
Borri et al. J Nanobiotechnol  (2018) 16:50  
https://doi.org/10.1186/s12951-018-0377-7

RESEARCH

Polylysine as a functional biopolymer 
to couple gold nanorods to tumor‑tropic cells
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Abstract 

Background:  The delivery of plasmonic particles, such as gold nanorods, to the tumor microenvironment has 
attracted much interest in biomedical optics for topical applications as the photoacoustic imaging and photothermal 
ablation of cancer. However, the systemic injection of free particles still crashes into a complexity of biological barriers, 
such as the reticuloendothelial system, that prevent their efficient biodistribution. In this context, the notion to exploit 
the inherent features of tumor-tropic cells for the creation of a Trojan horse is emerging as a plausible alternative.

Results:  We report on a convenient approach to load cationic gold nanorods into murine macrophages that exhibit 
chemotactic sensitivity to track gradients of inflammatory stimuli. In particular, we compare a new model of poly-
l-lysine-coated particles against two alternatives of cationic moieties that we have presented elsewhere, i.e. a small 
quaternary ammonium compound and an arginine-rich cell-penetrating peptide. Murine macrophages that are 
exposed to poly-l-lysine-coated gold nanorods at a dosage of 400 µM Au for 24 h undertake efficient uptake, i.e. 
around 3 pg Au per cell, retain the majority of their cargo until 24 h post-treatment and maintain around 90% of their 
pristine viability, chemotactic and pro-inflammatory functions.

Conclusions:  With respect to previous models of cationic coatings, poly-l-lysine is a competitive solution for the 
preparation of biological vehicles of gold nanorods, especially for applications that may require longer life span of 
the Trojan horse, say in the order of 24 h. This biopolymer combines the cost-effectiveness of small molecules and 
biocompatibility and efficiency of natural peptides and thus holds potential for translational developments.
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Background
Over recent years, the notion to use tumor-tropic cells 
as a biological taxi to take up and deliver functional par-
ticles to solid tumors has attracted interest as a power-
ful solution to overcome all biological barriers that exist 
along the way from the bloodstream to the tumor micro-
environment (TME) [1, 2]. In order to implement this 
solution, relevant steps include the identification and 
harvesting of a population of tumor-tropic cells, their 
coupling to a formulation of passenger particles in vitro, 
and their injection into an oncological patient, with the 
mission to carry their cargo to her/his tumor site(s) by 
virtue of their chemotactic functions. This approach 

represents a radical alternative to a systemic adminis-
tration of free particles, which remains an outstanding 
issue [3], where capture by the reticuloendothelial system 
regularly prevents most of the injection dose to reach 
the TME, in spite of the EPR (enhanced permeability 
and retention) effect [4–7] or even upon active targeting 
[8–11]. Examples of tumor-tropic cells that may serve as 
a biological taxi include immune-system cells and stem 
cells that undergo recruitment during cancer progres-
sion [12–16]. Another key advantage of these cells is their 
native ability to infiltrate the hypoxic core of a tumor 
site, which is hardly accessible by free particles, due to 
its inherent lack of vasculature [17, 18]. On the other 
hand, the implementation of a cell-based delivery system 
implies an intimate contact of the passenger particles 
with their biological taxi, which should remain functional 
for hours or days, rather than the malignant cells. That 
is why this approach is most appropriate to deliver inert 
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particles that convey contrast for applications as the pho-
toacoustic imaging [19–22] and optical hyperthermia 
of cancer [23–26], which hold spatial resolution coarser 
than the single cell and are exempt of the final steps of 
the so-called CAPIR cascade (Circulation, Accumulation, 
Penetration, Internalization, and drug Release [3]). In this 
context, several authors have proposed different models 
of biological vehicles of plasmonic particles, including 
macrophages [27–29], T lymphocytes [30, 31], mesen-
chymal [32, 33] and neural [34, 35] stem cells or endothe-
lial progenitors [36].

