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Abstract 

Background:  Nitric oxide (NO) plays a very important role in the cardiovascular system as a major secondary mes‑
senger in signaling pathway. Its concentration regulates most of the important physiological indexes including the 
systemic blood pressure, blood flow, regional vascular tone and other cardiac functions. The effect of nanotopography 
on the NO secretion in cardiomyocytes has not been elucidated before. In this study, we report how the nanotopog‑
raphy can modulate the secretion profile of NO and attempt to elucidate the genetic pathways responsible for the 
same by using Tantalum Oxide nanodot arrays ranging from 10 to 200 nm. A series of nanodot arrays were fabricated 
with dot diameter ranging from 10 to 200 nm. Temporal NO release of cardiomyocytes was quantified when grown 
on different surfaces. Quantitative RT-PCR and Western blot were performed to verify the genetic pathways of NO 
release.

Results:  After hours 24 of cell seeding, NO release was slowly enhanced by the increase of dot diameter from 10 nm 
up to 50 nm, mildly enhanced to a medium level at 100 nm, and increase rapidly to a high level at 200 nm. The 
temporal enhancement of NO release dropped dramatically on day 3. On day 5, a topology-dependent profile was 
established that maximized at 50 nm and dropped to control level at 200 nm. The NO releasing profile was closely 
associated with the expression patterns of genes associated with Endothelial nitric oxide synthase (eNOS) pathway 
[GPCR, PI3K, Akt, Bad, Bcl-2, NFκB(p65), eNOS], but less associated with Inducible nitric oxide synthase (iNOS) pathway 
(TNF-α, ILK, Akt, IκBα, NFκB, iNOS). Western blotting of Akt, eNOS, iNOS, and NFκB further validated that eNOS pathway 
was modulated by nanotopology.

Conclusions:  Based on the findings of the present study, 50, 100 nm can serve as the suitable nanotopography 
patterns for cardiac implant surface design. These two nanodot arrays promote NO secretion and can also promote 
the vascular smooth muscle relaxation. The results of this study can improve the heart stent design in the medical 
treatments.
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Background
Nanotopography affects cell physiology. But the effects of 
different size of nanosurfaces on different cells are very 
inconsistent. Topographies like nanodots [1–4] nano-
islands [5], nano-concave [6], nanocrystalline [7] dia-
mond, nano-groove [8–11] nanotube [12], nano-ridge 
[13, 14], nanopore [15] have been reported to affect the 

cell physiological behavior, including biocompatibility, 
cell growth, migration and cell adhesion. Previous stud-
ies conducted on the interaction of the cells with quartz 
surfaces have shown change in the surface area of the 
cells [16]. Change in the morphologies of osteoblasts on 
interaction with substrates has also been shown [17, 18]. 
Roughness of Titanium substrates has also been seen 
to modulate the adhesions of the cells to the nanosur-
face [19]. We have shown in our previous studies that 
cells have maximum adhesion area on 50  nm nanodots 
whereas 100 and 200  nm always trigger off immune 
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response [20] after day 3. For nanoislands, the cytoskel-
etal organization, cell growth and proliferation are highly 
enhanced on size smaller than 27 nm but decreased cell 
physiological indexes are observed for size greater than 
80 nm [21]. Previous studies have shown that C3A cells 
spread and grew confluent with elongated and aligned 
morphology along 100  nm nanogrooves [22] Similar 
studies have also been conducted on Titanium dioxide 
nanotubes (TiO2) for 15 nm spaced incubation but dete-
riorated cell proliferation has been observed on 350 nm 
nanosurface [15].

We have reported in our previous studies on NIH-
3T3 cells that nanodot arrays with 10–200 nm nanodots 
modulate cell adhesion and induce an apoptosis like 
abnormality [2]. The apoptosis like abnormality became 
evident in 200 nm nanodots after day 1. The abnormality 
starts to show on 50 nm after day 3. 40 and 75 nm nano-
pores promoted cell adhesion and migration in fibroblast 
by controlling expression of integrins and ERK1/2 in a 
time dependent manner [4]. A lot of variability in the cell 
morphology, migration ability, gene and protein expres-
sion was found after 12, 24, 48, hours 72 and became 
indistinguishable after incubation for hours 120.

