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Abstract 

Use of silver and silver salts is as old as human civilization but the fabrication of silver nanoparticles (Ag NPs) has only 
recently been recognized. They have been specifically used in agriculture and medicine as antibacterial, antifungal 
and antioxidants. It has been demonstrated that Ag NPs arrest the growth and multiplication of many bacteria such 
as Bacillus cereus, Staphylococcus aureus, Citrobacter koseri, Salmonella typhii, Pseudomonas aeruginosa, Escherichia coli, 
Klebsiella pneumonia, Vibrio parahaemolyticus and fungus Candida albicans by binding Ag/Ag+ with the biomolecules 
present in the microbial cells. It has been suggested that Ag NPs produce reactive oxygen species and free radicals 
which cause apoptosis leading to cell death preventing their replication. Since Ag NPs are smaller than the micro-
organisms, they diffuse into cell and rupture the cell wall which has been shown from SEM and TEM images of the 
suspension containing nanoparticles and pathogens. It has also been shown that smaller nanoparticles are more 
toxic than the bigger ones. Ag NPs are also used in packaging to prevent damage of food products by pathogens. The 
toxicity of Ag NPs is dependent on the size, concentration, pH of the medium and exposure time to pathogens.
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Introduction
Nanoparticles exhibit novel properties which depend on 
their size, shape and morphology which enable them to 
interact with plants, animals and microbes [1–7]. Silver 
nanoparticles (Ag NPs) have shown excellent bactericidal 
properties against a wide range of microorganisms [8–
11]. They are prepared from different perspectives, often 
to study their morphology or physical characteristics. 
Some authors have used chemical method [12] and mis-
taken it with green synthesis, although they have done it 
inadvertently. The Ag NPs and their application in elec-
tronics, catalysis, drugs and in controlling microorgan-
ism development in biological system have made them 
eco-friendly [1, 8, 9, 13]. Biogenic synthesis of Ag NPs 
involves bacteria, fungi, yeast, actinomycetes and plant 
extracts [1, 10, 11, 13–15]. Recently, a number of parts 
of plants such as flowers, leaves and fruits [1], besides 
enzymes, have been used for the synthesis of gold and 

silver nanoparticles. The size, morphology and stability 
of nanoparticles depend on the method of preparation, 
nature of solvent, concentration, strength of reducing 
agent and temperature [1, 6, 10, 11].

Of all the nanoparticles developed and characterized 
thus far, Ag NPs assume a significant position owing to 
their inherent characteristic of acting as an antimicrobial 
agent even in solid state. Although, its significance was 
recognized much earlier, it was not well exploited except 
for its use in oriental medicine and in coins. It is esti-
mated that nearly 320 tons of Ag NPs are manufactured 
every year and used in nanomedical imaging, biosensing 
and food products [16, 17].

There is a continuous increase in the number of multi-
drug resistant bacterial and viral strains due to muta-
tion, pollution and changing environmental conditions. 
To circumvent this predicament scientists are trying to 
develop drugs for the treatment of such microbial infec-
tions. Many metal salts and metal nanoparticles have 
been found to be effective in inhibiting the growth of 
many infectious bacteria. Silver and Ag NPs occupy a 
prominent place in the series of such metals which are 
used as antimicrobial agents from time immemorial [18, 
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19]. Silver salts are used to inhibit the growth of a vari-
ety of bacteria in human system. They are used in cath-
eters, cuts, burns and wounds to protect them against 
infection [20, 21]. Das et al. [22] have reported that small 
sized Ag NPs are excellent growth inhibitors of certain 
bacteria. Ag NPs synthesized from silk sericin (SS), a 
water-soluble protein extracted from silk worms at pH 
11, contain hydrophilic proteins with highly polar groups 
like hydroxyl, carboxyl and amino functional groups. 
Molecules containing the above functional groups act 
as reducing agents for AgNO3 to produce elemental sil-
ver. Aramwit et al. [23] have suggested that the hydroxyl 
groups of SS are supposed to form complex with silver 
ions and prevent their aggregation or precipitation [24, 
25]. Ag NPs in elemental state may be segregated due 
to large molecules present in the solvent but may not be 
complexed as both of them are neutral. The antibacterial 
activity of SS-capped Ag NPs against gram positive and 
gram negative bacteria has been screened. It was found 
that MIC falls between 0.001 and 0.008  mM for both 
types of microorganisms namely Staphylococcus aureus, 
Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter 
baumannii and Escherichia coli.

Although, several reviews have been published on the 
fabrication and characterization of silver nanoparticles, 
very limited reports are available on their green synthe-
sis, biocidal properties and mechanism of action [8, 9, 13, 
16, 23]. Thus, in this review, we have attempted to give 
a comprehensive detail of the biosynthesis of Ag NPs 
from herbal extracts, fungi and bacteria. Their potential 
as antimicrobial agent and the mechanism of their action 
has also been discussed.

Synthesis and characterization of silver 
nanoparticles
In general, metallic nanoparticles are produced by two 
methods, i.e. “bottom-up” (buildup of a material from the 
bottom: atom by atom, molecule by molecule or cluster 
by cluster) and “top-down” (slicing or successive cutting 
of a bulk material to get nano-sized particle) [1]. The 
“bottom-up” approach is usually a superior choice for the 
nanoparticles preparation involving a homogeneous sys-
tem wherein catalysts (for instance, reducing agent and 
enzymes) synthesize nanostructures that are controlled 
by the catalyst itself. However, the “top-down” approach 
generally works with the material in its bulk form, and 
the size reduction to nanoscale is achieved by specialized 
ablations, for instance thermal decomposition, mechani-
cal grinding, etching, cutting, and sputtering. The main 
demerit of the top-down approach is the surface struc-
tural defects. Such defects have significant impact on 
the physical features and surface chemistry of metallic 
nanoparticles. Several methodologies are available for the 

synthesis of Ag NPs namely, chemical methods [26–29]; 
physical methods [30–32] and biological methods [1, 10, 
11]. Chemical method of synthesis can be subdivided 
into chemical reduction, electrochemical, irradiation-
assisted chemical and pyrolysis methods [33]. Ag NPs 
synthesis in solution requires metal precursor, reducing 
agents and stabilizing or capping agent. Commonly used 
reducing agents are ascorbic acid, alcohol, borohydride, 
sodium citrate and hydrazine compounds. Sotiriou and 
Pratsinis [28] have shown that the Ag NPs supported 
on nanostructured SiO2 were obtained by flame aerosol 
technology, which allows close control of silver content 
and size. Also, silver/silica nanoparticles with relatively 
narrow size distribution were obtained by flame spray 
pyrolysis [29]. However, physical methods do not require 
lethal and highly reactive chemicals and generally have 
a fast processing time. These methods include arc-dis-
charge [31], physical vapor condensation [30], energy ball 
milling method [34] and direct current magnetron sput-
tering [32]. Physical methods have another advantage 
over chemical methods in that the Ag NPs have a narrow 
size distribution [32], while the main demerits are con-
sumption of high energy [32]. Thus, biological synthesis 
of Ag NPs from herbal extract and/or microorganisms 
has appeared as an alternative approach as these routes 
have several advantages over the chemical and physi-
cal methods of synthesis. It is also a well-established fact 
that these routes are simple, cost-effective, eco-friendly 
and easily scaled up for high yields and or production 
[1–3]. Biosynthesis of metal and metal oxide nanoparti-
cles using biological agents such as bacteria, fungi, yeast, 
plant and algal extracts has gained popularity in the area 
of nanotechnology [1–3, 5, 6, 10, 11].