Gold nano-crystals are nowadays available in a remark-
able variety of sizes and shapes, which enables a rich 
selection of their colloidal and plasmonic features [20, 37, 
38]. In particular, gold nanorods represent a convenient 
choice, owing to their ease of synthesis and modulation 
of their longitudinal band of plasmonic oscillations in the 
near-infrared window of principal interest in biomedical 
optics [39–43].

Here, we address the modification of gold nanorods 
for their efficient and harmless coupling to tumor-tropic 
cells, which should retain their tumor-homing and pro-
inflammatory profiles, in order to serve as a biological 
taxi. A robust strategy to promote the cellular uptake of 
these particles combines their termination with biopoly-
mers that provide for steric stabilization, such as poly-
ethylene glycol (PEG) [44, 45], and cationic moieties [29, 
34, 35, 46] that are prone to interact with the anionic 
phospholipids on plasmatic membranes [47–49] and/or 
to induce receptor-mediated endocytic and phagocytic 
pathways [50, 51]. In our recent work, we have disclosed 
a modification of gold nanorods with PEG and mercap-
toundecyl trimethyl ammonium bromide (MUTAB) that 
provides high efficiency and reproducibility of phagocy-
tosis from tumor-tropic macrophages [28, 29]. However, 
quaternary ammonium compounds, such as MUTAB, are 
likely to cause cytotoxicity and so require caution [52–
55]. More recently, we have reported on an alternative 
design that replaces these compounds with biocompat-
ible arginine-rich cell penetrating peptides (CPPs) [56]. 
How natural CPPs really work remains a matter of debate 
but seems to relate to their abundance of cationic or lipo-
philic residues [57–60]. This work starts from the con-
sideration that, if the worth of synthetic arginine-reach 
CPPs was really limited to their cationic backbone, their 
cost–benefit profile would be rather poor. In an attempt 
to identify a translational solution that may combine the 
cost-effectiveness of MUTAB and biocompatibility of 
CPPs, we took inspiration from the pool of biopolymers 
in use in cell biology. In particular, poly-l-lysine (pLys) 
is a common solution to coat plastic- and glassware to 
stimulate the adhesion of most cells. In addition, pLys has 
already been used as a cross-linker to assemble various 

particles for imaging [61] or delivery of genetic material 
[62]. However, its use to couple functional particles to 
tumor-tropic cells has never been described, thus far.

In order to assess the feasibility of pLys-coated gold 
nanorods for integration into a biological taxi retaining 
tumor-homing and pro-inflammatory functions, we have 
benchmarked their parameters against those of their 
MUTAB- and CPP-coated predecessors. Our multi-para-
metric survey includes key features for a cell-based deliv-
ery system, such as the efficiency of uptake and retention 
of the passenger particles and the viability, migration and 
release of cytokines from the biological taxi, in the pres-
ence of relevant stimuli.

Methods
Materials
HAuCl4 (hydrogen tetrachloroaurate (III) hydrate), 
CTAB (hexadecyltrimethylammonium bromide), NaBH4 
(sodium borohydride), ascorbic acid, silver nitrate, NHS 
(N-hydroxysuccinimide), EDC (1-ethyl-3-(3-dimethyl-
aminopropyl)carbodiimide), MES (2-(N-morpholino)
ethanesulfonic acid), acetic acid, sodium acetate, sodium 
chloride, DMSO (dimethyl sulfoxide), Tween® 20, 
MUTAB, pLys and all other chemicals required for the 
preparation of all buffer solutions were purchased from 
Sigma-Aldrich Corporation (St. Louis, MO, USA), unless 
otherwise specified. Instead, m-PEG-SH [alpha-methoxy-
omega-mercapto-poly(ethyleneglycol)] and c-PEG-SH 
(alpha-carboxy-omega-mercaptopoly(ethylene glycol)), 
Mw ≈ 5000  gmol−1 were acquired from Iris Biotech 
GmbH (Marktredwitz, Germany). CPPs were provided 
by Giotto Biotech Srl (Florence, Italy) [56]. All compo-
nents for cell cultivation were obtained from Euroclone 
SpA (Pero, Italy). Instead, LPS (bacterial lipopolysaccha-
ride), recombinant mouse chemokine MIP-1α (CCL-3), 
BSA (bovine serum albumin), PFA (paraformaldehyde) 
and Harris’ hematoxylin and eosin histological staining 
kit were also acquired from Sigma-Aldrich Corporation.