Previous studies conducted on cardiomyocytes have 
shown maximum growth, proliferation and extended 
morphology on 50 nm nanodot arrays after day 3. Maxi-
mum growth and adhesion shifted to 100 nm after incu-
bation for hours 120 [3]. This shows that nanotopography 
regulates cell physiology not only in the size dependent 
manner but also in a time dependent manner.

Nitric oxide (NO) plays a very important role in the 
cardiovascular system as a major secondary messenger in 
signaling pathway. It is a key signaling messenger in the 
cardiovascular system. Its concentration regulates most 
of the important physiological indexes including the sys-
temic blood pressure, blood flow, regional vascular tone 
and other cardiac functions. It also maintains the vas-
cular integrity by inhibiting the platelet aggregation and 
vascular smooth muscle proliferation [23, 24]. Enough 
NO secretion enhances vascular remodeling whereas its 
deficit induces attenuation in vascular remodeling [25]. 
It has previously been reported that conditions like ath-
erosclerosis, hypertension, hypercholesterolemia and 
congestive heart failure are related to abnormal NO con-
centrations [26–28]. Thus, controlling NO concentra-
tion is of great importance in cardiovascular therapy and 
implants.

Topography has been reported to regulate the physi-
ological behavior of cardiomyocytes. NO is a major sec-
ondary messenger in the signal transduction pathway 
of cardiomyocytes [29]. However, the effects of topog-
raphy on NO secretion have not been elucidated. Here, 
were propose a novel method by which NO levels in rat 

cardiomyocyte cell line H9c2 are modulated in response 
to different size of the tantalum oxide nanodots. This 
is the first study which aims to study and co-relate the 
expressions of eNOS, iNOS in response to a nanosurface. 
We also studied the modulation in expression of eNOS 
and iNOS genes in response to the nanosurface by qPCR 
and the change in protein expression of Akt, eNOS, 
iNOS, p65 by Western Blot. We have attempted to eluci-
date the molecular pathways of iNOS, eNOS related cell 
injury as an in vitro model. We believe that understand-
ing the response of the cell to its external environment 
and the upregulation or downregulation of signaling 
pathway in response to different size of nanodots will 
play an integral role in designing cardiac implants with 
minimal side effects and increased Bio-compatibility in 
the near future.

Results
Fabrication of nanodot arrays
Nanodots array were fabricated by anodic aluminum 
oxide (AAO) processing on aluminum tantalum-coated 
wafer (Fig. 1a). Tantalum oxide nanodots array with 10, 
50, 100, and 200  nm dot diameters were constructed 
on silicon wafer. The nanodot diameters 12  ±  2.8, 
50.35 ± 3.2, 99.4 ± 6.3, and 206.7 ± 6.5 nm were exam-
ined with scanning electron microscopy (SEM) (Fig. 1b). 
Dimensions of nanodots were well controlled and highly 
defined.

Nitric oxide (NO) secretion exhibited a size dependent 
and time dependent profile
H9c2 cardiomyocytes were cultured on different nano-
dot arrays (Flat, 10, 50, 100, 200 nm). Aluminum coated 
substrate was considered as Flat. Cells treated with 
Lipopolysaccharide and Rapamycin served as positive 
and negative controls respectively. NO concentration was 
detected using Griess reagent system.

NO secretion profiles displayed a size dependent rela-
tion with the nanodot arrays. After day 1 incubation 
period, a parabolic profile of NO secretion was observed. 
It increased moderately from flat to 100  nm nanodots 
and abruptly on 200  nm nanodot arrays. The increase 
on 200 nm nanodots was found out to be six folds than 
the control group. After day 3, the parabolic profile of 
NO secretion adopted a hyperbolic profile. Maximum 
NO secretion was displayed by cells cultured on 100 nm 
arrays. After day 5, hyperbolic profile was consistent. 
However, this time, 50 nm showed maximum NO secre-
tion. This change was noted to be 1.5 folds when com-
pared to the control groups (Fig. 2).

NO secretion profiles were time-dependent. After 
hours 24 of incubation of the cardiomyocytes, maximum 
stimulation of NO secretion was displayed by 200  nm 
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nanodot arrays. After hours 72, 100  nm arrays stimu-
lated maximum NO secretion. After hours 120, the pro-
file remained the same but the maximum stimulation was 
observed to be caused by 50 nm arrays. In summary, NO 
secretion was stimulated by the nanodot arrays in the 
cardiomyocytes in a time dependent and size dependent 
manner (Fig. 2).

