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Abstract

Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in

the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific
targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by
site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding appli-
cations of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the
treatment of various diseases. The current review, presents an updated summary of recent advances in the field of
nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and appli-
cation of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective
diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery
from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included informa-
tion regarding the trends and perspectives in nanomedicine area.
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Background

Since ancient times, humans have widely used plant-
based natural products as medicines against various dis-
eases. Modern medicines are mainly derived from herbs
on the basis of traditional knowledge and practices.
Nearly, 25% of the major pharmaceutical compounds and
their derivatives available today are obtained from natu-
ral resources [1, 2]. Natural compounds with different
molecular backgrounds present a basis for the discovery
of novel drugs. A recent trend in the natural product-
based drug discovery has been the interest in designing
synthetically amenable lead molecules, which mimic
their counterpart’s chemistry [3]. Natural products
exhibit remarkable characteristics such as extraordinary
chemical diversity, chemical and biological properties
with macromolecular specificity and less toxicity. These
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make them favorable leads in the discovery of novel drugs
[4]. Further, computational studies have helped envisage
molecular interactions of drugs and develop next-genera-
tion drug inventions such as target-based drug discovery
and drug delivery.

Despite several advantages, pharmaceutical compa-
nies are hesitant to invest more in natural product-based
drug discovery and drug delivery systems [5] and instead
explore the available chemical compounds libraries to
discover novel drugs. However, natural compounds are
now being screened for treating several major diseases,
including cancer, diabetes, cardiovascular, inflammatory,
and microbial diseases. This is mainly because natural
drugs possess unique advantages, such as lower toxicity
and side effects, low-price, and good therapeutic poten-
tial. However, concerns associated with the biocom-
patibility, and toxicity of natural compounds presents
a greater challenge of using them as medicine. Conse-
quently, many natural compounds are not clearing the
clinical trial phases because of these problems [6—8]. The
use of large sized materials in drug delivery poses major
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challenges, including in vivo instability, poor bioavail-
ability, and poor solubility, poor absorption in the body,
issues with target-specific delivery, and tonic effective-
ness, and probable adverse effects of drugs. Therefore,
using new drug delivery systems for targeting drugs to
specific body parts could be an option that might solve
these critical issues [9, 10]. Hence, nanotechnology plays
a significant role in advanced medicine/drug formula-
tions, targeting arena and their controlled drug release
and delivery with immense success.

Nanotechnology is shown to bridge the barrier of
biological and physical sciences by applying nanostruc-
tures and nanophases at various fields of science [11];
specially in nanomedicine and nano based drug deliv-
ery systems, where such particles are of major interest
[12, 13]. Nanomaterials can be well-defined as a mate-
rial with sizes ranged between 1 and 100 nm, which
influences the frontiers of nanomedicine starting from
biosensors, microfluidics, drug delivery, and microar-
ray tests to tissue engineering [14—16]. Nanotechnol-
ogy employs curative agents at the nanoscale level to
develop nanomedicines. The field of biomedicine com-
prising nanobiotechnology, drug delivery, biosensors,
and tissue engineering has been powered by nanoparti-
cles [17]. As nanoparticles comprise materials designed
at the atomic or molecular level, they are usually small
sized nanospheres [18]. Hence, they can move more
freely in the human body as compared to bigger mate-
rials. Nanoscale sized particles exhibit unique struc-
tural, chemical, mechanical, magnetic, electrical, and
biological properties. Nanomedicines have become
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well appreciated in recent times due to the fact that
nanostructures could be utilized as delivery agents by
encapsulating drugs or attaching therapeutic drugs
and deliver them to target tissues more precisely with a
controlled release [10, 19]. Nanomedicine, is an emerg-
ing field implementing the use of knowledge and tech-
niques of nanoscience in medical biology and disease
prevention and remediation. It implicates the utiliza-
tion of nanodimensional materials including nanoro-
bots, nanosensors for diagnosis, delivery, and sensory
purposes, and actuate materials in live cells (Fig. 1). For
example, a nanoparticle-based method has been devel-
oped which combined both the treatment and imaging
modalities of cancer diagnosis [20]. The very first gen-
eration of nanoparticle-based therapy included lipid
systems like liposomes and micelles, which are now
FDA-approved [21]. These liposomes and micelles can
contain inorganic nanoparticles like gold or magnetic
nanoparticles [22]. These properties let to an increase
in the use of inorganic nanoparticles with an emphasis
on drug delivery, imaging and therapeutics functions.
In addition, nanostructures reportedly aid in prevent-
ing drugs from being tarnished in the gastrointestinal
region and help the delivery of sparingly water-soluble
drugs to their target location. Nanodrugs show higher
oral bioavailability because they exhibit typical uptake
mechanisms of absorptive endocytosis.

Nanostructures stay in the blood circulatory system
for a prolonged period and enable the release of amalga-
mated drugs as per the specified dose. Thus, they cause
fewer plasma fluctuations with reduced adverse effects
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[23]. Being nanosized, these structures penetrate in the
tissue system, facilitate easy uptake of the drug by cells,
permit an efficient drug delivery, and ensure action at the
targeted location. The uptake of nanostructures by cells is
much higher than that of large particles with size ranging
between 1 and 10 um [17, 24]. Hence, they directly inter-
act to treat the diseased cells with improved efficiency
and reduced or negligible side effects.