Preparation of the particles
CTAB-capped gold nanorods were synthesized accord-
ing to the autocatalytic reduction of HAuCl4 with ascor-
bic acid that was proposed by Nikoobakht et al. [63] and 
modified by Ratto et al. [40], with the intent to consume 
the full aliquot of HAuCl4 and gain more control over the 
total amount of gold in suspension. These particles were 
imaged with a CM12 transmission electron microscope 
(TEM) from Philips (Amsterdam, the Netherlands), 
with a voltage of 100 kV and operating in standard con-
ditions. MUTAB- and CPP-coated gold nanorods were 
prepared according to the prescriptions of refs [29] and 
[56], respectively. Instead, pLys-coated gold nanorods 
were realized by the same protocol that was implemented 
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for the preparation of their CPP-coated counterpart, 
with the replacement of CPPs with the same dose of 
pLys. Briefly, for MUTAB-coated particles, as-grown 
gold nanorods were transferred at a concentration of 
1.6  mM Au into a 100  mM acetate buffer at pH 5 con-
taining 500  µM CTAB and 50  ppm Tween® 20, supple-
mented with 50 µM m-PEG-SH, left to react for 30 min 
at 37 °C, added with 500 µM MUTAB and left at rest for 
another 24  h at 37  °C. For CPP and pLys-coated parti-
cles, as-grown gold nanorods were transferred at a con-
centration of 1.6  mM Au into a saline (120  mM NaCl) 
10 mM MES buffer at pH 6.5 containing 500 µM CTAB 
and 50 ppm Tween® 20 and PEGylated by the addition of 
45 µM m-PEG-SH and 5 µM c-PEG-SH for 2 h at 37 °C. 
Then, PEGylated gold nanorods were purified by 5 cycles 
of centrifugation and decantation, diluted to 800 µM Au 
in MES-saline, activated by the addition of 6  mM NHS 
and 24  mM EDC for 15  min at 37  °C and re-diluted to 
400  µM Au in MES-saline containing 10  ppm CPPs or 
pLys, in order to achieve their coupling by amidation. 
Finally, all particles were purified by centrifugation and 
stored at a concentration of 4  mM Au in sterile phos-
phate buffered saline (PBS) at pH 7.4 at 4  °C until use. 
Their hydrodynamic size and electrokinetic potential 
were inspected by the use a Zetasizer nano ZS 90 plat-
form from Malvern Instruments (Malvern, UK) and their 
optical extinction was analyzed by a V-560 spectropho-
tometer from Jasco (Tokyo, Japan).

Cell line and culture conditions
J774a.1 murine macrophages were purchased from the 
American Type Culture Collection (ATCC​® TIB-67™, 
Manassas, VA, USA) and seeded on plastic culture flasks 
in Dulbecco’s Modified Eagle Medium (DMEM) supple-
mented with 10% fetal bovine serum, 1% l-glutamine and 
1% penicillin–streptomycin solution. Cells were kept and 
left to grow under standard culture conditions (37 °C, 5% 
CO2).

Measurement of cellular uptake and retention 
of the particles
The accumulation of gold nanorods in macrophages 
was quantified by an optical analysis. 5 × 105 J774a.1 
cells were plated in Petri dishes and exposed to 100 and 
400  µM Au pLys-coated gold nanorods from 1 to 48  h, 
MUTAB-coated gold nanorods from 30 min to 24 h and 
CPP-coated gold nanorods from 2 to 32 h in serum-free 
medium (SFM). At the end of these treatments, particles 
were accurately removed and macrophages were sequen-
tially fixed with a solution of 3.6% PFA in PBS for 10 min 
at room temperature, washed with PBS, harvested, cen-
trifuged for 5  min at 1000  rpm, re-suspended in 120  μl 

PBS in a quartz micro-cuvette and directed to an optical 
inspection with a V-560 spectrophotometer from Jasco.