Association of NO release and eNOS pathway with qPCR
The mRNA expression of eNOS pathway observed in 
H9c2 cardiomyocytes cultured on different nanodots 
was determined using qPCR (Fig.  3). According to real 
time PCR results, gene expression of Bad, p65 and eNOS 
corresponded with NO release (Fig.  3d, f, g). On day 
1, Bad, p65 and eNOS were higher on 200  nm than on 
other surface. On day 3, those genes were higher on 10 
and 100  nm; on day 5 were higher on 10  nm. The data 
shows apparent difference in Bad, p65. eNOS expres-
sion was correlated to NO production. In summary, with 
time course, the maximum amount of gene expression 
switched from 200 to 10 nm.

Association of NO release and iNOS pathway
qPCR of genes associated with inflammation related 
iNOS pathway (TNF-α, ILK, AKT, IκBα, iNOS) in H9c2 
cardiomyocytes was performed (Fig.  4). The mRNA 
expression of iNOS signaling pathway genes was deter-
mined using qPCR (Fig.  4). Over various days, we 
observed gene expression of cardiomyocytes cultured on 
50  nm nanodot arrays was significantly less than other 
nanodots. According to real time PCR results, gene 
expression of ILK, IκBα and p65 corresponded with gene 
regulation (Fig. 4b, d, e). However, the mRNA expression 
were less correlated to NO production.

Comparison of NO secretion profile with expression 
patterns of genes associated with eNOS pathway by using 
Western Blot
The NO formation is regulated by the family of enzymes, 
Nitric oxide synthase (NOS) [30]. NOS have three main 
isoforms: neuronal NOS (nNOS), endothelial NOS 
(eNOS), and inducible NOS (iNOS). The cardiovascular 
diseases are mainly related with the eNOS and iNOS. 
It has previously been shown that the lipopolysaccha-
rides and the cytokines regulate the iNOS present in the 
cells at the transcriptional level [31]. Some recent stud-
ies have also shown that in the iNOS pathway, NF-kB 

Fig. 1  Nanodot arrays were fabricated by anodic aluminum oxide processing on Ta-coated wafer. a Schematic representation of the fabrication of 
nanodot arrays. b High resolution scanning electron micrographs of nanodot surface: Flat, c 10 nm, d 50 nm, e 100 nm, and f 200 nm. Upper right is 
an enlarged view and lower right is the appearance view. All scale bars 2.0 µm

Fig. 2  Size and time dependent profiles of NO secretion. 100 and 
200 nm stimulated more NO secretion on day 1, 3. However, 10, 
50 nm stimulated more NO secretion only for day 5. Lipopolysaccha‑
ride and Rapamycin are positive and negative control groups. *shows 
p < 0.05 and **indicates p < 0.01
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Fig. 3  Expression of eNOS genes in H9c2 on difference nanodots arrays by qPCR. H9c2 cells were cultured on flat, 10, 50, 100, and 200 nm nanodot 
arrays for day 1, 3, 5 before qPCR was performed. a GPCR expression, b PI3K expression, c Akt expression, d bad expression, e Bcl-2, f NFκB (p65) 
expression g eNOS expression. The mean ± SD from at least 3 experiments is shown
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controls the iNOS expression which in-turn is targeted 
by Akt/ILK/TNF-α [32]. This pathway also controls the 
NO secretion. In the eNOS pathway, G-Protein coupled 
receptor (GPCR) induces secondary signal transduction 
pathway after receiving signals from the cytoplasm. This 
causes the up-regulation of Phosphoinositide 3-kinase 
(PI3  K) which in-turn promotes the protein Kinase B 
(Akt) expression. This causes the down-regulation of 
expression levels of pro-apoptotic protein (Bad), B cell 
lymphoma-2, and NF-kB. The end result is the enhanced 
eNOS secretion.

The survival and physiological functions of the cardio-
myocytes are regulated by the phosphoinositide 3-kinase 
(PI3K)-Akt signaling pathway, which is one of the eNOS 
signal transduction pathway [33]. It has been previously 
shown that eNOS plays an important role in the molec-
ular mechanisms of the development of heart disease, 
myocardial ischemia/reperfusion injury [34, 35].