At all stages of clinical practices, nanoparticles have
been found to be useful in acquiring information owing
to their use in numerous novel assays to treat and diag-
nose diseases. The main benefits of these nanoparticles
are associated with their surface properties; as various
proteins can be affixed to the surface. For instance, gold
nanoparticles are used as biomarkers and tumor labels
for various biomolecule detection procedural assays.

Regarding the use of nanomaterials in drug delivery,
the selection of the nanoparticle is based on the physico-
chemical features of drugs. The combined use of nano-
science along with bioactive natural compounds is very
attractive, and growing very rapidly in recent times. It
presents several advantages when it comes to the delivery
of natural products for treating cancer and many other
diseases. Natural compounds have been comprehensively
studied in curing diseases owing to their various char-
acteristic activities, such as inducing tumor-suppressing
autophagy and acting as antimicrobial agents. Autophagy
has been observed in curcumin and caffeine [25],
whereas antimicrobial effects have been shown by cin-
namaldehyde, carvacrol, curcumin and eugenol [26, 27].
The enrichment of their properties, such as bioavailabil-
ity, targeting and controlled release were made by incor-
porating nanoparticles. For instance, thymoquinone, a
bioactive compound in Nigella sativa, is studied after its
encapsulation in lipid nanocarrier. After encapsulation, it
showed sixfold increase in bioavailability in comparison
to free thymoquinone and thus protects the gastrointes-
tinal stuffs [28]. It also increased the pharmacokinetic
characteristics of the natural product resulting in better
therapeutic effects.

Metallic, organic, inorganic and polymeric nanostruc-
tures, including dendrimers, micelles, and liposomes are
frequently considered in designing the target-specific
drug delivery systems. In particular, those drugs having
poor solubility with less absorption ability are tagged
with these nanoparticles [17, 29]. However, the efficacy
of these nanostructures as drug delivery vehicles varies
depending on the size, shape, and other inherent bio-
physical/chemical characteristics. For instance, poly-
meric nanomaterials with diameters ranging from 10
to 1000 nm, exhibit characteristics ideal for an efficient
delivery vehicle [7]. Because of their high biocompat-
ibility and biodegradability properties, various synthetic
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polymers such as polyvinyl alcohol, poly-L-lactic acid,
polyethylene glycol, and poly(lactic-co-glycolic acid),
and natural polymers, such as alginate and chitosan, are
extensively used in the nanofabrication of nanoparticles
[8, 30—32]. Polymeric nanoparticles can be categorized
into nanospheres and nanocapsules both of which are
excellent drug delivery systems. Likewise, compact lipid
nanostructures and phospholipids including liposomes
and micelles are very useful in targeted drug delivery.

The use of ideal nano-drug delivery system is decided
primarily based on the biophysical and biochemical prop-
erties of the targeted drugs being selected for the treat-
ment [8]. However, problems such as toxicity exhibited
by nanoparticles cannot be ignored when considering the
use of nanomedicine. More recently, nanoparticles have
mostly been used in combination with natural products
to lower the toxicity issues. The green chemistry route
of designing nanoparticles loaded with drugs is widely
encouraged as it minimises the hazardous constituents in
the biosynthetic process. Thus, using green nanoparticles
for drug delivery can lessen the side-effects of the medi-
cations [19]. Moreover, adjustments in nanostructures
size, shape, hydrophobicity, and surface changes can fur-
ther enhance the bioactivity of these nanomaterials.

Thus, nanotechnology offers multiple benefits in treat-
ing chronic human diseases by site-specific, and target-
oriented delivery of medicines. However, inadequate
knowledge about nanostructures toxicity is a major
worry and undoubtedly warrants further research to
improve the efficacy with higher safety to enable safer
practical implementation of these medicines. Therefore,
cautiously designing these nanoparticles could be help-
ful in tackling the problems associated with their use.
Considering the above facts, this review aims to report
different nano based drug delivery systems, significant
applications of natural compound-based nanomedicines,
and bioavailability, targeting sites, and controlled release
of nano-drugs, as well as other challenges associated with
nanomaterials in medicines.

Nano based drug delivery systems

Recently, there has been enormous developments in the
field of delivery systems to provide therapeutic agents or
natural based active compounds to its target location for
treatment of various aliments [33, 34]. There are a num-
ber of drug delivery systems successfully employed in the
recent times, however there are still certain challenges
that need to be addresses and an advanced technology
need to be developed for successful delivery of drugs to
its target sites. Hence the nano based drug delivery sys-
tems are currently been studied that will facilitate the
advanced system of drug delivery.
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Fundamentals of nanotechnology based techniques

in designing of drug

Nanomedicine is the branch of medicine that utilizes the
science of nanotechnology in the preclusion and cure of
various diseases using the nanoscale materials, such as
biocompatible nanoparticles [35] and nanorobots [36],
for various applications including, diagnosis [37], deliv-
ery [38], sensory [39], or actuation purposes in a living
organism [40]. Drugs with very low solubility possess
various biopharmaceutical delivery issues including lim-
ited bio accessibility after intake through mouth, less dif-
fusion capacity into the outer membrane, require more
quantity for intravenous intake and unwanted after-
effects preceding traditional formulated vaccination pro-
cess. However all these limitations could be overcome
by the application of nanotechnology approaches in the
drug delivery mechanism.