In order to assess the effect of exocytic release on the 
retention of the passenger particles subsequent to their 
internalization, macrophages were treated with 100 and 
400 µM Au gold nanorods for 24 h and then cultured in 
fresh SFM from 24 to 48  h, fixed and prepared for the 
optical analysis as is mentioned above.

In order to quantify the amount of particles taken up 
per cell, the spectra of optical extinction were modeled 
as a linear combination of separate contributions from 
the macrophages and the gold nanorods. In particular, 
the former was recovered from an empirical measure-
ment of a standard population of macrophages. The latter 
was devised as a numerical approximation of the plas-
monic band from an ensemble of gold nanorods, which 
was described as an integral over Gans lineshapes [39], 
by using the dielectric function of gold by Etchegoin et al. 
[64] and was also subject to an empirical calibration. 
With these calibrations, the analysis of the experimental 
spectra returns a number density of cells in cm−3 and a 
density of gold nanorods in ppm or µg cm−3, which are 
then combined to achieve a mass of gold per cell. Details 
and a demonstration of this method are provided else-
where [65, 66].

Measurement of cytotoxicity of the particles
Cell viability was assessed by a WST-8 assay (Cell count-
ing kit-8, Sigma-Aldrich Corporation, St. Louis, MO, 
USA). The highly water-soluble tetrazolium salt WST-8 
is reduced into formazan by dehydrogenases in cells and 
the optical absorbance of formazan at the wavelength of 
450 nm is proportional to the number of living cells.

8 × 103 macrophages were cultured in 96-well plates 
and incubated with 50–400  μM Au pLys-coated gold 
nanorods from 16 to 72 h and with MUTAB- and CPP-
coated gold nanorods from 4 to 96  h. Each sample was 
prepared in triplicate. At the end of these treatments, 
each well was washed with PBS and added with 100  µl 
SFM supplemented with 10% WST-8 reagent for 2–4  h 
at 37  °C. The concentration of formazan was quantified 
by a LT-4000 microplate reader from Labtech (Bergamo, 
Italy) at the wavelength of 450 nm with a reference wave-
length of 630 nm and subtracting blank values. Data were 
expressed as percent of optical absorbance with respect 
to controls.

In order to assess the viability of the biological taxi sub-
sequent to its loading, cells were treated with 50–400 μM 
Au pLys-coated gold nanorods and with 100–400  μM 
Au MUTAB- and CPP-coated gold nanorods for 24  h. 
Each sample was prepared in triplicate. Then particles 
were accurately removed and macrophages were care-
fully washed with PBS and incubated with fresh SFM. 
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After another 24–48 h from removal of the particles, the 
WST-8 assay was performed as above.

Measurement of chemotaxis of the macrophages
Cell migration was investigated by the use of 24-well 
plates with 8  µm-pore polycarbonate membrane inserts 
(Transwell® Permeable Supports, Costar®, Corning Life 
Sciences, Lowell, MA, USA). Confluent macrophages 
were cultured in SFM and then treated with 100 and 
400  μM Au gold nanorods for 24  h. After harvesting, 
2.5 × 104 cells were re-suspended in 100  μl SFM and 
added to the upper side of the Transwell® inserts. The 
lower side of the wells was filled with 600  μl SFM with 
or w/out 50 ng/ml MIP-1α chemokine, in the presence of 
.1% BSA. Then plates were incubated overnight at 37 °C. 
After this incubation, non-migrated cells on the upper 
surface of the inserts were removed with a cotton swab. 
Migrated cells were fixed with a solution of 3.6% PFA in 
PBS for 10  min at room temperature and stained with 
Harris’ hematoxylin and eosin. Inserts were observed by 
an optical microscope at 40× magnification and migrated 
cells were quantified as mean ± SD in five random fields.