Plants and their parts contain carbohydrates, fats, 
proteins, nucleic acids, pigments and several types of 
secondary metabolites which act as reducing agents to 
produce nanoparticles from metal salts without produc-
ing any toxic by-product. The details have been provided 
in Table  1. Similarly, biomolecules such as enzymes, 
proteins and bio-surfactants present in microorganisms 
serve as reducing agents. For instance, in many bacterial 
strains, bio-surfactants are used as capping and/or stabi-
lizing agents (Table 2).

Extracellular synthesis of Ag NPs comprises of the trap-
ping of metal ions on the outer surface of the cells and 
reducing them in the presence of enzymes or biomolecules, 
while intracellular synthesis occurs inside the microbial 
cells. It has been suggested that the extracellular synthesis 
of nanoparticles is cheap, favors large-scale production and 
requires simpler downstream processing. Thus, the extra-
cellular method for the synthesis of nanoparticles is pref-
erable [164] in comparison to the intracellular method. 
Ganesh Babu and Gunasekaran [165] and Kalimuthu et al. 
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[166] have demonstrated that the intracellular synthesis 
requires additional steps for instance, ultrasound treatment 
or reactions with suitable detergents to release the synthe-
sized silver nanoparticles. Further, the rate of biosynthesis 
of Ag NPs and their stability is a significant part in indus-
trial production. Therefore, a proper monitoring of reac-
tion conditions is also important (Fig. 1).

From bacteria
In recent years, the potential of biosynthesis of Ag NPs 
using bacteria has been realized [15, 153, 156–159]. For 
instance, Pseudomonas stutzeri AG259—isolated from 
silver mine was used to produce Ag NPs inside the cells 
[167]. In addition, several bacterial strains (gram nega-
tive as well as gram positive) namely A. calcoaceticus, B. 
amyloliquefaciens, B. flexus, B. megaterium and S. aureus 
have been used for both extra- and intracellular biosyn-
thesis of Ag NPs [168–174]. These Ag NPs are spherical, 
disk, cuboidal, hexagonal and triangular in shape. They 
have been fabricated using culture supernatant, aque-
ous cell-free extract or cells (Table 3). Saifuddin et al. [14] 
have demonstrated an extracellular biosynthesis of Ag 
NPs (∼ 5–50 nm) using a combination of culture super-
natant of B. subtilis and microwave irradiation in water. 
Shahverdi et al. [15] have reported rapid biosynthesis of 
Ag NPs (within 5  min) using the culture supernatants 
of K. pneumonia, E. coli and Enterobacter cloacae. Sara-
vanan et  al. [172] have also reported an extracellular 
synthesis of Ag NPs using B. megaterium cultured super-
natant, within minutes in presence of aqueous solutions 
of Ag+ ions.

Rapid synthesis of Ag NPs has been achieved by the 
interaction of a bacterial strain S-27, belonging to Bacil-
lus flexus group and 1 mM AgNO3 in aqueous medium 
[173]. The colourless supernatant solution turned yellow 
and finally brown. Its UV–vis spectrum exhibited a sharp 
peak at 420  nm due to the surface plasmon resonance 
(SPR) of silver nanoparticles. Anisotropic nanoparticles 
of 12 and 65 nm size were stable in the dark for 5 months 
at room temperature although their slow degradation 
cannot be prevented. They were crystalline with a face 
centered cubic structure. These nanoparticles were found 
to be effective against multidrug resistant gram positive 
and gram negative bacteria. The colour intensity and rate 
of interaction depend on the concentration of the react-
ing components.

Das et al. [174] have reported extracellular biosynthesis 
of Ag NPs from the Bacillus strain (CS11). The interac-
tion of 1 mM AgNO3 with the bacteria at room tempera-
ture yielded nanoparticles within 24  h which showed 
a peak at 450  nm in UV–vis spectrum. Their size from 
TEM analysis was found to range between 42 and 92 nm 
(Table 3).

From fungi
Biosynthesis of Ag NPs from both pathogenic and non-
pathogenic fungi has been investigated extensively [10, 
164, 213–215] (Table 4). It has been reported that silver 
ions are reduced extracellularly in the presence of fungi 
to generate stable Ag NPs in water [214, 216].

Syed et  al. [224] have also reported the extracellular 
synthesis of Ag NPs from thermophilic fungus Humicola 

Table 2  Bio-surfactants and  or stabilizing agents used during  synthesis of  silver nanoparticles from  various bacterial 
stains

Bacteria Size and shape Biosurfactants and or stabilizing 
agent

Key references

Pseudomonas aeruginosa BS-161R 15.1 ± 5.8 nm; spherical Rhamnolipids Kumar et al. [150]

Brevibacterium casei MSA19 – Biosurfactant Kiran et al. [151]

Bacillus cereus NK1 50–80 nm; spherical URAK (a fibrinolytic enzyme) Deepak et al. [152]

Gluconacetobacter xylinum 5–40 nm Cellulose Liu et al. [153]

Streptomyces coelicolor 28–50 nm; irregular Actinorhodin pigment Manikprabhu and Lingappa [154]

Bacillus subtilis MSBN 17 60; spherical Bioflocculant Sathiyanarayanan et al. [155]

Salmonella typhimurium 3–11 nm Flagellin Gopinathan et al. [156]

Bacillus athrophaeus 5–30 nm; polydispersed Spores Hosseini-Abari et al. [157]

Lactobacillus rhamnosus GG ATCC 
53103

2–15 nm; spherical, triangular, rod-
shaped and hexagonal

Exopolysaccharide Kanmani and Lim [158]

Nostoc commune 15–54 nm; spherical Extracellular polysaccharide/matrix Morsy et al. [159]

Pseudomonas aeruginosa 1.13 nm; spherical Biosurfactant Farias et al. [160]

Ochrobactrum rhizosphaerae 10 nm; spherical Glycolipoprotein Gahlawat et al. [161]

Gordonia amicalis HS-11 5–25 nm; spherical Glycolipid Sowani et al. [162]

Bacillus subtilis – Surfactin Mendrek et al. [163]



Page 9 of 28Siddiqi et al. J Nanobiotechnol  (2018) 16:14 

sp. All manipulations were done in aqueous medium at 
room temperature. Mycelia were suspended in 100  mL 
of 1  mM AgNO3 solution in an Erlenmeyer flask at 
50 °C and the mixture was left in a shaker for 96 h at pH 
9 and monitored for any change in colour. The solution 
showed a change in colour from yellow to brown due to 
the formation of Ag NPs [222]. It is a simple process for 
the extracellular synthesis of Ag NPs from Humicola sp. 
TEM micrograph showed nicely dispersed nanoparticles 
mainly of spherical shape ranging between 5 and 25 nm. 
They are crystalline with a face centered cubic structure 

[236]. IR spectrum of Ag NPs in the suspension showed 
peaks at 1644 and 1523  cm−1 assigned to amide I and 
amide II bands of protein corresponding to –C=O and 
N–H stretches. Owaid et al. [237] have reported the bio-
synthesis of Ag NPs from yellow exotic oysters mush-
room, Pleurotus cornucopiae var. citrinopileatus. The 
dried basidiocarps were powdered, boiled in water and 
the supernatant was freeze dried. Different concentra-
tions of hot water extract of this lyophilized powder were 
mixed with 1 mM AgNO3 at 25 °C and incubated for 24, 
48 and 72 h. Change in colour from yellow to yellowish 

Fig. 1  Biosynthesis of silver nanoparticles and their optimization techniques
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brown exhibited an absorption peak at 420 and 450 nm in 
UV–vis region which is the characteristic of spherical sil-
ver nanoparticles. The width of the absorption peak sug-
gests the polydispersed nature of nanoparticles [221]. IR 

spectrum of Ag NPs exhibited absorption peaks at 3304, 
2200, 2066, 1969, 1636, 1261, 1094 and 611 cm−1 for dif-
ferent groups. Although, authors have indicated the pres-
ence of polysaccharide and protein in the mushroom they 