Western blot of key genes associated with NO secre-
tion (Akt, eNOS, iNOS, p65) was performed. In our 
findings, expression profiles of Akt and p65 showed no 
apparent pattern. However, the expression of Akt were 

Fig. 4  Expression of iNOS genes in H9c2 on difference nanodots arrays by qPCR. H9c2 cells were cultured on flat, 10, 50, 100, and 200 nm nanodot 
arrays for day 1, 3, 5 before qPCR was performed. a TNF-α expression, b ILK expression, c Akt expression, d IκBα expression, e NFκB (p65), f iNOS 
expression. The mean ± SD from at least 3 experiments is shown
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globally enhanced after day 3 and day 5 incubation peri-
ods. eNOS expression profiles were highly consistent 
with the Nitric oxide secretion like we showed in our 
previous result (Fig. 5a). eNOS was highly expressed for 
200  nm after incubation for day 1 whereas 100, 50  nm 
stimulated maximum eNOS expression after incubation 
for day 3 and day 5 (Figs. 5b, 6). iNOS expression profiles 
did not show much resemblance with the NO secretion 
(Fig.  5c). Therefore, it is quite likely that the NO secre-
tion of the cells grown on the nanodot arrays was domi-
nated by the eNOS signaling pathway than by the iNOS 
pathway.

Furthermore, we checked the expression of p65 for day 
1, 3 and 5. The activity of p65 was calculated by dividing 
the expression of p-p65 with the expression level of p65. 
The calculated p65 activity was roughly consistent with 
the NO secretion. It showed high activity for 200  nm 
for day 1 and later showed a size dependent expression 
(Fig. 5d).

Discussions
Nitric oxide is a unique signaling messenger in cardio-
myocytes [36]. Various research groups have studied its 
vasodilation effects [37] and regulation of the platelet 
aggregation in the past [38]. Meanwhile, NO molecules 
can also promote the expression of pro-angiogenic 
cytokines, favorable for angiogenesis [39]. Therefore, 
modulation in level of NO by cardiomyocytes in response 
to a vascular implant is of great interest to the engineers. 
Nanosurfaces have been seen to stimulate and modulate 
the NO secretion [40]. However, a size and time based 
study of the modulation in NO secretion in response to 
different sized nanosurfaces has not been done before. 
Here, we provided the evidence for the first time that 
nanodot arrays of different sizes can stimulate the NO 
release to a different extent in rat cardiomyocytes cell line 
H9c2 (Fig. 2). Our results from day 1 showed that the car-
diomyocytes display a size dependent production of NO 
with 200  nm arrays showing the maximum production 
and 50 nm, the least. This proves that the cells respond 
differently to different nanodot arrays by secreting dif-
ferent amounts of NO (Fig.  2). To study the modula-
tion in NO secretion by the cells in response to different 
nanodot arrays over time, we measured the NO secre-
tion profile over 5 days. Our observations from day 3 and 
day 5 showed that the cardiomyocytes not only have a 
size-dependence with the nanodot array but also a time 
dependent relation (Fig. 2). Variation in cell characteris-
tics in response to different surface roughness and geom-
etry has been shown before [41–43]. In the present study, 
we measured the cardiomyocyte response to the nanodot 
arrays of size ranging from 10 to 200 nm. We attempted 
to fabricate 5 nm nanodot arrays as well. However, their 

average size was fairly close to 10 nm (7 nm) and there-
fore, we decided to exclude it from our study. In our pre-
vious studies, we have already studied the modulation of 
characteristics of H9c2 in response to nanodot arrays [3]. 
Our findings in the past showed that with the increase in 
the size of the nanodots, the cell density decreases along 
with apoptosis like appearance followed by decreased 
number of focal adhesions which individually as well as 
together, are indicator of unhealthy cells. Hence, nanodot 
arrays from 10 to 200 nm were chosen as the size limits 
for the experiments in this study.