Measurement of production of pro‑inflammatory 
cytokines
The release of interleukin-6 (IL-6), tumor necrosis factor-α 
(TNF-α) and interleukin-1β (IL-1β) in supernatants of the 
macrophages was evaluated by ELISA (Thermo Scientific, 
Pierce Biotechnology, Rockford, IL, USA), according to the 
instructions of the manufacturer of the kits. Briefly, J774a.1 
cells were treated with 100 and 400 μM Au gold nanorods 
for 24 h. Then particles were accurately removed and mac-
rophages were carefully washed with PBS and activated 
with LPS for 24  h. Aliquots of the supernatants of the 
cell cultures were collected and assayed for a quantitative 
measurement of the production of murine cytokines.

Results and discussion
Cellular uptake and retention of the particles
The left-hand panels of Fig.  1 show a representative 
TEM micrograph of as-synthesized particles and their 
analysis in terms of volumetric distributions of aspect 
ratios and volumes. Gold nanorods display a typi-
cal diameter of (13 ± 2) nm and length of (55 ± 8) nm, 
which convey an aspect ratio of 4.2 ± .9 and volume of 
(4000 ± 1700) nm3. Figure  1d shows a vis–NIR spec-
trum of optical extinction of pLys-coated particles. The 
plasmonic feature around 800 nm is a distinctive hall-
mark of gold nanorods with an aspect ratio around 4 
[39, 42] and underwent no variation upon PEGylation 
and bio-conjugation, as was reported for MUTAB- [29], 
CPP- [56] as well as sulfonamide- [66] and IgG- [67] 
coated gold nanorods that were protected with PEG. 

With respect to as-synthesized gold nanorods, the 
hydrodynamic size of pLys-coated particles increased 
by around 20  nm, i.e. from around 50 to 70  nm. 
Instead their electrokinetic potential in ultrapure water 
decreased by almost 40 mV, i.e. from around + 40 mV 
to close to neutrality. Both parameters were about the 
same as was measured for CPP-coated gold nanorods 
[56] and ascribed to an interplay between the anionic 
PEG strands and cationic overcoating. Instead, accord-
ing to ref 29, MUTAB-coated gold nanorods were 
a little smaller, on average, and retained more posi-
tive polarization in ultrapure water, around + 20  mV. 
Table  1 recapitulates the hydrodynamic and electroki-
netic parameters of the batches compared in this work.

Figure  1f shows the appearance of murine mac-
rophages that were treated with pLys-coated parti-
cles at a concentration of 400  µM Au for a duration 
of 24  h. All cells display their typical morphology 

Fig. 1  a Representative (300 × 300) nm2 TEM micrograph of 
as-synthesized gold nanorods. b, c Relevant volumetric distributions 
of aspect ratios and volumes derived from the analysis of around 
500 particles. d spectrum of optical extinction of a suspension of 
pLys-coated gold nanorods. e, f Representative images of untreated 
controls and macrophages exposed to 400 µM Au pLys-coated 
gold nanorods for 24 h, from a confocal microscope (TCS SP8, Leica 
Microsystems, Heidelberg, Germany) operated in transmission mode 
at 63× magnification
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and a constellation of dark organelles that are located 
inside the cytoplasm in the perinuclear region, which 
are interpreted as endosomal vesicles containing a 
high density of gold nanorods. The phagocytic process 
seems to occur through the extension of pseudopodia.