Table 3  Bacteria-mediated synthesis of silver nanoparticles

Bacteria Size and shape Location Key references

Acinetobacter calcoaceticus 8–12 nm; spherical Extracellular Singh et al. [175]

A. haemolyticus MMC8 4–40 nm Extracellular Gaidhani et al. [176]

Aeromonas sp. SH10 6.4 nm Extracellular and intracellular Mouxing et al. [177]
Wang et al. [178]

Bordetella sp. 63–90 nm Extracellular Thomas et al. [179]

Enterobacter aerogenes 25–35 nm; spherical Extracellular Karthik and Radha [180]

Escherichia coli 42.2–89.6 nm; spherical Extracellular Gurunathan et al. [181]

Geobacter sulfurreducens Extracellular Law et al. [182]

Gluconobacter roseus 10 nm Extracellular Krishnaraj and Berchmans [183]

Idiomarina sp. 25 nm Intracellular Seshadri et al. [184]

Klebsiella pneumoniae 15–37 nm; spherical Extracellular Duraisamy and Yang [185]

5–32 nm Extracellular Shahverdi et al. [15]

Morganella sp. 10–40 nm; quasispherical Extracellular Parikh et al. [186]

Proteus mirabilis 10–20 nm; spherical Extracellular and intracellular Samadi et al. [187]

Pseudomonas aeruginosa SM1 6.3 ± 4.9 nm; spherical, disk-shaped Extracellular Srivastava and Constanti [188]

8–24 nm; spherical Extracellular Kumar and Mamidyala [189]

5–25 nm; quasispherical Intracellular Otaqsara [190]

Rhodobacter sphaeroides Spherical 3–15 Extracellular Bai et al. [191]

Rhodopseudomonas palustris Spherical 5–20 Extracellular Chun-Jing and Hong-Juan [192]

Shewanella oneidensis MR-1 2–16 nm; spherical (Ag2S) Extracellular Debabov et al. [193]

Stenotrophomonas maltophilia 93 nm; cuboidal Extracellular Oves et al. [194]

Vibrio alginolyticus 50–100 nm; Spherical Extracellular and intracellular Rajeshkumar et al. [195]

Xanthomonas oryzae 14.86 nm; spherical, triangular,
rod-shaped

Extracellular Narayanan and Sakthivel [196]

Yersinia enterocolitica 10–80 nm Extracellular Pourali et al. [197]

Bacillus sp. 5–15 nm Extracellular and periplasmic space Pugazhenthiran et al. [198]

B. cereus 4–5 nm; spherical Intracellular Ganesh Babu and Gunasekaran [165]

B. flexus 12 and 65 nm; spherical and triangular Extracellular Priyadarshini et al. [173]

B. licheniformis Dahb1 18.69–63.42 nm; spherical Cell free extract Shanthi et al. [199]

B. safensis LAU 13 5–30 nm; spherical Extracellular Lateef et al. [200]

B. methylotrophicus DC3 10–30 nm; spherical – Wang et al. [201]

B. subtilis Triangular, hexagonal Extracellular Kannan et al. [202]

B. subtilis MTCC 3053 20–60 nm; polydispersed(AgCl) – Paulkumar et al. [203]

B. thuringiensis 43.52–142.97 nm Extracellular Banu et al. [204]

Brevibacterium casei 10–50 nm; spherical Intracellular Kalishwaralal et al. [205]

Corynebacterium SH09 10–15 nm Extracellular Zhang et al. [206]

Enterococcus faecalis 10–80 nm Extracellular Pourali et al. [197]

Exiguobacterium sp. 5–50 nm; spherical Extracellular Tamboli and Lee [207]

Geobacillus stearothermophilus 5–35 nm; spherical Extracellular Fayaz et al. [208]

Lactobacillus mindensis 2–20 nm; spherical (Ag2O) Extracellular Dhoondia and Chakraborty [209]

Rhodococcus sp. 10–15 nm; spherical Extracellular Otari et al. [210]

Staphylococcus epidermidis 10–80 nm Extracellular Pourali et al. [197]

Thermoactinomyces sp. 20–40 nm; spherical Extracellular Deepa et al. [211]

Ureibacillus thermosphaericus 10–100 nm; spherical Extracellular Juibari et al. [212]
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have ignored their stretching frequencies in the IR spec-
trum. However, the peak at 3304 has been assigned to υ 
(OH) of carboxylic acid and those at 2200 and 1969 cm−1 
have been attributed to unsaturated aldehydes. The other 
peaks below 1500 cm−1 are due to unsaturated alkaloids. 
The field emission scanning electron and high-resolution 
transmission electron micrograph suggested that the Ag 
NPs are spherical with average size ranging between 20 
and 30 nm.

Very recently, Al-Bahrani et  al. [230] reported bio-
genic synthesis of Ag NPs from tree oyster mushroom 
Pleurotus ostreatus. Dried aqueous extract of mushroom 
(1–6  mg/mL) and 1  mM AgNO3 were mixed and incu-
bated in the dark for 6–40 h. The colour change from pale 
yellow to dark brownish yellow indicated the formation 
of silver nanoparticles. The UV–vis spectrum showed a 
sharp and broad absorption band at 420  nm. They are 
polydispersed nanoparticles of 10–40 nm with an average 
size of 28  nm. Several fungi namely, Aspergillus flavus, 
A. fumigates, Fusarium oxysporum, Fusarium acumi-
natum, F. culmorum, F. solani, Metarhizium anisopliae, 
Phoma glomerate, Phytophthora infestans, Trichoderma 
viride, Verticillium sp. have been used for both extra- and 
intracellular biosynthesis of Ag NPs [10, 164, 216–219, 

222]. These nanoparticles are of various sizes and shapes 
(Table 4).

From plants
Plant related parts such as leaves, stems, roots, shoots, 
flowers, barks, seeds and their metabolites have been 
successfully used for the efficient biosynthesis [1, 238] 
of nanoparticles (Fig.  1). Very recently, Beg et  al. [128] 
have reported green synthesis of Ag NPs from seed 
extract of Pongamia pinnata. The formation of nanopar-
ticles was confirmed by an absorption max at 439  nm. 
The well dispersed nanoparticles with an average size of 
16.4  nm had zeta potential equal to −  23.7  mV which 
supports dispersion and stability. Interaction of Ag NPs 
with human serum albumin was investigated and showed 
negligible change in α helics. In a very recent publication 
Karatoprak et al. [137] have reported green synthesis of 
Ag NPs from the medicinal plant extract Pelargonium 
endlicherianum. The plant containing gallic acid, apo-
cyanin and quercetin act as reducing agents to produce 
silver nanoparticles. Phytomediated synthesis of spheri-
cal Ag NPs from Sambucus nigra fruit extract has been 
reported by Moldovan et al. [144]. XRD analysis showed 
them to be crystalline. The in  vivo antioxidant activity 

Table 4  Fungus-mediated synthesis of silver nanoparticles

Fungus Size and shape Location Key references

Aspergillu flavus 8.92 nm; spherical Cell wall Vigneshwaran et al. [217]

A. fumigatus – Extracellular Bhainsa and D’Souza [218]

A. terreus 1–20 nm; spherical Extracellular Li et al. [219]

Cladosporium cladosporioides 10–100 nm – Balaji et al. [220]

Coriolus versicolor 25–75, 444–491 nm; spherical Extracellular and intracellular Sanghi and Verma [221]

Fusarium oxysporum – Extracellular Ahmad et al. [222]