Drug designing at the nanoscale has been studied
extensively and is by far, the most advanced technology
in the area of nanoparticle applications because of its
potential advantages such as the possibility to modify
properties like solubility, drug release profiles, diffusiv-
ity, bioavailability and immunogenicity. This, can con-
sequently lead to the improvement and development of
convenient administration routes, lower toxicity, fewer
side effects, improved biodistribution and extended drug
life cycle [17]. The engineered drug delivery systems are
either targeted to a particular location or are intended
for the controlled release of therapeutic agents at a par-
ticular site. Their formation involves self-assembly where
in well-defined structures or patterns spontaneously are
formed from building blocks [41]. Additionally they need
to overcome barriers like opsonization/sequestration by
the mononuclear phagocyte system [42].

There are two ways through which nanostructures
deliver drugs: passive and self-delivery. In the former,
drugs are incorporated in the inner cavity of the struc-
ture mainly via the hydrophobic effect. When the nano-
structure materials are targeted to a particular sites,
the intended amount of the drug is released because of
the low content of the drugs which is encapsulated in a
hydrophobic environment [41]. Conversely, in the latter,
the drugs intended for release are directly conjugated to
the carrier nanostructure material for easy delivery. In
this approach, the timing of release is crucial as the drug
will not reach the target site and it dissociates from the
carrier very quickly, and conversely, its bioactivity and
efficacy will be decreased if it is released from its nano-
carrier system at the right time [41]. Targeting of drugs
is another significant aspect that uses nanomaterials
or nanoformulations as the drug delivery systems and,
is classified into active and passive. In active targeting,
moieties, such as antibodies and peptides are coupled
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with drug delivery system to anchor them to the receptor
structures expressed at the target site. In passive target-
ing, the prepared drug carrier complex circulates through
the bloodstream and is driven to the target site by affinity
or binding influenced by properties like pH, temperature,
molecular site and shape. The main targets in the body
are the receptors on cell membranes, lipid components
of the cell membrane and antigens or proteins on the cell
surfaces [43]. Currently, most nanotechnology-mediated
drug delivery system are targeted towards the cancer dis-
ease and its cure.

Biopolymeric nanoparticles in diagnosis, detection

and imaging

The integration of therapy and diagnosis is defined as
theranostic and is being extensively utilized for cancer
treatment [44, 45]. Theranostic nanoparticles can help
diagnose the disease, report the location, identify the
stage of the disease, and provide information about the
treatment response. In addition, such nanoparticles can
carry a therapeutic agent for the tumor, which can pro-
vide the necessary concentrations of the therapeutic
agent via molecular and/or external stimuli [44, 45]. Chi-
tosan is a biopolymer which possesses distinctive prop-
erties with biocompatibility and presence of functional
groups [45—47]. It is used in the encapsulation or coating
of various types of nanoparticles, thus producing differ-
ent particles with multiple functions for their potential
uses in the detection and diagnosis of different types of
diseases [45, 47].

Lee et al. [48] encapsulated oleic acid-coated FeO nan-
oparticles in oleic acid-conjugated chitosan (oleyl-chi-
tosan) to examine the accretion of these nanoparticles in
tumor cells through the penetrability and holding (EPR)
consequence under the in vivo state for analytical uses by
the near-infrared and magnetic resonance imaging (MRI)
mechanisms. By the in vivo evaluations, both techniques
showed noticeable signal strength and improvement in
the tumor tissues through a higher EPR consequence
after the injection of cyanine-5-attached oleyl-chitosan
nanoparticles intravenously (Cyanine 5).