Secondly, to elucidate the signaling pathway responsi-
ble for the regulation and shifting of NO secretion over 
the subsequent days, we performed q-PCR of GPCR, 
PI3 K, Akt, Bad, Bcl-2, NF-KB, responsible for the eNOS 
expression (Fig. 3) and of TNF-α, ILK, Akt, IκBα, NF-KB 
responsible for the iNOS expression (Fig. 4). BCL-2 is an 
anti-apoptotic member of family BCL-X. Activated BAD 
induces apoptosis by inhibiting BCL-2 [44] and BCL-2 
has been seen to downregulate Transcription factor 
NF-kB [45]. eNOS triggers the expression of NO [46]. It 
has been seen that activated Pi3K/Akt signaling pathway 
can impair NF-kB signaling [47]. Our findings showed 
that the expression of genes triggering eNOS (Fig. 3) was 
highly consistent with the maximum NO secretion for all 
the days but the genes triggering iNOS were not found to 
be consistent with the NO secretion (Fig. 4). This made 
us reach the conclusion that for these nanodot arrays, the 
NO secretion is modulated by the eNOS signaling path-
way. NO triggered by eNOS plays a vital role in regulat-
ing vasodilation, anti-thrombic actions, apoptosis [48]. 
Previous studies have shown that eNOS deficiency can 
cause cardiomyocytes apoptosis which can be a factor 
in causing congenital heart defects during development 
[49]. To further validate that the NO modulation in the 
cells was triggered by eNOS, we performed Western Blot 
of the protein expression of eNOS, iNOS and the genes 
triggering them (Fig. 5). The protein expression of eNOS 
was found to be consistent with NO secretion profile 
for all the time periods. However, iNOS was found to be 
inconsistent.

Surprisingly, we observed changes in the expression of 
iNOS as well as eNOS. We found that for day 1, eNOS 
modulates the NO expression in the cardiomyocytes. 
However, for the subsequent days, NO has a negative 
regulatory effect on the eNOS and iNOS expression 
as shown in the previous studies [50–53]. As one may 
notice, the highest eNOS expression on day 1 results 
in the highest NO secretion (Fig.  2). However, the high 
concentration of NO causes the decreased eNOS expres-
sion on day 3 for 200 nm. Similar results were obtained 
on comparing the NO secretion profile (Fig.  2) and 
eNOS protein expression (Fig.  5b) for subsequent days. 
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Fig. 5  Western Blot results of NO related proteins. a The Akt protein expression level was upregulated on 10, 100 nm nanodot arrays after day 1 
incubation. b The eNOS expression levels were significantly enhanced on 200, 100 and 50 nm nanodot arrays after day 1, 3, 5 incubation. c The iNOS 
expression levels were upregulated on 100 nm nanodot arrays after 1 day incubation and on 50, 100, 200 nm nanodot arrays for day 3, 5 incuba‑
tion. d The activities of NF-kB-p65 (p-p65/p65) were downregulated on 10 and 100 nm nanodot arrays for day 1, 3 incubation period and were 
downregulated on 50, 100 and 200 nm nanodot arrays after incubation for day 5. *shows p < 0.05, while **shows p < 0.01. The mean ± SD from at 
least 3 experiments is shown
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This showed that NO as well as eNOS play a very cru-
cial role in regulating each other. Similar observations 
can be made from the western blot expression of iNOS 
and NO secretion. NO has a negative regulatory effect 
on the iNOS expression (Fig.  5c). On day 1, maximum 
NO secretion was observed for 200  nm nanodot arrays 
(Fig. 2). This causes the decreased expression of iNOS on 
day 1 Similar results were obtained on comparing the NO 
secretion profile (Fig.  2) and iNOS protein expression 
(Fig. 5c) for subsequent days. Even though our data sug-
gests that nanodot arrays can alter the eNOS and iNOS 
genes, nevertheless, more experiments need to be done 
to elucidate their relative upregulation/downregulation 
(Fig. 7).

Due to their strength, flexibility and based on their bio-
compatibility, nanomaterials are continuously exploited 
to make vascular stents. Stents serve the purpose of 
keeping a blood vessel open and are therefore employed 
to treat Coronary heart disease like Atherosclerosis. In 
the past decade, properties of multiple materials have 
been studied for application in the field of Biomedical 
engineering. Out of these, Titanium (Ti), stainless steel, 
alloy of Cobalt-Chromium have been extensively stud-
ied due to their mechanical and biocompatible proper-
ties [54, 55]. Alloy of Cobalt-Chromium-Molybdenum 
provide better wear resistance [56]. Use of Tantalum (Ta) 
as an implant material has also been studied in the past 
due to its excellent X-Ray visibility and low magnetic sus-
ceptibility due to which it is often used as X-ray markers 
for stents [57]. Nevertheless, stents have been observed 
to undergo narrowing due to VSMC proliferation in 
response to injury at the time of stent implantation [58, 
59]. Use of Ti as a sent has been widely studied by many 
researchers in the past. In 2008 Karla et  al. studied the 