20–50 nm; spherical Extracellular Durán et al. [164]

5–50 nm – Senapati et al. [223]

Humicola sp. 5–25 nm; spherical Extracellular Syed et al. [224]

Macrophomina phaseolina 5–40 nm; spherical Cell-free filtrate Chowdhury et al. [225]

Pediococcus pentosaceus – Extracellular Shahverdi et al. [15]

Penicillium brevicompactum 58.35 ± 17.88 nm – Shaligram et al. [226]

P. fellutanum 5–25 nm; spherical Extracellular Kathiresan et al. [215]

P. nalgiovense AJ12 25 ± 2.8 nm; spherical Cell-free filtrate Maliszewska et al. [227]

Phaenerochaete chrysosporium 5–200 nm; pyramidal – Vigneshwaran et al. [228]

Phoma glomerata 60–80 nm; spherical – Birla et al. [229]

Pleurotus ostreatus < 40 nm; spherical – Al-Bahrani et al. [230]

P. sajor-caju 30.5 ± 4.0 nm; spherical Extracellular Vigneshwaran et al. [231]

Trichoderma asperellum 13–18 nm; nanocrystalline Extracellular Mukherjee et al. [232]

T. reesei 5–50 nm Extracellular Vahabi et al. [233]

T. viride 5–40 nm; spherical Extracellular Fayaz et al. [234]

T. viride 2–5 nm; spherical
40–65 nm; rectangular
50–100 nm; penta/hexagonal (Obtained at varying pH, 

reaction time and temperature of the reaction mixture)

Cell free extract Kumari et al. [235]
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was investigated against Wistar rats which showed prom-
ising activity. It suggests that functionalization of Ag 
NPs with natural phytochemicals may protect the cell 
proteins from ROS production. Ag NPs have also been 
synthesized from aqueous leaf extract of Artocapus alti-
lis. They were moderately antimicrobial and antioxidant. 
Thalictrum foliolosum root extract mediated Ag NPs syn-
thesis has been confirmed on the basis of the appearance 
of a sharp peak at 420 nm in UV–vis region of the spec-
trum [239]. The monodispersed spherical nanoparticle 
of 15–30  nm had face centered cubic geometry. Shape 
and size dependent controlled synthesis of Ag NPs from 
Aloe vera plant extract and their antimicrobial efficiency 
has been reported by Logaranjan et al. [35]. The UV–vis 
peak at 420 nm confirmed the formation of silver nano-
particles. After microwave irradiation of the sample, Ag 
NPs of 5–50 nm with octahedral geometry was obtained. 
Nearly two to fourfold antibacterial activity of Ag NPs 
was observed compared to commonly available antibiotic 
drugs. Biosynthesis of Ag NPs from the aqueous extract 
of Piper longum fruit extract has been also achieved 
[240]. The nanoparticles were spherical in shape with an 
average particle size of 46  nm determined by SEM and 
dynamic light scattering (DLS) analyser. The polyphenols 
present in the extract are believed to act as a stabilizer of 
silver nanoparticles. The fruit extract and the stabilized 
nanoparticles showed antioxidant properties in vitro. The 
nanoparticles were found to be more potent against path-
ogenic bacteria than the flower extract of P. longum. Ag 
NPs have been fabricated from leaf extract of Ceropegia 
thwaitesii and formation was confirmed from absorption 
of SPR at 430  nm. The nanoparticles of nearly 100  nm 
diameter were crystalline in nature [139]. Plant extract 
of Ocimum tenuiflorum, Solanum tricobatum, Syzygium 
cumini, Centella asiatica and Citrus sinensis have been 
used to synthesize Ag NPs of different sizes in colloidal 
form [249]. The size of all nanoparticles was found to 
be 22–65 nm. They were all stable and well dispersed in 
solution. Niraimathi and co-workers [140] have reported 
biosynthesis of Ag NPs from aqueous extract of Alter-
nanthera sessilis and showed that the extract contains 
alkaloids, tannins, ascorbic acid, carbohydrates and pro-
teins which serve as reducing as well as capping agents. 
Biomolecules in the extract also acted as stabilizers for 
silver nanoparticles. Ag NPs from seed powder extract 
of Artocarpus heterophyllus have been synthesized [138]. 
The morphology and crystalline phase of the nanoparti-
cles were determined by SEM, TEM and SAED, EDAX 
and IR spectroscopy. They were found to be irregular 
in shape. The extract was found to contain amino acids, 
amides etc. which acted as reducing agents for AgNO3 
to produce silver nanoparticles. The quantity of phenols, 
anthocyanins and benzoic acid were determined in the 

berry juices and were responsible for the transforma-
tion of silver ions to Ag NPs [241]. UV–vis spectra dis-
played an absorbance peak at 486 nm for lingonberry and 
520  nm for cranberry containing silver nanoparticles. 
Since the two absorption peaks are different they can-
not be assigned only to Ag NPs but also partly to differ-
ent quantities of the reducing chemicals present in the 
juices. However, the spectra indicated the presence of 
polydispersed silver nanoparticles. Puiso et al. [241] have 
proposed that due to irradiation of water by UV rays, 
strong oxidants and reductants as photolysis products 
are formed. They reduce silver ions to Ag NPs or silver 
oxide. The photolysis products may produce oxidant and 
reductant but it depends upon the quantum of radiation 
and exposure time which may not be enough to produce 
a sufficient quantity of redox chemicals to reduce Ag+ to 
Ag NPs or Ag2O. This hypothesis is conceptually incor-
rect because Ag2O cannot be formed as it requires a very 
strong oxidizing agent. On the other hand, AgNO3 itself 
is slowly reduced in water, but in the presence of reduc-
ing agents the reaction proceeds at a rapid rate. The SPR 
is dependent on the size, shape and agglomeration of Ag 
NPs which is reflected from the UV–vis spectra [242]. 
Mock et  al. [243] have found different scattered colors 
in hyperspectral microscopic images which are mainly 
due to the different shape and size of silver nanoparti-
cle in the colloidal solution. The blue, green, yellow and 
red colors have been attributed to spherical, pentagonal, 
round-triangle and triangle shapes, respectively.

Zaheer and Rafiuddin [12] have reported the synthe-
sis of Ag NPs using oxalic acid as reducing agent and 
mistook it as green synthesis. Formation of nanoparti-
cles was confirmed by a change in color of the solution 
which showed an absorption peak at 425 nm (Fig. 2a) in 
the UV–visible region. It was also noted that a scattered 
silver film was formed on the wall of the container that 
shines and reflects light (Fig. 2b) which is the character-
istic of monodispersed spherical Ag NPs [244, 245]. Since 
the size of nanoparticles varies between 7 and 19 nm the 
silver film is not uniform. It is different from regular silver 
mirror due to irregular shape and size of nanoparticles 
(Fig.  2c). Actually, very small size nanoparticles can be 
obtained when AgNO3 is exposed to a reducing agent for 
a longer duration of time [246]. The kinetics and mecha-
nism proposed for the formation of Ag NPs by oxalic 
acid is not convincing [12] because oxalic acid in no case 
can produce CO2 unless it reacts with any carbonate salt 
or heated at a very high temperature. The authors [12] 
have proposed following reactions to prove that the col-
our of Ag NPs in solution is due to Ag4

2+ formation that 
absorbs at 425 nm (Scheme 1). The formation of Ag4

2+ is 
highly improbable even if the above reaction is kinetically 
very fast. Also, the stabilization of Ag4

2+ is questionable 
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(Scheme 1). This hypothesis of Ag4
2+ formation is beyond 

imagination and does not carry any experimental evi-
dence in its support. Absorbance of Ag NPs in solu-
tion varies between 400 and 445  nm depending on the 
nature of reducing agent used for their fabrication. The 
SPR band in UV–vis spectrum is due to electron oscilla-
tion around the surface of nanoparticles. The reduction 
process is instantaneous and no further spectral change 
occurs after 60 min. Indicating the completion of redox 

process. Ag NPs are circular, triangular, hexagonal and 
polydispersed at 70 °C. The EDAX and XRD spectra sup-
port each other.