Yang et al. [49] prepared highly effective nanoparti-
cles for revealing colorectal cancer (CC) cells via a light-
mediated mechanism; these cells are visible owing to the
physical conjugation of alginate with folic acid-modified
chitosan leading to the formation of nanoparticles with
enhanced 5-aminolevulinic (5-ALA) release in the cell
lysosome. The results displayed that the engineered nan-
oparticles were voluntarily endocytosed by the CC cells
by the folate receptor-based endocytosis process. Subse-
quently, the charged 5-ALA was dispersed into the lyso-
some which was triggered by less desirability strength
between the 5-ALA and chitosan through deprotonated
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alginate that gave rise to the gathering of protoporphy-
rin IX (PpIX) for photodynamic detection within the
cells. As per this research, chitosan-based nanoparticles
in combination with alginate and folic acid are tremen-
dous vectors for the definite delivery of 5-ALA to the CC
cells to enable endoscopic fluorescent detection. Cath-
epsin B (CB) is strongly associated with the metastatic
process and is available in surplus in the pericellular
areas where this process occurs; thus, CB is important
for the detection of metastasis. Ryu et al. [50] designed
a CB-sensitive nanoprobe (CB-CNP) comprising a self-
satisfied CB-CNP with a fluorogenic peptide attached to
the tumor-targeting glycol chitosan nanoparticles (CNPs)
on its surface. The designed nanoprobe is a sphere with
a diameter of 280 nm, with spherical structure and its
fluorescence capacity was completely extinguished under
the biological condition. The evaluation of the usability
of CB-sensitive nanoprobe in three rat metastatic models
demonstrated the potential of these nonoprobes in dis-
criminating metastatic cells from healthy ones through
non-invasive imaging. Hyaluronic acid (HA) is another
biopolymeric material. This is a biocompatible, nega-
tively charged glycosaminoglycan, and is one of the main
constituents of the extracellular matrix [51, 52]. HA can
bind to the CD44 receptor, which is mostly over articu-
lated in various cancerous cells, through the receptor-
linker interaction. Thus, HA-modified nanoparticles are
intriguing for their use in the detection and cure of can-
cer [53-55]. Wang et al. [56], coated the surface of iron
oxide nanoparticles (IONP) with dopamine-modified
HA. These nanoparticles have a hydrophilic exterior
and a hydrophobic interior where the chemotherapeutic
homocamptothecin is encapsulated [56]. The biopoten-
tial of this process was investigated in both laboratory
and in the live cells. Increased uptake of nanoparticles
by tumor cells was observed by MRI when an external
magnetic field was employed [56]. After the intravenous
administration of the nano-vehicle in 3 mg/kg (relative to
the free drug) rats, a large tumor ablation was observed
and after treatment, the tumors almost disappeared [56].

Choi et al. [53] also synthesized nanoparticles of hya-
luronic acid with different diameters by changing the
degree of hydrophobic replacement of HA. The nano-
particles were systemically administered in the mice
with tumor, and then, its effect was studied. This same
research group developed a versatile thermostatic sys-
tem using poly (ethylene glycol) conjugated hyaluronic
acid (P-HA-NPs) nanoparticles for the early detection of
colon cancer and targeted therapy. To assess the effec-
tiveness of the nanoparticles, they were first attached
to the near-infrared fluorescent dye (Cy 5.5) by chemi-
cal conjugation, and then, the irinotecan anticancer
drug (IRT) was encapsulated within these systems. The
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therapeutic potential of P-HA-NP was then investigated
in different systems of the mice colon cancer. Through
the intravenous injection of the fluorescent dye attached
nanoparticles (Cy 5.5-P-HA-NPs), minute and initial-
stage tumors as well as liver-embedded colon tumors
were efficiently pictured using an NIRF imaging method.
Due to their extraordinary capability to target tumors,
drug-containing nanoparticles (IRT-P-HA-NP) showed
markedly decreased tumor development with decreased
systemic harmfulness. In addition, healing effects could
be examined concurrently with Cy 5.5-P-HA-NPs [57].

Another option that can be used is alginate, which is
a natural polymer derived from the brown seaweed and
has been expansively scrutinized for its potential uses in
the biomedical field because of its several favorable char-
acteristics, such as low cost of manufacture, harmonious
nature, less harmfulness, and easy gelling in response to
the addition of divalent cations [58, 59]. Baghbani et al.
[60] prepared perfluorohexane (PFH) nanodroplets stabi-
lized with alginate to drive doxorubicin and then evalu-
ated their sensitivity to ultrasound and imaging as well
as their therapeutic properties. Further found that the
ultrasound-facilitated treatment with PFH nanodroplets
loaded with doxorubicin exhibited promising positive
responses in the breast cancer rat models. The efficacy
was characterized by the deterioration of the tumor [60].
In another study, Podgorna et al. [61] prepared gadolin-
ium (GANG) containing nanogels for hydrophilic drug
loading and to enable screening by MRI. The gadolinium
alginate nanogels had an average diameter of 110 nm
with stability duration of 60 days. Because of their para-
magnetic behavior, the gadolinium mixtures are normally
used as positive contrast agents (T1) in the MRI images.
Gadolinium nanogels significantly reduce the relaxa-
tion time (T1) compared to controls. Therefore, alginate
nanogels act as contrast-enhancing agents and can be
assumed as an appropriate material for pharmacological
application.