Crucial features for the performance of a biological taxi 
of gold nanorods are the amount of gold taken up per 
cell during its loading and then retained until arrival at 
its target site, which may typically take several hours to 
a few days [68–71]. The upper panel of Fig. 2 displays a 
spectrum of optical extinction of macrophages treated 
with pLys-coated particles at a concentration of 400 µM 
Au for a duration of 24 h and provides an illustration of 
the method used to quantify their load of gold per cell, 
by decomposition into the Mie-like contribution from 
the macrophages, dominating towards the blue/near 
ultraviolet end, plus the plasmonic fingerprints of the 
gold nanorods, peaking in the green and red/near infra-
red windows. A comparison between the optical spec-
tra in Figs.  1, 2 shows that, after being phagocytized, 
gold nanorods maintained most of their plasmonic fea-
tures [56, 72]. Some broadening and red-shift of both 
bands is ascribed to the effect of plasmonic coupling of 
nearby particles that occurs upon endosomal confine-
ment [53, 73]. The lower panel of Fig.  2 compares the 
efficiency of internalization and retention of different 
particles for a representative dosage of 400 µM Au. As for 
our prior models, MUTAB-coated gold nanorods show 
faster kinetics of cellular uptake, with a distinct colora-
tion that emerges after as early as a few tens of minutes, 
with respect to CPP-coated gold nanorods, which take at 
least 2 h. The accumulation of MUTAB- or CPP-coated 
particles reaches a plateau around 8 or 3 pg Au per cell, 
respectively, after about 24  h of co-incubation. How-
ever, the advantage of MUTAB- over CPP-coated par-
ticles is dissipated after around 24  h of removal of the 
particles, supposedly because of their difference of exo-
cytic rate. While the origin of this difference will require 
more investigation, we hypothesize a correlation with the 
speed and extent of cellular uptake. Moreover, one of the 
principal functions of macrophages being the elimination 
of toxic compounds and waste products, the presence of 

quaternary ammonium compounds may prompt a faster 
rejection of MUTAB- rather than CPP-coated particles. 
This interpretation is consistent with the data on cytotox-
icity that are reported below.

Table 1  Summary of the hydrodynamic and electrokinetic 
parameters of  the  batches used in  this work: 
polydispersity index (PDI) according to  ISO 22412:2008, 
hydrodynamic diameter (Ø) and  electrokinetic potential 
(ζ)

Parameter MUTAB CPP pLys

PDI .46 ± .02 .47 ± .04 .54 ± .04

Ø (nm) 65 ± 8 70 ± 7 73 ± 8

ζ (mV) 20 ± 2 6 ± 4 4 ± 3

Fig. 2  Upper panel: spectrum of optical extinction from a 
suspension of macrophages exposed to 400 µM Au pLys-coated 
gold nanorods for 24 h (circlets), together with its numerical fit (line) 
and corresponding decomposition into an empirical contribution 
from the macrophages plus an analytical approximation of the 
plasmonic band of a population of gold nanorods (shadows) [65, 
66]. This decomposition was processed to quantify the amount of 
gold per cell. Lower panel: mass of gold taken up per cell for murine 
macrophages treated with a dosage of 400 µM Au, during incubation 
with gold nanorods (full symbols) as well as after their medium was 
replaced with fresh SFM without particles (empty symbols). The 
vertical dashed line denotes the timepoint when the replacement 
took place. Solid and dotted lines are guides to the eye only
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The kinetics of accumulation and exocytic release of 
pLys-coated gold nanorods are similar or only slightly 
worse than the case of CPPs, at least until 24 h of prep-
aration. We conjecture that the kinetics of cellular 
uptake may increase with the electrokinetic potential in 
ultrapure water, which is more positive for MUTAB- than 
CPP- and pLys-coated particles, although the probable 
formation of a protein corona [74] in a culture medium 
may preclude any immediate correlation.

We note that the difference from model to model is 
rather small, especially when macrophages are loaded for 
24 h and then assessed after another 24 h of preparation, 
which is a plausible timeframe for their application, until 
homing to the TME. The same trend is observed for a 
lower dosage of gold nanorods (see Additional file 1: Fig-
ure S1). When their concentration is reduced from 400 
to 100 µM Au, the amount of gold per cell roughly scales 
by a factor of 3 during preparation and a factor of 2 after 
24 h of removal of the particles, when all systems display 
similar performances.