Synthesis of Ag NPs from aqueous extract of Cleistan-
thus collinus and their characterization by UV–vis, FTIR, 
SEM, TEM and XRD has been reported by Kanipandian 
et al. [247]. The crystalline Ag NPs of 20–40 nm showed 
significant free radical scavenging capacity. Tippayawat 
et al. [27] have reported a green and facile synthesis of Ag 

Fig. 2  a UV–visible spectra of yellow color silver solution. b and c SEM images of the self-assembled silver nanoparticle mirror like illumination on 
the walls of the glass. Reaction conditions: [Ag+] = 20.0 × 10−4 mol dm−3; [oxalic acid] = 4.0 × 10−4 mol dm−3; [CTAB] = 10.0 × 10−4 mol dm−3; 
temperature = 30 °C [12]

Scheme 1  Reduction of Ag+ ions by oxalic acid [12]
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NPs from Aloe vera plant extract. They were character-
ized by UV–vis, SEM, TEM and XRD. Fabrication of Ag 
NPs was confirmed on the basis of the appearance of a 
sharp peak at 420 nm in UV–vis region of the spectrum. 
In addition, they have reported that the reaction time and 
temperature markedly influence the fabrication of sil-
ver nanostructures. Ag NPs were spherical in shape and 
particle size ranged from 70.70 ± 22 to 192.02 ± 53 nm. 
Their size changes with time and temperature of the reac-
tion mixture used during fabrication (Fig. 3).

Green synthesis of Ag NPs from Boerhaavia diffusa 
plant extract has been reported by Vijay Kumar et  al. 

[136] where the extract acted as both the reducing as 
well as capping agent. The colloidal solution of Ag NPs 
showed an absorption maximum at 418 nm in the UV–
vis spectrum. The XRD and TEM analyses revealed a face 
centered cubic structure with an average particle size of 
25 nm. Ag NPs of 5–60 nm have been synthesized from 
Dryopteris crassirhizoma rhizome extract in presence of 
sunlight/LED in 30 min [235]. XRD studies showed face 
centered cubic structure of silver nanoparticles.

Green synthesis of Ag NPs using 1  mM aqueous 
AgNO3 and the leaf extract of Musa balbisiana (banana), 
Azadirachta indica (neem) and Ocimum tenuiflorum 

Fig. 3  SEM images of silver nanoparticles were obtained at a 100 °C for 6 h, b 150 °C for 6 h, c 200 °C for 6 h, d 100 °C for 12 h, e 150 °C for 12 h and 
f 200 °C for 12 h [36]
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(black tulsi) has been done [248]. They were character-
ized by UV–vis, SEM, TEM, DLS, EDS and FTIR spec-
troscopy. They were found to accelerate the germination 
rate of Vigna radiata (Moong Bean) and Cicer arieti-
num (Chickpea). It is therefore, believed that Ag NPs are 
not toxic to such crops at germination level. Stable and 
capped Ag NPs from aqueous fruit extract of Syzygium 
alternifolium of 5–68  nm have been synthesized [92]. 
Nearly 12.7% of silver was detected from EDAX. The 
polydispersed spherical nanoparticles were capped and 
stabilized by the phenols and proteins present in the 
fruit extract. Biosynthesis of Ag NPs from methanolic 
leaf extract of Leptadenia reticulate has been done [142]. 
They were crystalline, face centred and spherical particles 
of 50–70  nm. They exhibited antibacterial activity and 
radical scavenging activity. Purple sweet potato (Ipomoea 
batatas L.) root extract has been exploited to synthesize 
Ag NPs [143]. Organic components in the extract acted 
both as reducing and capping agents. Ag NPs have shown 
remarkable antibacterial activity against four clinical 
and four aquatic pathogens. Sweet potato root extract is 
known to contain glycoalkaloids, mucin, dioscin, choline, 
polyphenols and anthocyanins which function as anti-
oxidant, free radical scavenger, antibacterial agent and 
reducing agents. In presence of Ag NPs these functions 
are further enhanced.

Cytotoxicity of silver nanoparticles
Cytotoxicity of nanomaterials depends on their size, 
shape, coating/capping agent and the type of pathogens 
against which their toxicity is investigated. Nanoparti-
cles synthesized from green method are generally more 
toxic than those obtained from the non-green method. 
Some pathogens are more prone to nanomaterials, espe-
cially Ag NPs than others due to the presence of both 
the Ag ions released and Ag NPs. They slowly envelop 
the microbes and enter into the cell inhibiting their vital 
functions. It is clear that the fabrication and applica-
tion of nanoparticles has resulted in public awareness 
of their toxicity and impact on the environment [249, 
250]. Nanoparticles are relatively more toxic than bulk 
materials. They are toxic at cellular, subcellular and bio-
molecular levels [251]. Oxidative stress and severe lipid 
peroxidation have been noticed in fish brain tissue on 
exposure to nanomaterials [252]. The cytotoxicity by Ag 
NPs is believed to be produced through reactive oxygen 
species (ROS) as a consequence of which a reduction 
in glutathione level and an increase in ROS level occur. 
From in vitro studies on animal tissue and cultured cells, 
Kim and Ryu [253] have observed an increase in oxida-
tive stress, apoptosis and genotoxicity when exposed to 
silver nanoparticles. Since such studies have been made 
with varying sizes of Ag NPs and coatings under different 

conditions a direct correlation cannot be made. Hacken-
berg and coworkers [254] reported reduced viability at a 
dose of 10 µg/mL of Ag NPs of over 50 nm size in human 
mesenchymal cells whereas some people reported no 
toxicity [255] even at a higher dose (100 µg/mL). Besides, 
stability and aging of the sample are also important fac-
tors as an increase in toxicity has been reported by aged 
Ag NPs stored in water for 6 months which is related to 
the release of silver ions [256]. It seems that the toxicity 
is a cumulative effect of Ag NPs and silver ions. Some 
workers have shown that the toxicity of Ag NPs is due to 
released Ag ions [257] while others have attributed the 
toxicity to Ag NPs [258].

Vijay Kumar et al. [136] obtained Ag NPs from B. dif-
fusa plant extract and tested them against three fish bac-
terial pathogens. It was found that Ag NPs were most 
effective against Flavobacterium branchiophilum. Ag 
NPs fabricated from P. longum fruit extract exhibited 
cytotoxic effect against MCF-7 breast cancer cell lines 
with an IC50 of 67 μg/mL/24 h [240]. They also exhibited 
antioxidant and antimicrobial effects. Ag NPs were pro-
duced by using P. endlicherianum plant extract; and have 
shown that the inhibitory activity was increased against 
gram positive and gram negative bacteria when they were 
exposed to Ag NPs at a very low dose of 7.81 to 6.25 ppm 
[137]. Latha et al. [89] have fabricated Ag NPs from leaf 
extract of Adathoda vasica and studied their antimi-
crobial activity against Vibrio parahaemolyticus in agar 
medium. The nanoparticles were found to be significantly 
active against V. parahaemolyticus but were nontoxic to 
Artemia nauplii. V. parahaemolyticus is a prevalent sea 
food borne enteropathogen which is closely associated 
with mortality in Siberian tooth carps, milk fish [259], 
abalone [260] and shrimps [251]. Vibrio infection in cul-
tured fish and shrimps causes large scale mortality. Quite 
often, the whole population perishes. The use of antibi-
otic has made them resistant. Under such conditions, 
Ag NPs have appeared as an effective remedy which 
saves shrimps from perishing. Ag NPs from seed powder 
extract of A. heterophyllus have also exhibited antibacte-
rial activity against gram positive and gram negative bac-
teria [138].