Also, the polymeric material dextran is a neutral poly-
mer and is assumed as the first notable example of micro-
bial exopolysaccharides used in medical applications.
A remarkable advantage of using dextran is that it is
well-tolerated, non-toxic, and biodegradable in humans,
with no reactions in the body [62]. Photodynamic ther-
apy is a site-specific cancer cure with less damage to
non-cancerous cells. Ding et al. [63] prepared a nano-
particulate multifunctional composite system by encap-
sulating Fe;O, nanoparticles in dextran nanoparticles
conjugated to redox-responsive chlorine 6 (C6) for near
infrared (NIR) and magnetic resonance (MR) imaging.
The nanoparticles exhibited an “off/on” behavior of the
redox cellular response of the fluorescence signal, thus
resulting in accurate imaging of the tumor. In addition,
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excellent in vitro and in vivo magnetic targeting ability
was observed, contributing to the efficacy of enhanced
photodynamic therapy. Hong et al. [64] prepared thera-
nostic nanoparticles or glioma cells of C6 mice. These
particles comprised of gadolinium oxide nanoparticles
coated with folic acid-conjugated dextran (FA) or pacli-
taxel (PTX). The bioprotective effects of dextran coating
and the chemotherapeutic effect of PTX on the C6 gli-
oma cells were evaluated by the MTT assay. The synthe-
sized nanoparticles have been shown to enter C6 tumor
cells by receptor-mediated endocytosis and provide
enhanced contrast (MR) concentration-dependent activ-
ity due to the paramagnetic property of the gadolinium
nanoparticle. Multifunctional nanoparticles were more
effective in reducing cell viability than uncoated gado-
linium nanoparticles. Therefore, FA and PTX conjugated
nanoparticles can be used as theranostic agents with par-
amagnetic and chemotherapeutic properties.

Drug designing and drug delivery process

and mechanism

With the progression of nanomedicine and, due to the
advancement of drug discovery/design and drug deliv-
ery systems, numerous therapeutic procedures have been
proposed and traditional clinical diagnostic methods
have been studied, to increase the drug specificity and
diagnostic accuracy. For instance, new routes of drug
administration are being explored, and there is focus on
ensuring their targeted action in specific regions, thus
reducing their toxicity and increasing their bioavailability
in the organism [65].

In this context, drug designing has been a promising
feature that characterizes the discovery of novel lead
drugs based on the knowledge of a biological target. The
advancements in computer sciences, and the progression
of experimental procedures for the categorization and
purification of proteins, peptides, and biological targets
are essential for the growth and development of this sec-
tor [66, 67]. In addition, several studies and reviews have
been found in this area; they focus on the rational design
of different molecules and show the importance of study-
ing different mechanisms of drug release [68]. Moreover,
natural products can provide feasible and interesting
solutions to address the drug design challenges, and can
serve as an inspiration for drug discovery with desired
physicochemical properties [3, 69, 70].

Also, the drug delivery systems have been gaining
importance in the last few years. Such systems can be
easily developed and are capable of promoting the modi-
fied release of the active ingredients in the body. For
example, Chen et al. [70] described an interesting review
using nanocarriers for imaging and sensory applications
and discussed the, therapy effect of these systems. In
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addition, Pelaz et al. [71] provided an up-to-date over-
view of several applications of nanocarriers to nanomedi-
cine and discussed new opportunities and challenges for
this sector.

Interestingly, each of these drug delivery systems has
its own chemical, physical and morphological character-
istics, and may have affinity for different drugs polarities
through chemical interactions (e.g., covalent bonds and
hydrogen bonds) or physical interactions (e.g., electro-
static and van der Waals interactions). As an example,
Mattos et al. [72] demonstrated that, the release profile
of neem bark extract-grafted biogenic silica nanoparti-
cles (chemical interactions) was lower than neem bark
extract-loaded biogenic silica nanoparticles. Hence, all
these factors influence the interaction of nanocarriers
with biological systems [73], as well as the release kinetics
of the active ingredient in the organism [68]. In addition,
Sethi et al. [74] designed a crosslinkable lipid shell (CLS)
containing docetaxel and wortmannin as the prototypi-
cal drugs used for controlling the drug discharge kinetics;
then, they studied, its discharge profile, which was found
to be affected in both in vivo and in vitro conditions.
Apart from this, other parameters, such as the compo-
sition of the nanocarriers (e.g., organic, inorganic, and
hybrid materials) and the form in which drugs are associ-
ated with them (such as core—shell system or matrix sys-
tem) are also fundamental for understanding their drug
delivery profile [75, 76]. Taken together, several studies
regarding release mechanisms of drugs in nanocarriers
have been conducted. Diffusion, solvent, chemical reac-
tion, and stimuli-controlled release are a few mechanisms
that can represent the release of drugs in nanocarriers
as shown in Fig. 2 [77, 78]. Kamaly et al. [79] provided
a widespread review of controlled-release systems with a
focus on studies related to controlling drug release from
polymeric nanocarriers.

Although there are several nanocarriers with different
drug release profiles, strategies are currently being for-
mulated to improve the specificity of the nanostructures
to target regions of the organism [80], and to reduce the
immunogenicity through their coating or chemical func-
tionalization with several substances, such as polymers
[81], natural polysaccharides [82, 83], antibodies [84],
cell-membrane [85], and tunable surfactants [86], pep-
tides [87], etc. In some cases where drugs do not display
binding and affinity with a specific target or do not cross
certain barriers (e.g. blood—brain barrier or the blood—
cerebrospinal fluid barrier) [88], these ligand-modified
nanocarriers have been used to pass through the cell
membrane and allow a programmed drug delivery in a
particular environment. For example, hyaluronic acid
(a polysaccharide found in the extracellular matrix) has
been used as a ligand-appended in several nanocarriers,
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Fig. 2 Mechanisms for controlled release of drugs using different types of nanocarriers

