As a re-
sult, the cell-binding abilities of most of the mutated HBc
particles were decreased compared with wild-type HBc
particles. In particular, the HBc-R154G particles displayed
the lowest degree of cell binding ability. The HBc-R154G
particles showed a clear decrease in the binding ability to
a heparan sulfate proteoglycan, as well as a decrease in the
cellular uptake capacity. Therefore, the replacement of an
arginine residue at the aa 154 position was critical to avoid
non-specific cellular binding and uptake. Thus, the R154-
mutated HBc particles would be useful in the development
of specificity-altered HBc for targeted nucleic acid delivery.

Methods

Plasmid construction of wild-type and singly mutated HBc
The plasmid pET-22b-HBc [15] was used to prepare a
wild-type HBc particle containing a histidine-tag (His6)
at the C-terminus (HBc-WT-His6). To prepare HBc
particles with a single mutation (HBc-R15XG-His6, X =
0, 1,2, 4,7, 8,9), each arginine residue was replaced
with glycine residue in plasmids expressing singly mu-
tated HBc monomers that were constructed as follows.
DNA fragments encoding HBc-R15XG-His6 (X =0, 1,
2, 4, 7, 8, 9) were amplified by polymerase chain reac-
tion (PCR) from pET-22b-HBc with the the following
primers: (5'- TAA TCT CGA GTC TAG AGA ATT
AGT AGT CAG CTATGT -3" and 5'- CCC CCG CGG
CGA GGG AGT TCT TCT TCT AGG GGA CCT GCC
TCG TCG TCT AAC AAC AGT AGT TTC -3’ re-
placing each R with G) based on Additional file 1. The
amplified fragments and pET-22b-HBc were digested
with Xbal/Sacll, and were ligated at the same sites. The
resultant plasmids were designated as pET-22b-HBc-
R15XG-His6 (X=0,1,2,4,7,8,9).

Expression of HBc monomers in Escherichia coli

Each plasmid expressing wild-type and singly mutated
HBc monomers was introduced into Escherichia coli
BL21 (DE3). The cultures of the transformants (4 ml)
were inoculated into 1 L of fresh LB-media (1% tryptone,
0.5% yeast extract, 0.5% NaCl) containing 100 pg/ml ampi-
cillin and grown at 37°C with shaking at 150 rpm until the
ODggo reached 0.7 ~0.8. Then, protein production was
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Figure 3 The concentration-dependent binding curves of HBc-WT and mutated HBc particles. The interaction with heparan sulfate

induced by adding isopropyl-p-thiogalactopyranoside
(IPTG) with a final concentration of 100 uM at 25°C over-
night. Cells were collected at 3,000 rpm for 15 min, and
the sediment was used for purification.

Purification of HBc particles

Each HBc particle was purified as reported previously
[16]. Briefly, a cell pellet was suspended in 30 ml of lysis
buffer (pH 8.0) (50 mM Tris—HCIl, 100 mM NaCl, 5 mM
EDTA, 0.2% Triton X-100, 10 mM [-mercaptoethanol,
10 mg/ml DNAse I, 10 mg/ml RNAse A) with a vortex.
The cells were lysed on ice by 3 cycles of sonication for
1 min each at 1 min intervals to avoid heating of the
material. The supernatant was removed by centrifuga-
tion at 15,000 rpm and 4°C for 30 min. The HBc parti-
cles in the pellet were twice washed in 50 ml of lysis
buffer and each time collected by centrifugation at
12,000 rpm and 4°C for 15 min. The HBc particles and
contaminating E. coli proteins were dissolved in 25 ml of
dissociation buffer (pH 9.5) (4 M urea, 200 mM NaCl,
50 mM sodium carbonate, 10 mM [-mercaptoethanol)
by overnight incubation in a refrigerator at 4°C. After
the addition of 10 ml of dissociation buffer, the prepar-
ation was incubated for an additional 2 h on ice.

Contaminating proteins were separated from HBc pro-
teins using denaturing affinity chromatography. A col-
umn with 10 ml of Ni-agarose (COSMOGEL His-Accept;
Nacalai Tesque, Kyoto, Japan) was equilibrated with 5 ml of
dissociation buffer in 3 cycles. The preparation was loaded
onto the equilibrated column and washed with 5 ml of dis-
sociation buffer in 3 cycles. Bound proteins were eluted with
10 ml of elution buffer (pH 9.5) (dissociation buffer contain-
ing 1 M imidazole), and the elution was collected into
1 ml fractions. Each fraction was separated by 15% sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE), and stained with Coomassie brilliant blue (CBB)
to analyse its purity. Fractions containing the pure pro-
teins were polymerized to HBc particles by removal of the
urea in the dialysis buffer (pH 7.0) (500 mM NaCl, 50 mM
Tris—HCI, 0.5 mM EDTA) overnight. Dialysed HBc parti-
cles were obtained through a 0.22 pm filter in 3 cycles.
The concentration was measured using a Protein Assay
Bicinchoninate Kit (BCA Protein Assay) (Nacalai Tesque).