Ag NPs fabricated from leaf extract of C. thwaitesii 
have shown antibacterial efficacy against Salmonella 
typhi, Shigella flexneri and Klbsiella pneumoniae indicat-
ing them to be significant. Niraimathi and co-workers 
[140] have also fabricated Ag NPs from aqueous extract 
of A. sessilis and showed significant antibacterial and 
antioxidant activities. Ag NPs from Ocimum tenuiflorum, 
Solanum tricobatum, Syzygium cumini, Centella asiatica 
and Citrus sinensis have also shown antibacterial activity 
against S. aureus, P. aeruginosa, E. coli and K. pneumo-
niae. The highest activity of nanoparticles was observed 
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against S. aureus and E. coli [261]. Antimicrobial activity 
of colloidal Ag NPs was found to be higher than the plant 
extract alone. Lee et  al. [141] synthesized Ag NPs from 
Dryopteris crassirhizoma and found them to be highly 
effective against B. cereus and P. aeruginosa. Similarly, 
Ag NPs obtained from leaf extract of banana, neem and 
black tulsi were also active against E. coli and Bacillus sp. 
[248]. Hazarika et al. [239] have performed antimicrobial 
screening of Ag NPs obtained from T. foliolosum root 
extract against six bacteria and three fungi which showed 
morphological changes in the bacterial cells. Fabricated 
of Ag NPs from Millettia pinnata flower extract and their 
characterization together with anti-cholinesterase, anti-
bacterial and cytotoxic activities have been reported by 
Rajakumar et  al. [145]. Spherical shaped Ag NPs rang-
ing from 16 to 38  nm exhibited excellent inhibitory 
efficacy against acetyl cholinesterase and butyl cholinest-
erase. They also exhibited cytotoxic effects against brine 
shrimp.

Ag NPs obtained from S. alternifolium have also exhib-
ited high toxicity towards bacterial and fungal isolates 
[92]. Ag NPs fabricated from L. reticulate [142] were 
found to be toxic to HCT15 cancer cell line. Kanipandian 

et al. [247] have reported that Ag NPs obtained from C. 
collinus aqueous extract exhibit dose dependent effects 
against human lung cancer cell (A549) and normal cell 
(HBL-100). The IC50 for cancer cells was very low (30 µg/
mL) but since Ag NPs synthesized from C. collinus were 
toxic to normal cells they cannot be used in vivo. How-
ever, if the plant extract contains some antioxidants, the 
whole mixture may exhibit this property but the nano-
particles alone are incapable to do so. Ag NPs from Aloe 
vera plant extract have shown varying degrees of antibac-
tericidal effects [36]. Ag NPs obtained at 100  °C for 6 h 
and 200  °C for 12  h (varying temperature and reaction 
time) exhibited change in bacterial cell membrane when 
contacted with the nanoparticles (Fig.  4). They were 
more effective for gram negative bacteria (P. aeruginosa, 
ATCC27803). In addition, they have also shown minimal 
cytotoxicity to human peripheral blood mononuclear 
cells.

The particle size, agglomeration and sedimentation are 
related to the cytotoxicity of silver nanoparticles. It has 
been demonstrated from Alamar Blue (AB) and Lactate 
dehydrogenase test (LDH) that Ag NPs of 10 nm coated 
with citrate and PVP separately, are toxic to human lung 

Fig. 4  SEM images of the bacterial strains. a Staphylococcus epidermidis, Gram-positive, b Pseudomonas aeruginosa, Gram-negative, c S. epidermidis 
treated with 100-6 h silver nanoparticles (0.04 mg/mL), d P. aeruginosa treated with 100–6 h silver nanoparticles (0.04 mg/mL) [36]
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cells [262] when exposed for 24 h. AB test is a measure 
of cell proliferation and mitochondrial activity. However, 
the LDH measures the cytotoxicity of Ag NPs in terms of 
membrane damage from the cytoplasm. Both the citrate 
and PVP coated nanoparticles of 10 nm exhibited signifi-
cant toxicity after 24 h at the highest dose of 50 µg/mL. 
Ag NPs of larger dimensions did not alter cell viability 
[263, 264]. Cytotoxicity is related to enzyme inhibition 
which is correlated to the release of Ag ions because they 
inhibit the catalytic activity of LDH.

It has been observed that Ag NPs damaged DNA but 
they did not increase ROS when cells were exposed to 
them for 24  h at a dose of 20  µg/mL [263]. Gliga et  al. 
[262] have suggested that silver ions from AgCl are 
released in the biological fluid and complexed. The for-
mation of AgCl is possible only if the fluid is contami-
nated with Cl− ions, nevertheless it cannot ionize to 
Ag+ and Cl− ions since AgCl is almost insoluble in aque-
ous medium [265]. The experiment with extracellularly 
released silver ions in cell medium did not exhibit toxic-
ity, perhaps it would have reacted with Cl− ions to yield 
insoluble AgCl.

Cytotoxicity is related to the size of Ag NPs irrespec-
tive of the coating agent. Carlson et al. [266] have shown 
an increase in ROS production for 15  nm hydrocarbon 
coated Ag NPs relative to 55  nm. It has been reported 
by Liu et al. [267] that 5 nm Ag-nanoparticles were more 
toxic than 20 and 50 nm nanoparticles to four cell lines, 
namely, A549, HePG2, MCF-7 and SGC-7901. Wang 
et al. [268] have also reported that smaller nanoparticles 
(10–20  nm) induce greater cytotoxicity than the larger 
ones (110  nm), and citrate coated 20  nm Ag NPs pro-
duced acute neutrophilic inflammation in the lungs of 
mice compared to those with larger ones. The cell via-
bility and DNA damage may be explained by ROS gen-
eration [269] which may be contradictory to findings by 
others in in vitro studies [253].

It is hypothesized that irreparable DNA damage is due 
to the interaction of Ag NPs with repair pathways. Since 
this work has been done in  vitro, the DNA once dam-
aged may not have the ability to repair. However, in living 
systems the cells have the ability to undergo repair and 
multiply but such experiments have seldom been done. 
It is however, unanimously agreed that both Ag NPs and 
silver ions are present at the subcellular level. The trans-
formation of Ag to Ag+ ions occurs due to their interac-
tion with biomolecules in the cell membrane. The release 
of elemental silver is directly proportional to the size 
of nanoparticles in a non-linear fashion [270]. The size 
dependent toxicity is related to the intracellular release 
of silver ions. Although, agglomeration of nanoparticles 
reduces their release, the antibacterial effect was hin-
dered under anaerobic condition, because in absence 

of oxygen, the oxidation process Ag  →  Ag+ ceases to 
continue. Ag NPs exhibited excellent activity against Y. 
enterocolitica, P. vulgaris, E. coli, S. aureus and S. faecalis. 
Since the nanoparticles are smaller than the bacterial cell 
they may stick to their cell walls disallowing permeation 
of essential nutrients leading to the death of microorgan-
isms [236]. Smaller size is related to greater surface area 
of nanoparticles and their agglomeration around the cell 
wall inhibits the cell division of microbes.