showing promising results to boost antitumor action
against the melanoma stem-like cells [89], breast cancer
cells [90], pulmonary adenocarcinoma cells [91], as well
as to facilitate intravitreal drug delivery for retinal gene
therapy [83] and to reduce the immunogenicity of the
formed protein corona [82]. However, the construction of
the ligand-appended drug delivery systems is labor-inten-
sive, and several targeting designs must be performed
previously, taking into account the physiological variables
of blood flow, disease status, and tissue architecture [92].
Moreover, few studies have been performed to evaluate
the interaction of the ligand-appended in nanocarriers
with cell membranes, and also their uptake mechanism
is still unclear. Furthermore, has been known that the
uptake of the nanoparticles by the cells occurs via phago-
cytic or non-phagocytic pathways (e.x. clathrin-mediated
endocytosis, caveolae-mediated endocytosis, and others)

[93, 94], meanwhile due some particular physicochemi-
cal characteristics of each delivery systems have been
difficult to standardize the mechanism of action/inter-
action of these systems in the cells. For example, Salatin
and Khosroushahi [95], in a review highlighted the main
endocytosis mechanisms responsible for the cellular
uptake of polysaccharide nanoparticles containing active
compounds.

On the other hand, stimuli-responsive nanocarriers
have shown the ability to control the release profile of
drugs (as a triggered release) using external factors such
as ultrasound [96], heat [97-99], magnetism [100, 101],
light [102], pH [103], and ionic strength [104], which
can improve the targeting and allow greater dosage con-
trol (Fig. 2). For example, superparamagnetic iron oxide
nanoparticles are associated with polymeric nanocarri-
ers [105] or lipids [106] to initially stimulate a controlled
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release system by the application of external magnetic
field. In addition, Ulbrich et al. [107] revised recent
achievements of drug delivery systems, in particular, on
the basis of polymeric and magnetic nanoparticles, and
also addressed the effect of covalently or noncovalently
attached drugs for cancer cure [107]. Moreover, Au/
Fe;O,@polymer nanoparticles have also been synthe-
sized for the use in NIR-triggered chemo-photothermal
therapy [108]. Therefore, hybrid nanocarriers are cur-
rently among the most promising tools for nanomedi-
cine as they present a mixture of properties of different
systems in a single system, thus ensuring materials with
enhanced performance for both therapeutic and diagnos-
tic applications (i.e., theranostic systems). Despite this,
little is known about the real mechanisms of action and
toxicity of drug delivery systems, which open opportu-
nity for new studies. In addition, studies focusing on the
synthesis of nanocarriers based on environmentally safe
chemical reactions by implementing plant extracts and
microorganisms have increased [10].

Nanoparticles used in drug delivery system

Biopolymeric nanoparticles

There are numerous biopolymeric materials that are uti-
lized in the drug delivery systems. These materials and
their properties are discussed below.

Chitosan Chitosan exhibits muco-adhesive properties
and can be used to act in the tight epithelial junctions.
Thus, chitosan-based nanomaterials are widely used for
continued drug release systems for various types of epi-
thelia, including buccal [109], intestinal [110], nasal [111],
eye [112] and pulmonary [113]. Silva et al. [114] prepared
and evaluated the efficacy of a 0.75% w/w isotonic solu-
tion of hydroxypropyl methylcellulose (HPMC) contain-
ing chitosan/sodium tripolyphosphate/hyaluronic acid
nanoparticles to deliver the antibiotic ceftazidime to the
eye. The rheological synergism parameter was calculated
by calculating the viscosity of the nanoparticles in contact
with mucin in different mass proportions. A minimum
viscosity was observed when chitosan nanoparticles were
placed in contact with mucin. However, the nanoparticles
presented mucoadhesion which resulted in good interac-
tion with the ocular mucosa and prolonged release of the
antibiotic, and therefore, the nanoparticles can enhance
the life span of the drug in the eyes. The nanoparticles did
not show cytotoxicity for two cell lines tested (ARPE-19
and HEK 239T). The nanoparticles were also able to pre-
serve the antibacterial activity, thus making them a prom-
ising formulations for the administration of ocular drugs
with improved mucoadhesive properties.

Pistone et al. [115] prepared nanoparticles of chi-
tosan, alginate and pectin as potential candidates for the
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administration of drugs into the oral cavity. The biocom-
patibility of the formulations was estimated based on the
solubility of the nanoparticles in a salivary environment
and its cytotoxicity potential was estimated in an oral
cell line. Alginate nanoparticles were the most unwaver-
ing in the artificial saliva for at least 2 h, whereas pec-
tin and especially chitosan nanoparticles were unstable.
However, the chitosan nanoparticles were the most cyto-
competitive, whereas alginate and pectin nanoparticles
showed cytotoxicity under all tested conditions (concen-
tration and time). The presence of Zn*" (cross-linking
agent) may be the cause of the observed cytotoxicity.
Each formulation presented advantage and limitations
for release into the oral cavity, thus necessitating their
further refinement.