Western blotting

The expression of each HBc particle was determined by
western blot analysis using a polyvinilidene fluoride (PVDF)
membrane. Rabbit anti-6-His antibody (Bethyl Laboratories,
Montgomery, TX, USA) was used for the immunoblotting,

Hela

R154G

Figure 4 Fluorescence images of HeLa, NUE and A431 cells treated with Alexa Fluor 488-labeled HBc particles. (Final concentration of
Alexa Fluor 488-labeled HBc particles: 10 ug/ml) The cells were observed using a confocal laser-scanning microscope: Scale bars, 50 pm.
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followed by alkaline phosphatase (AP) conjugated anti-rabbit
IgG antibody (Promega, Madison, WI, USA). The mem-
brane was stained with 5-bromo-4chloro-3-indolyl phos-
phate (BCIP) and nitro blue tetrazolium (NBT) (Promega).

Atomic force microscope (AFM)

One hundred microliter solution containing HBc particles
was deposited on mica surfaces (11 mm x 11 mm x
0.15 mm) at room temperature for 5 minutes, and then
flushed with air. Tapping mode AFM analysis (TM-AFM)
was carried out in air at 25°C using a Bruker Dimension
ICON with ScanAsyst® (Bruker UK Ltd, Coventry, United
Kingdom). The surface was imaged with a tapping tip
mode by MikroMasch in Estonia (NSC15/no Al, tip ra-
dius < 10 nm; tip height =20-25 pm; cone angle < 40°,
cantilever thickness =3.5-14.5 pum; cantilever width =
28-32 pm; cantilever length = 120-130 pm; frequency
f»=265-400 kHz; force constant k=20-75 N m™},
VEECO, USA). The statistical analysis of the AFM im-
ages was carried out using WSxM v5.0 Developed 6.2
software (Nanotec Electronica S.L., Madrid, Spain).

Scanning electron microscope (SEM)

The freeze-dried HBc particles were analyzed using a
JSM-7500 F (JEOL, Munchen, Germany), following the
manufacturer’s procedure.

Dynamic light scattering (DLS)

The diameter of HBc particles was measured using a
Zetasizer Nano ZS (Malvern Instruments, Worcestershire,
UK), following the manufacturer’s procedure.

Cell culture

HeLa and A431 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) (Nacalai Tesque) containing 10%
fetal bovine serum (FBS) (Nacalai Tesque), 5% penicillin and
streptomycin in the presence of 5% of CO, at 37°C. NuE
cells were cultured in RPMI1640 medium (Nacalai Tesque)
containing 10% fetal bovine serum (FBS), 5% penicillin and
streptomycin in the presence of 5% of CO, at 37°C.

Evaluating the cell binding ability of HBc particles

Purified HBc particles were reacted with Alexa Fluor 488
succinimidyl esters (Molecular Probes/Life Technologies,
Carlsbad, CA) for 1 h at room temperature under shading.
The mixture then was dialyzed with dialysis buffer over-
night to remove the free Alexa Fluor 488 [17]. Approxi-
mately 1x 10° units of HeLa, A431 and NuE cells were
seeded per well into 12-well plates and cultured overnight.
The cells were washed with phosphate-buffered saline (PBS)
(Nacalai Tesque) and treated with each particle in serum-free
medium at 37°C for 1 h. The final concentrations of core par-
ticles were 10 pg/ml for each cell. The cells were then washed
twice with serum-free medium and treated with fresh-serum
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medium at 37°C for 2 h. After washing with PBS, the green-
fluorescence was analyzed using a BD FACSCanto II flow cyt-
ometer (BD Biosciences, San Jose, CA, USA).

Surface Plasmon resonance (SPR) analysis

The interaction between HBc particles and heparan sul-
fate proteoglycan was measured using a Biacore 3000
(GE Healthcare, Piscataway, NJ, USA) [13]. A sensor
chip SA (GE Healthcare) immobilizing heparin sodium
salt from porcine intestinal mucosa (Sigma-Aldrich, St.
Louis, MO, USA) was prepared using an amine coupling
method, according to the manufacturer’s procedure.
Each HBc particle was dissolved in running buffer
(HBS-EP buffer: 0.01 M HEPES, 0.15 M NaCl, 3 mM
EDTA, 0.005% Surfactant P20, pH 7.4) (GE Healthcare)
and loaded onto the sensor chip. The chip was regener-
ated in 1 M NaCl buffer. As the experimental curve-
fitting methodology, a 1:1 Langmuir binding model was
used. Each HBc particle was dissolved in running buffer
and loaded onto the sensor chip. The signal data were
collected using Biacore 3000 Control Software.

Evaluating the cellular uptake of HBc particles
Approximately 2 x 10* units of HeLa, A431 and NuE
cells were seeded in 35 mm glass-based dishes (Iwaki/
AGC Techno Glass, Tokyo, Japan). After incubation for
24 h, the cells were washed with PBS and treated either
with HBc-WT or HBc-R154G in serum-free medium at
37°C for 1 h. The final concentration of the particles was
10 pg/ml. The cells were then washed twice with serum-
free medium and treated with fresh-serum medium at
37°C for 2 h. The cells were observed using a CLSM 5
PASCAL (Carl Zeiss, Oberkochen, Germany) confocal
laser-scanning microscope.

Additional file
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