Viability of the macrophages
Another key parameter for the feasibility of a biological 
taxi of gold nanorods is its viability both during, i.e. the 
standard cytotoxicity of the particles, as well as after its 
loading, until arrival at its target site. Figure 3 compares 

this parameter for different particles at a representative 
dosage of 400 µM Au.

No significant loss of cell viability was observed in 
samples treated with CPP- and pLys-coated particles. 
The fraction of viable cells remains well above 80% even 
after three or 4  days of co-incubation. Additional file  1 
provides complementary data on the proliferation and 
apoptosis of macrophages treated with pLys-coated gold 
nanorods for up to 3 days, which corroborate their lack of 
cytotoxicity. Instead, the cytotoxicity of MUTAB-coated 
gold nanorods becomes serious after about 2  days and 
as much as 80% of macrophages are extinct after 4 days. 
However, relevant vehicles that are loaded for 24  h and 
then left at rest without particles for up to another 48 h 
retain around 70% of their pristine viability, which is still 
hopeful, in view of their application, i.e. until homing to 
the TME. The viability of macrophages that are treated 
with CPP- or pLys-coated particles remains rather indis-
tinguishable from that of untreated controls over the 
entire range of conditions that we have assessed.

That the cytotoxicity of MUTAB-coated particles does 
not directly relate to their higher uptake is confirmed 
by a comparison between Fig.  2, Additional file  1: Fig-
ures S1, S2, which summarize our full dataset on the via-
bility of macrophages treated under different conditions. 
Notice, for instance, that the accumulation of MUTAB-
coated particles at a dosage of 100 µM Au is slightly lower 
than that of their CPP-coated counterpart at a dosage of 
400  µM Au, but the cytotoxicity of the former is much 
worse than that of the latter. Instead, we ascribe the cyto-
toxicity of MUTAB-coated particles to their decoration 
with quaternary ammonium compounds that are biocidal 
[75–78] and/or a larger incidence of residual CTAB left 
after purification [45, 56, 79].

Chemotaxis and release of cytokines 
from the macrophages
In order to gain functional insight into the feasibility of 
a biological taxi of gold nanorods, we assessed its ability 
to migrate towards a chemokinic source and to release 
pro-inflammatory cytokines upon specific stimulation, 
thus simulating its homing and recruitment of peers in 
the TME. We have focused on a representative timeframe 
where the macrophages were fed with the particles for 
24 h and then left in the presence of gradients of MIP-1α 
for 18 h for the observation of their chemotactic profiles 
or incubated with LPS for 24  h before quantification of 
their release of cytokines. Results are displayed in Fig. 4.

In the absence of MIP-1α, both relevant controls and 
macrophages loaded with gold nanorods exhibited lit-
tle motility. Instead, under a gradient of MIP-1α, a con-
sistent level of cell migration occurred in all samples. 
Therefore, neither model of particles interfered with the 

Fig. 3  Viability of murine macrophages treated with a dosage of 
400 µM Au, in the presence of gold nanorods (full symbols) as well 
as after their medium was replaced with fresh SFM without particles 
(empty symbols). The vertical dashed line denotes the timepoint 
when the replacement took place. Solid and dotted lines are guides 
to the eye only. Values are expressed as percent of formazan in 
treated cells vs. untreated controls. Data are reported as mean ± SD of 
three independent experiments
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chemotactic profiles of their taxi, which maintained its 
native potential to home to the TME. In the absence of 
LPS, the levels of production of cytokines remained null 
in all samples. Conversely, as occurs in relevant controls, 
J774a.1 cells loaded with gold nanorods and exposed 
to LPS underwent activation and released higher lev-
els of IL-6, intermediate levels of TNF-α and lower lev-
els of IL-1β. Therefore, all models of particles exerted 
little effect on the pro-inflammatory functions of their 
taxi, which retained its inherent ability to attract peers 
in the TME. Overall, we found a possible slight correla-
tion between these parameters and cell viability, which 
is unsurprising. Additional file  1: Figure S3 shows that 
the same conclusion applies to macrophages that were 
treated with a lower dosage of gold nanorods and exhib-
ited performances that were even closer to those of 
relevant controls. Therefore, these particles alone are 
not able to activate nor inhibit any chemotactic or pro-
inflammatory response in macrophages.