In addition, Liu et al. [116] prepared nanoparticles of
carboxymethyl chitosan for the release of intra-nasal
carbamazepine (CBZ) to bypass the blood—brain barrier
membrane, thus increasing the amount of the medication
in the brain and refining the treatment efficacy, thereby
reducing the systemic drug exposure. The nanoparticles
had a mean diameter of 218.76 +2.41 nm, encapsulation
efficiency of 80% and drug loading of 35%. Concentra-
tions of CBZ remained higher (P <0.05) in the brain than
the plasma over 240 min.

In another example, Jain and Jain [117] investigated the
discharge profile of 5-fluorouracil (5-FU) from hyaluronic
acid-coated chitosan nanoparticles into the gut, via oral
administration. Release assays in conditions mimicking
the transit from the stomach to the colon indicated the
release profile of 5-FU which was protected against dis-
charge in the stomach and small intestine. Also, the high
local concentration of drugs would be able to increase the
exposure time and thus, enhance the capacity for anti-
tumor efficacy and decrease the systemic toxicity in the
treatment of colon cancer.

Alginate Another biopolymeric material that has been
used as a drug delivery is alginate. This biopolymer pre-
sents final carboxyl groups, being classified as anionic
mucoadhesive polymer and presents greater mucoadhe-
sive strength when compared with cationic and neutral
polymers [59, 118]. Patil and Devarajan [119] developed
insulin-containing alginate nanoparticles with nicotina-
mide as a permeation agent in order to lower the serum
glucose levels and raise serum insulin levels in diabetic
rats. Nanoparticles administered sublingually (5 IU/kg)
in the presence of nicotinamide showed high availability
pharmacology (>100%) and bioavailability (>80%). The
fact that NPs are promising carriers of insulin via the sub-
lingual route have been proved in case of the streptozo-
tocin-induced diabetic mouse model by achieving a phar-
macological high potential of 20.2% and bio-availability of
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24.1% compared to the subcutaneous injection at 1 IU/kg
[119].

Also, Haque et al. [120] prepared alginate nanoparticles
to release venlafaxine (VLF) via intranasal for treatment
of depression. The higher blood/brain ratios of the VLF
concentration to the alginate nanoparticles administered
intra-nasally when compared to the intranasal VLF and
VLF solution intravenously indicated the superiority of
the nano-formulation in directly transporting the VLF
to the brain. In this way, these nanoparticles are prom-
ising for the treatment of depression. In another exam-
ple, Romdn et al. [121] prepared alginate microcapsules
containing epidermal growth factor bound on its exte-
rior part to target the non-small cell lung cancer cells.
Cisplatin (carcinogen drug) was also loaded in the nan-
oparticles. The addition of EGF significantly increased
specificity of carrier systems and presented kinetics of
cell death (H460-lung cancer strain) faster than the free
drug.

In addition, Garrait et al. [122] prepared nanopar-
ticles of chitosan containing Amaranth red (AR) and
subsequently microencapsulated these nanoparticles in
alginate microparticles and studied the release kinetics of
this new system in simulated gastric and intestinal fluids.
The microparticles had a mean diameter of 285 um with
a homogeneous distribution; it was observed that there
was a release of less than 5% of the AR contained in the
systems in the gastric pH conditions, whereas the dis-
charge was fast and comprehensive in the intestinal pH
conditions. Thus, the carrier showed promise to protect
molecules for intestinal release after oral administration.

Costa et al. [123] prepared chitosan-coated alginate
nanoparticles to enhance the permeation of daptomycin
into the ocular epithelium aiming for an antibacterial
effect. In vitro permeability was assessed using ocular
epithelial cell culture models. The antimicrobial activ-
ity of nanoencapsulated daptomycin showed potential
over the pathogens engaged in bacterial endophthalmitis.
Also, the ocular permeability studies demonstrated that
with 4 h of treatment from 9 to 12% in total of daptomy-
cin encapsulated in chitosan/alginate nanoparticles, these
were able to cross the HCE and ARPE-19 cells. These
results indicated that with this system an increasing in
the drug retention in the ocular epithelium has occurred.

Xanthan gum Xanthan gum (XG) is a high molecular
weight heteropolysaccharide produced by Xanthomonas
campestris. It is a polyanionic polysaccharide and has
good bioadhesive properties. Because it is considered
non-toxic and non-irritating, xanthan gum is widely used
as a pharmaceutical excipient [124].

Laffleur and Michalek [125] have prepared a carrier
composed of xanthan gum thiolated with L-cysteine to
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release tannin in the buccal mucosa to treat sialorrhea.
Thiolation of xanthan gum resulted in increased adhe-
sion on the buccal mucosa when compared to native xan-
than gum. In addition, xanthan gum thiolate has a higher
uptake of saliva whereas tannic acid ad-string and dry the
oral mucosa. In this way, this system would be an efficient
way of reducing the salivary flow of patients with sialor-
rhea. Angiogenesis is an important feature in regenera-
tion of soft tissues.