interactions between Bovine Aortic endothelial cells and 
Titanium dioxide (TiO2) nanotubes along with flat Ti 
surfaces and observed better focal adhesions, high ECM, 
unidirectional actin and enhanced lamellipodia forma-
tion along with higher NO secretion in contrast to flat Ti 
surfaces which proves the ability of the nanotopography 
to control the cell characteristics and NO secretion [40]. 
A similar study was performed by Margherita et al. [60] 
to elucidate the effect of TiO2 nanotopography in the dif-
ferentiation process of PC12 cells and the involvement of 
NOS and eERK in the same.

In summary, the present study exploited the use of Tan-
talum oxide nanodot arrays (Fig. 1) as a potential material 
for making cardiac stents by measuring the NO release in 
response to the nanodots as a measure of size and time 
(Fig. 2). Modulation in the expression of key genes reg-
ulating the NO release was also elucidated (Figs.  3, 4). 
Western Blot was performed to study the protein expres-
sion of key genes responsible for the modulation of NO 
(Fig. 5). The modulation was attributed to eNOS (Fig. 6). 
We also observed the negative regulatory effect of NO on 
eNOS and iNOS (Fig. 5) which is consistent with the pre-
vious studies.

These results prove an effective way to modulate the 
NO expression in cardiomyocytes on coming in contact 
with a cardiac implant. The modulation of NO by the 
implant will have a high degree of impact on the health of 
the heart cells of the patients. Moreover, the activation of 
eNOS has also been shown in previous studies to provide 

Fig. 6  eNOS relative density over different days

Fig. 7  Possible gene regulation for NO modulation by eNOS upregu‑
lation
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atheroprotection [61]. Hence, these findings will be of 
great importance in designing the surface of the implants 
within the fields of biomaterial and tissue engineering.

Conclusions
In the present study we have shown that the nano-topog-
raphy modulates the NO secretion levels in a time as well 
as size dependent manner in the rat heart cell line H9c2. 
The stimulation of NO secretion by the nanodot arrays 
was found to shift from 200  nm on day 1 to 50  nm on 
day 5 (Fig.  2). We also attempted to identify the genes 
responsible for the NO secretion in response to our nan-
odot arrays with the help of q-PCR. Our findings show 
that the expressions of Bad, p65, eNOS were consistent 
with the NO secretion over different days. The eNOS 
protein expression was consistent with the NO secretion 
profile over different days supporting the q-PCR data of 
the eNOS genes (Fig. 5). The iNOS expression level was 
not found to be consistent with the NO secretion. This 
led us to conclude that the NO secretion in the cardio-
myocytes cultured over the nanodot arrays is primarily 
regulated by the eNOS signaling pathway rather than the 
iNOS pathway. In addition, NO was also found to have a 
negative regulatory effect on the eNOS as well as iNOS 
expression.

According to the results in this study, the 50, 100 nm 
nanodot arrays can be the suitable nanotopography pat-
tern for heart stent design. These two nanodot surfaces 
promote NO secretion which can increase the vascular 
smooth muscle relaxation at the same time. The results 
of this study can improve the heart stent design in the 
medical treatments.

Methods
Chemicals
Lipopolysaccharide (LPS), Rapamycin, Trypsin were pur-
chased from Sigma-Aldrich (USA). Bovine serum albu-
min (BSA) was purchased from GIBCO (Thermo Fisher 
Scientific Inc. USA). Phosphate buffered saline (PBS) 
was purchased from Bio-tech (Taipei, Taiwan). Sulfuric 
acid (H2SO4), oxalic acid (H2C2O4), and phosphoric acid 
(H3PO4) were purchased from Sigma Chemicals (Perth, 
Western Australia), 6-inch silicon wafers, Aluminum 
ingots were purchased from Admat-Midas (Norristown, 
PA, USA). Other chemicals of analytical grade or higher 
were purchased from Sigma or Merck (USA).