Besides their application in diverse areas, Ag NPs are 
extensively used as antioxidant and antimicrobial agents 
regardless of the process of their synthesis [271, 272]. 
They are more toxic to microorganisms than human 
beings. Antibacterial and antifungal activities of Ag NPs 
were tested against B. cereus, S. aureus, C. koseri, P. aer-
uginosa bacteria and C. albicans fungus respectively. It 
has been proposed that Ag NPs penetrate into the bacte-
rial cell and interact with the thiol, hydroxyl and carboxyl 
groups of the biomolecules present in them, eventually 
deactivating the vital functions by releasing Ag+ ions. 
The authors have, however, not explained how the Ag+ 
ions were produced. We firmly believe that silver ions 
must have been produced through a redox mechanism 
and subsequently complexed with electron donating thiol 
and phosphate groups inhibiting the cell replication of 
pathogens. It is well known that silver ions strongly bind 
with sulfur and oxygen containing electron donor groups 
in living system and arrest the functioning of vital organs 
that lead to the death of animal.

Ag NPs synthesized from lingonberry and cranberry 
juices [241] were tested for their activity against microbes 
commonly found in food and food products namely, S. 
aureus, S. typhi, L. monocytogenes, B. cereus, E. coli, B. 
subtillis and C. albicans. They observed that Ag NPs were 
more effective towards S. aureus, B. subtillis and B. cereus. 
Antibacterial activity was screened against B. cereus and 
S. aureus which produce toxins in food products [243]. 
A similar study has also been reported by Nanda and 
Saravanan [168] on other pathogens such as S. aureus, 
S. epidermidies and S. pyogens. The decrease in antimi-
crobial effect of Ag NPs against food borne bacteria has 
been ascribed to low pH or high NaCl content in food. 
The high concentration of NaCl may increase the toxicity 
towards bacteria because they may kill them. However, it 
is concluded that Ag NPs may be used in packaging to 
prevent infection in food products by microbes.

Zhao and Stevens [273] have studied antimicrobial 
effects of Ag salts on 12 species of bacteria and showed 
that they are highly effective against them. It has also 
been shown [274] that Ag NPs with amphiphilic hyper-
branched macro molecules act as antimicrobial coating 
agents. Kim et  al. [275] have thoroughly screened the 
antimicrobial effect of Ag NPs prepared from AgNO3 
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and NaBH4 as reducing agent. They examined the effi-
cacy of a wide range of concentrations of Ag NPs start-
ing from 0.2 to 33  nM. At a concentration of 33  nM of 
Ag NPs the growth inhibition of E. coli and E. aureus was 
almost comparable with the positive control, although at 
13.2 nM concentration a significant effect was observed. 
However, the inhibitory effect of 1.6–6.6 nM of Ag NPs 
is nearly the same (~  55% relative to control). It was 
observed that silver nanoparticle is most effective against 
E. coli and has a mild inhibitory effect on S. aureus. 
However, gold nanoparticles of the same concentration 
were ineffective against these microbes, although it also 
belongs to the same group of elements.

Ag NPs synthesized from fungus Humicola sp. were 
investigated for their cytotoxicity on NIH3T3 mouse 
embryonic fibroblast cell line and MDA-MB-231 human 
breast carcinoma cell line [224]. In both cell lines, the 
cell viability declined in a dose-dependent manner. Cyto-
toxicity of Ag NPs was recorded at a concentration of 
250  µg/mL; the cell viability declined by 20 83% in the 
case of NIH3T3 and 42 18% for MDA-MB-231 cell line 
at 1000 µg/mL concentration. Very recently [269], it has 
been investigated that Ag NPs in conjugation with other 
metals such as TiO2@Ag nanoparticles act against leish-
maniasis. These nanoparticles along with other drugs 
for leishmania, like neglumine antimoniate at nontoxic 
concentrations increase the efficacy of both drugs. This 
combination of drug led to the inhibition of L. trop-
ica amastigotes at a very high rate of 80–95%. Also, it 
increased the metabolic activities 7–20-fold.

Owaid et al. [237] have produced Ag NPs from aqueous 
extract of P. cornucopiae var. citrinopileatus which served 
both as reducing and stabilizing agent. Their antimicro-
bial activity was investigated against four pathogenic 
Candida sp. namely C. albicans, C. glabrate, C. krusei 
and C. pseudotropicalis. Ag NPs at 60  µg/well showed 
a significant increase in inhibition of candida sp. How-
ever, pure extract was ineffective against all microbes at 
20–40 µg/well. Mechanism of action has been ascribed to 
the interaction between the positive charge on silver ion 
and the negative charge on the cell membrane of micro-
organism [25, 35]. Due to electrostatic attraction between 
the two the silver ions penetrate into the microbial cell 
via diffusion leading to their death. Ag NPs synthesized 
using fungus Trichoderma viride were examined for their 
antimicrobial activity in combination with various antibi-
otics (ampicillin, kanamycin, erythromycin and chloram-
phenicol) against both gram positive and gram negative 
bacteria [234]. Antibacterial activities of antibiotics were 
increased in the presence of Ag NPs against the tested 
strains and P. aeruginosa. The original aqueous extract of 
P. ostreatus was found to be ineffective against all bacte-
rial strains at 25–75 µg/mL.

Allahverdiyev et al. [276] have reported that the com-
bination of Ag NPs with antibiotics decreases the toxic-
ity toward human cells by reducing the required dosage. 
Furthermore, these combinations restore the ability of 
the drug to kill bacteria that have acquired resistance to 
them [175]. Hence, a separate approach of using Ag NPs 
synthesized from bacterial strains alone and in combina-
tion can act as effective novel antimicrobials to sensitize 
resistant pathogens. Nevertheless, a study with E. coli 
has demonstrated that the bacteria could become resist-
ant to Ag NPs on its regular exposure for 225 generations 
through genetic mutations [277]. Thus, a precaution 
should be taken to avoid the constant exposure of micro-
organisms against such types of nanoparticles. In addi-
tion, treatment with bacterial Ag NPs has shown the cell 
viability reduction in a dose-dependent manner in HeLa 
cervical cancer [278, 279], MDA-MB-231breast cancer 
[280], A549 adenocarcinoma lung cancer [281] and HEP2 
[282] cell lines. Ag NPs produced from bacterial strains 
exhibited cytotoxicity to cancer cells but their impact on 
normal healthy cells cannot be ignored.

Mechanism of antibacterial activity
As discussed previously, several reports are available 
which have shown that Ag NPs are effective against path-
ogenic organisms namely B. subtilis, Vibrio cholerae, E. 
coli, P. aeruginosa, S. aureus, Syphilis typhus etc. [10, 11, 
109, 145]. Ag NPs with larger surface area provide a bet-
ter contact with microorganisms [283]. Thus, these parti-
cles are capable to penetrate the cell membrane or attach 
to the bacterial surface based on their size. In addition, 
they were reported to be highly toxic to the bacterial 
strains and their antibacterial efficiency is increased by 
lowering the particle size [284]. Many arguments have 
been given to explain the mechanism of growth inhibi-
tion of microbes by Ag NPs but most convincing is the 
formation of free radical which has also been supported 
by the appearance of a peak at 336.33 in the electron spin 
resonance (ESR) spectrum of Ag NPs [275]. The free rad-
ical generation is quite obvious because in a living system 
they can attack membrane lipids followed by their dis-
sociation, damage and eventually inhibiting the growth 
of these microbes [285]. It is worth noting that the equal 
mass of silver Ag NPs and that of Ag ions exhibit identi-
cal growth inhibition of E. coli and S. aureus. In a study, 
the highly antibacterial activity has been ascribed to the 
release of silver cation from Ag NPs [173]. The Ag+ per-
meated into bacteria through the cell wall [286, 287] as 
a consequence of which the cell wall ruptures leading 
to denaturation of protein and death. Since Ag ions are 
positively charged and much smaller than neutral Ag NPs 
they can easily interact with electron rich biomolecules 
in the bacterial cell wall containing S or P and N. Some 
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researchers have reported that interaction between the 
positive charge on Ag NPs and negative charge on the cell 
membrane of the microorganisms is the key to growth 
inhibition of the microbes [286, 287]. On the other hand, 
Sondi et  al. [288] have reported that antibacterial activ-
ity of Ag NPs toward gram negative bacteria depends on 
its concentration. The nanoparticles form pits in the cell 
wall of microbes, get accumulated, and permeate into the 
bacterial cell leading to their death. It has been reported 
[289, 290] that Ag free radical formation and antimicro-
bial property are inter related which has been confirmed 
by ESR [275]. They claim that such an antimicrobial study 
included both the positively charged silver ions and nega-
tively charged silver nanoparticles.