Multiparametric comparison of the particles
The performances of all models of particles are encourag-
ing. Table 2 provides a qualitative summary of our func-
tional survey on the integration of gold nanorods into 
tumor-tropic macrophages.

Overall, we suggest that MUTAB-coated particles 
may be more preferable than CPP- or pLys-coated par-
ticles for applications that entail a faster delivery, say 
in the order of a few minutes, and viceversa, because 

their efficiency of endocytic uptake is fairly better but 
their kinetics of exocytic release is much faster and 
their biological profiles are quite worse over longer 
timescales. Furthermore, the residual cytotoxicity of 
MUTAB-coated particles may represent a limitation in 
view of their exploitation. We found that pLys-coated 
particles are the same or only slightly worse than their 
CPP-coated predecessors. Both these cases are clearly 
atoxic, undergo decent cellular uptake and slow excre-
tion over time and do not interfere with cellular func-
tions that are critical for the feasibility of a cell-based 
delivery system to target the TME. What makes pLys 
more attractive is its commercial value, which is a frac-
tion of that of CPPs and does not impact much on the 
overall fabrication of the system.

Conclusions
We have addressed the modification of gold nanorods 
as passenger particles for efficient coupling to tumor-
tropic cells that may undertake their chemotactic deliv-
ery to a tumor site as a biological taxi, for imaging and 
therapeutic applications. The comparison between 
MUTAB-, CPP- and pLys-coated gold nanorods reveals 
favorable features that make these systems a promis-
ing platform for translational developments. From a 
physiological point of view, we have not identified any 
adverse effect of the use of CPP- and pLys- coated par-
ticles on the chemotactic and pro-inflammatory func-
tions of their biological vehicles. On the other hand, 
MUTAB-coated particles display faster kinetics of 
cellular uptake, at the expense of greater cytotoxicity 
and exocytic rates. However, we anticipate that these 
parameters may improve with incremental refinement 
of all protocols, including the steps of purification [79], 
as well as the choice of alternative kinds of tumor-
tropic cells, as is under investigation.

Fig. 4  Migration (upper panel) and release of pro-inflammatory 
cytokines (lower panel) from macrophages loaded with gold 
nanorods by incubation with a dosage of 400 µM Au for a period 
of 24 h and then exposed to specific pro-inflammatory stimuli 
for another period of 18 and 24 h, respectively. The quantification 
of cytokines in the samples treated with particles is expressed as 
percent of untreated controls, always in the presence of LPS (no 
cytokines were found in the absence of LPS). Results are shown as 
mean ± SD of three independent experiments

Table 2  Comparison of  different models of  cationic 
coatings for  the  preparation of  a  biological taxi of  gold 
nanorods

The symbol + refers to qualitative levels: + = lowest, ++ = intermediate, 
+++ = highest

Parameter MUTAB CPP pLys

Uptake +++ ++ ++
Retention + +++ ++
Viability + +++ ++
Migration ++ ++ +++
Release of cytokines ++ +++ ++
Cost-effectiveness ++ + +++



Page 8 of 10Borri et al. J Nanobiotechnol  (2018) 16:50 

The remarkable resemblance of CPP- and pLys-coated 
gold nanorods suggests that the key requirements for 
the preparation of passenger particles for efficient cou-
pling to a biological taxi are a handful of metrics that 
include steric hindrance, cationic profile and a toxicity. 
This observation represents a terrific simplification with 
respect to more conventional strategies for the systemic 
delivery of free particles and may shift the focus of future 
research onto translational issues, such as regulatory 
constraints, standardization and costs. Therefore, we 
are confident that this work will inspire new efforts to 
bring biological vehicles of functional particles to clinical 
fruition.
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