Fabrication of nanodot arrays
Nanodot arrays were fabricated as previously described 
[3]. A 200-nm-thick tantalum nitride (TaN) thin film was 
sputtered onto a 6-in silicon wafer (Summit-Tech, West 
Hartford, CT, USA) followed by deposition of 3 µM-thick 
aluminum onto the top of a TaN layer by thermal coater. 

Highly uniform nanodot arrays were fabricated from 10 
to 200  nm. Nanodot arrays of size smaller than 10  nm 
could not be fabricated due to technical limitation. Ano-
dization was carried out in 1.8  M sulfuric acid at 5  V, 
90 min for the 10 nm nanodot array and in 0.3 M oxalic 
acid at 25 V, 90 min for the 50 nm. 100 and 200 nm nan-
odot arrays were fabricated by a two-step anodization 
method. In the first anodic oxidation step, anodization 
was carried out in 0.3 M oxalic acid at 40 Volts, 10 min, 
for 100  nm nanodot array and in 5  % (w/v) H3PO4 at 
100  V, 5  min, for 200  nm nanodot arrays. The porous 
alumina was removed by immersion in 5 % (w/v) H3PO4 
for 70 and 60  min for 100 and 200  nm nanodot arrays, 
respectively. Second anodization step is repeated in the 
same way. Porous anodic alumina was formed during 
the anodic oxidation. The porous alumina was removed 
by immersing in 5 % (w/v) H3PO4 overnight. The dimen-
sions and homogeneity of nanodot arrays were measured 
and calculated from images taken by JEOL JSM-6500 
TFE-SEM. A thin layer of platinum was sputtered onto 
the structure.

Cell culture
To eliminate possible contamination of nano/micro par-
ticles, H9c2 cells were cultured in Dulbecco’s Modified 
Eagle’s Medium complimented with 10  % FBS and 5  % 
CO2 and incubated at 37 °C. The cell culturing was per-
formed in a class-10 clean room.

Nitrite (NO) assay (Griess reagent system)
Griess reagent system was purchased from Promega. 
Cells (5 × 103 cells/cm2) were seeded on different nano-
dot arrays (flat, 10, 50, 100, 200 nm). Production of NO 
was assayed by measuring the stable metabolite of nitrite 
levels in the culture medium. Dispense 50 µL of the 1 % 
Sulfanilamide Solution to all experimental samples and 
incubate for 5–10  min at room temperature, protected 
from light. Then dispense 50 µL of the NED Solution 
(0.1  % naphthylethylenediamine dihydrochloride/2  % 
H3PO4) and incubate at 25 °C for 10 min. The absorbance 
at 550 nm was measured with UV-spectrophotometer.

Quantitative real‑time PCR
The quantitative Real time PCR was performed to inves-
tigate the nanotopographic effects on the gene expression 
level. Oligo primers of the genes (TNF-a, ILK, AKT, IκBα, 
p65, iNOS, GPCR, PI3 K, Bad, Bcl-2, eNOS) are listed in 
the Table 1 [46, 47, 62–66]. 0.5 µg/µL LPS with hours 3 
pre-treatment was used as a positive control. 100  nM 
Rapamycin for hours 2 was used as a negative control 
group. The specificity of primers was verified with poly-
merase chain reaction with H9c2 reverse transcribed 
mRNA as a template.
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Total RNA was extracted from 5 × 103 cells using TRI-
reagent (Talron Biotech) according to the manufacturer’s 
specifications. The RNA was isolated using 200 μL chlo-
roform extraction and isopropanol precipitation. The 
RNA extract was immediately purified using an RNeasy 
Mini Kit (Qiagen) to remove impurities and unwanted 
organic compounds. Purified RNA was re-suspended 
in DEPC-treated water and quantified by OD260. The 
OD260-to-OD280 ratio usually exceeded 2.0 at this stage. 
For cDNA synthesis, 29 μL total RNA was annealed using 
1  μg oligo-dT primer, followed by reverse transcription 
using SuperScript-III Reverse Transcriptase (Invitrogen) 
in a total volume of 50 μL. Between 0.2 and 0.5 μL of the 
reverse transcription reactions were used for quantitative 
qPCR using SYBR Green I performed on an iCycler iQ5 
(Bio-Rad Laboratories). The cycling conditions were as 
follows: 1 cycle of 5 min at 95 °C and 50 cycles of 20 s at 
95 °C, 20 s at 55 °C, and 40 s at 72 °C. Fluorescence was 
measured after each 72  °C step. Expression levels were 
obtained using threshold cycles (Ct) that were deter-
mined by the iCycler iQ Detection System software. Rela-
tive transcript quantities were calculated using the ΔΔCt 
method. The gene GAPDH was used as a reference gene 
and was amplified along with the target genes from the 
same cDNA samples. The difference in threshold cycles 
of the sample mRNA relative to GAPDH mRNA was 
defined as the ΔCt. The difference between the ΔCt of 
the control flat and the ΔCt of the cells grown on nano-
dot arrays was de fined as the ΔΔCt. The fold change in 
mRNA expression was expressed as 2ΔΔCt. The results 
were expressed as the mean SD of six experiments.