The absorption of Ag NPs at 391  nm is the signature 
of spherical nanoparticles due to their surface plas-
mon resonance [291]. This absorption spectrum does 
not undergo any change even when the suspension of 
Ag NPs is diluted ten times indicating that they are not 
agglomerated. Besides Ag NPs and silver compounds, 
there are other inorganic ions which also possess anti-
bacterial properties [241, 287, 292]. It is known that silver 
ions bind to the protein of the microorganisms prevent-
ing their further replication but the organisms also avoid 
interacting with these ions and produce cysts to become 
resistant.

Ag NPs may be oxidized to Ag+ but cannot be reduced 
[287, 289]. Silver is known to have 4d10, 5s1 outermost 
electronic configuration and it cannot hold an extra elec-
tron to become Ag− anion. Silver salt of sulphathiazine is 
used in burn therapy to protect the skin from infection by 
pseudomonas species. Silver is released slowly from the 
salt which is sufficiently toxic to microorganisms. Since 
the salt is sparingly soluble the silver acts on the external 
cell structure. Silver salt and Ag NPs exhibit cytotoxicity 
against a broad range of microorganisms, although the 
toxicity depends on the quantum of silver ions released 
[275].

The monodispersed nanoparticles of uniform size are 
produced. Graphene oxide exhibits antibacterial activ-
ity against E. coli [293, 294] but Ag NPs functionalized 
graphene based material show enhanced antibacterial 
activity [295, 296]. Graphene oxide is nicely dispersed 
in polar solvents like water which allows the deposition 
of nanoparticle for its use in various fields. Antibacterial 
activity of both Ag NPs and Ag-graphene oxide com-
posite has been tested in a wide range of concentration 
between 6.25 and 100 µg/mL against both gram positive 
and gram negative bacteria. It was noticed that both Ag 
NPs and Ag-graphene oxide composite were more effec-
tive against gram positive than gram negative bacterial 
strains. Ag-graphene oxide is a better growth inhibitor of 
S. Typhi, even at a very low concentration of 6.25 µg/mL, 

than Ag NPs of the same concentration. However, Ag 
NPs and Ag-graphene oxide do not show any inhibitory 
effect against gram positive bacteria, S. aureus and S. epi-
dermis below 50 µg/mL. It was also noted that graphene 
oxide alone is ineffective against these bacteria even at a 
higher concentration of 100 µg/mL [293, 296].

Silver ions released from Ag NPs may penetrate into 
bacterial cell components such as peptidoglycan, DNA 
and protein preventing them from further replication 
[297, 298]. Release of Ag+ ions means the oxidation of 
elemental silver which requires an oxidizing agent.

The organic groups like carbonyl and protein in the 
bacterial cell wall are electron donors rather than elec-
tron acceptors and hence they cannot produce Ag+ ions 
from Ag atoms, nevertheless the Ag+ ions are produced 
which confirms the presence of an oxidizing agent [296, 
299]. Ag+ ions are thus bonded to the proteins of bacteria 
and inhibit their vital functions.

Tho et  al. [300] have shown that spherical Ag NPs of 
2.76–16.62  nm size fabricated from Nelumbo nucifera 
seed extract are highly toxic to Gram negative bacte-
ria. The antibacterial property has been ascribed to the 
attachment of Ag NPs to the surface of cell membrane 
disallowing permeation and respiration of the cells.

The outer layer of gram negative bacteria is made 
up of a lipopolysaccharide layer and the inner layer is 
composed of a linear polysaccharide chain forming a 
three-dimensional network with peptides. Ag NPs get 
accumulated due to attraction between the negative 
charge on the polysaccharides and weak positive charge 
on the silver nanoparticles. It stops the cell replication of 
the microbes.

Toxicity by nanoparticles is generally triggered by the 
formation of free radicals, such as ROS [301, 302]. If the 
ROS is produced it may cause membrane disruption 
and disturb the permeability. The mechanism of growth 
inhibition follows electrostatic interaction, adsorp-
tion and penetration of nanoparticles into the bacte-
rial cell wall. Toxicity of nanoparticles also depends on 
composition, surface modification, intrinsic properties 
and type of microorganisms [9, 303–306]. For instance, 
TiO2-nanoparticles can increase peroxidation of the 
lipid membrane disrupting the cell respiration [307]. The 
biogenic Ag NPs in combination with antibiotics like 
erythromycin, chloramphenicol, ampicilin and kana-
mycin enhance the toxicity against gram positive and 
gram negative bacteria [308, 309]. A possible mechanism 
is presented in Fig.  5. Besides, Ag NPs are also toxic to 
nitrifying bacteria [310]. The ROS include superoxide 
(O2

−), hydroxyl (·OH), peroxy (RCOO·) and hydrogen 
peroxide (H2O2). RNS includes nitric oxide (NO·) and 

Silver nanoparticle → Ag+ + e−
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nitrogen dioxide (NO2
−) [311, 312]. The cell replica-

tion and development of microbes in ROS containing 
atmosphere will cease to continue. However, this process 
may be delayed in presence of an antioxidant such as an 
enzyme or a non-enzymatic component which scavenges 
the free radicals [313].

Conclusion
Regardless of the method of fabrication, Ag NPs are used 
as an antimicrobial agent, electrochemical sensors, bio-
sensors, in medicine, health care, agriculture and bio-
technology. They have great bactericidal potential against 
both gram positive and gram negative pathogens. Since 
Ag NPs coupled with antibiotics are active against many 
drug resistant bacteria they can be used as easily acces-
sible medicine for the treatment of several infections. Ag 
NPs in the drug delivery system, quite often increase the 
solubility, stability and bio-distribution enhancing their 
efficiency. In presence of nanoparticles the absorption of 
medicine increases several times therefore, Ag NPs may 
be used as a drug delivery system.

Although, the long-term effect of nanoparticles on 
human health and crops is not clear. A large number 
of nanoparticles are being explored in many areas of 
industry technology, biotechnology and agriculture. It is 
known that various forms of silver from laundry, paints, 
clothes etc. and biosolids reach the sewage and sludge. 
It has been reported that nano sized Ag2S are formed 
in the activated sludge as a consequence of the reaction 
between silver nanoparticles/Ag+ ions and the sulfide 

produced in sewage. It is not possible for Ag NPs in the 
elemental form to react with evolved H2S. Only Ag+ ions 
may react with H2S to yield Ag2S according to the reac-
tion given below.

Ag2S or AgNO3 may be ionized to give free Ag+ ions 
which inhibit the bacterial growth. Besides many advan-
tages of Ag NPs there are some disadvantages too. They 
inhibit the growth of nitrifying bacteria, thereby inhibit-
ing the biological nitrogen removal. As little as 1–20 ppm 
Ag NPs have been reported to be effective against 
microbes. It is anticipated that Ag NPs may be used as an 
inexpensive broad spectrum antimicrobial agent to pro-
tect plant crops and infections in human beings.
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