Protein extraction and Western blot analysis
Total protein was extracted from 5  ×  103 cells using 
lysis buffer. Ultrasound was applied using a sonica-
tor operating the sample 6  min at 4  °C. Cultured H9c2 

cardiomyocytes were lysed and centrifuged at 3000 rpm 
for 2  min. The supernatants were transferred to new 
Eppendorf tubes and protein concentrations were defined 
using UV/VIS spectroscopy (595 nm). After the protein 
concentrations were defined, solutions were mixed with 
5X sample buffer and lysis buffer to a final concentration 
of 1 mg/ml. Samples were heated at 95 °C for 3 min and 
cooled at 4 °C for 3 min, which was repeated three times. 
Proteins were separated using 10 % SDS-PAGE gels and 
transferred to PVDF membranes. Non-specific protein 
binding was blocked by a 5 % milk solution for hours 2. 
The membranes were subsequently blotted at 4 °C over-
night with the following primary monoclonal antibod-
ies: (1) anti-eNOS (1:1000; Abcam); (2) anti-iNOS (1:500; 
Abcam); (3) anti-p65 (1:250; Genetex); (4) Anti-phospho-
NFκB p65(Ser536) (1:1000; cell signaling); (5) anti-
Akt;(6) GPPDH (1:200; Abcam), which were diluted in 
blocking buffer. Specific primary anti-bodies were blotted 
using second antibodies (1:10,000) in the blocking buffer 
at room temperature for hours 2. Chemiluminescent 
detection was performed using western blotting lumi-
nol reagent and oxidizing reagent (USA). To compare the 
different groups, densitometric quantification was per-
formed only on equally processed blots. Bands on West-
ern blots were analyzed with a Scan Jet 3390 computing 
densitometer using IMAGE J software. Relative densities 
of immunoreactive bands were normalized to the density 
of corresponding bands for GAPDH. The results were 
expressed as the mean SD of three experiments.

Statistics
The results are expressed as the mean  ±  SD of three 
experiments. Student’s t test was employed to determine 
data sets that differed significantly from one another, and 
significance was defined as a p value <0.05; highly signifi-
cance was defined as a p value <0.01.

Table 1  Primer sequence used for RT-PCR

All sequences are from 5′ to 3′

Gene name Forward Reverse

TNF-α TCTGTCTACTGAACTTCGGGGTGAT CAGCCTTGTCCCTTGAAGAGAACC

GPCR GCGCGGATCCGCCACGATGCTTGTCCTGCG GCGCGAATTCTTAGGAGCTTAGTCTACAAACTG

ILK GCTCAACTTTCTGGCAAAGC TGTGGCAAGTGACAAAGCTC

PI3K TGACGCTTTCAAACGCTATC CAGAGAGTACTCTTGCATT

Akt GTGCTGGAGGACAACGACT GTGTAGGGTCCTTCTTGAGCA

IκBα GACGAGGATTACGAGCAGAT CCTGGTAGGTTACTCTGTTG

Bad CCCCCCAATCTCTGGGCAGCG TCACTGGGAGGGATGGA

Bcl-2 GCTACGAGTGGGATACTGG GTGTGCAGATGCCGGTTCA

p65 CATTGAGGTGTATTTCACGG GAACACAATGGCCACTTGCC

eNOs TGGCAGCCCTAAGACCTATG AGTCCGAAAATGTCCTCGTG

iNOs CTGCATGGAACAGTATAAGGCAAAC AGACAGTTTCTGGTCGATGTCATGA
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