Huang et al. [126] prepared injectable hydrogels com-
posed of aldehyde-modified xanthan and carboxyme-
thyl-modified chitosan containing potent angiogenic
factor (antivascular endothelial growth factor, VEGEF)
to improve abdominal wall reconstruction. The hydro-
gel presented release properties mainly in tissues like
digestive tract and open wounds. The hydrogel contain-
ing VEGF was able to accelerate the angiogenesis pro-
cess and rebuild the abdominal wall. Menzel et al. [127]
studied a new excipient aiming the use as nasal release
system. Xanthan gum was used as a major polymer in
which the-((2-amino-2-carboxyethyl) disulfanyl) nico-
tinic acid (Cys-MNA) was coupled. Characteristics,
such as amount of the associated binder, mucoadhe-
sive properties and stability against degradation, were
analyzed in the resulting conjugate. Each gram of poly-
mer was ligated with 252.52 420.54 pumol of the binder.
The muco-adhesion of the grafted polymer was 1.7 fold
greater than that of thiolated xanthan and 2.5 fold greater
than, that of native xanthan. In addition, the frequency of
ciliary beating of nasal epithelial cells was poorly affected
and was reversible only upon the removal of the polymer
from the mucosa.

Cellulose Cellulose and its derivatives are extensively
utilized in the drug delivery systems basically for modi-
fication of the solubility and gelation of the drugs that
resulted in the control of the release profile of the same
[128]. Elseoud et al. [129] investigated the utilization of
cellulose nanocrystals and chitosan nanoparticles for
the oral releasing of repaglinide (an anti-hyperglyce-
mic—RPG). The chitosan nanoparticles showed a mean
size distribution of 197 nm while the hybrid nanoparti-
cles of chitosan and cellulose nanocrystals containing
RPG. Chitosan hybrid nanoparticles and oxidized cellu-
lose nanocrystals containing RPG had a mean diameter
of 251-310 nm. The presence of the hydrogen bonds
between the cellulose nanocrystals and the drug, resulted
in sustained release of the same, and subsequently the
nanoparticles made with oxidized cellulose nanocrystals
presented lower release when compared to the nanoparti-
cles produced with native cellulose nanocrystals.
Agarwal et al. [130] have developed a drug target-
ing mechanism which is based on the conjugation of
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calcium alginate beads with carboxymethylcellulose
(CMC) loaded 5-fluoroacyl (5-FU) and is targeted to the
colon. The beads with lower CMC proportions presented
greater swelling and muco-adhesiveness in the simu-
lated colonic environment. With existence of colonic
enzymes there was a 90% release of 5-FU encapsulated
in the beads. Hansen et al. [131] investigated four cellu-
lose derivatives, including, meteylcellulose, hydroxypro-
pyl methylcellulose, sodium carboxymethylcellulose and
cationic hydroxyethyl cellulose for application in drug
release into the nasal mucosa. The association of these
cellulose derivatives with an additional excipient, was
also evaluated. The drug model employed in this process
was acyclovir. The viability of the polymers as excipients
for nasal release applications was also scrutinized for its
ciliary beat frequency (CBF) and its infusion through the
tissue system of the nostril cavity. An increase in ther-
mally induced viscosity was observed when the cellulose
derivatives were mixed with polymer graft copolymer.
Further an increased permeation of acyclovir into the
nasal mucosa was detected when it was combined with
cationic hydroxyethylcellulose. None of the cellulose
derivatives caused negative effects on tissues and cells of
the nasal mucosa, as assessed by CBE.

Liposomes They were discovered by Alec Bangham
in 1960. Liposomes are used in the pharmaceutical and
cosmetics industry for the transportation of diverse mol-
ecules and are among the most studied carrier system for
drug delivery. Liposomes are an engrained formulation
strategy to improve the drug delivery. They are vesicles
of spherical form composed of phospholipids and ster-
oids usually in the 50-450 nm size range [132]. These are
considered as a better drug delivery vehicles since their
membrane structure is analogous to the cell membranes
and because they facilitate incorporation of drugs in them
[132]. It has also been proved that they make therapeu-
tic compounds stable, improve their biodistribution, can
be used with hydrophilic and hydrophobic drugs and are
also biocompatible and biodegradable. Liposomes are
divided into four types: (1) conventional type liposomes:
these consists of a lipid bilayer which can make either ani-
onic, cationic, or neutral cholesterol and phospholipids,
which surrounds an aqueous core material. In this case,
both the lipid bilayer and the aqueous space can be filled
with hydrophobic or hydrophilic materials, respectively.
(2) PEGylated types: polyethylene glycol (PEG) is incor-
porated to the surface of liposome to achieve steric equi-
librium, (3) ligand-targeted type: ligands like antibodies,
carbohydrates and peptides, are linked to the surface of
the liposome or to the end of previously attached PEG
chains and (4) theranostic liposome type: it is an amalga-
mation kind of the previous three types of liposomes and
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generally consists of a nanoparticle along with a targeting,
imaging and a therapeutic element [133].

The typical synthesis procedure for liposomes are as
follows, thin layer hydration, mechanical agitation, sol-
vent evaporation, solvent injection and the surfactant sol-
ubilization [134]. One aspect to point out on liposomes is
that the drugs that are trapped within them are not bio-
available until they are released. Therefore, their accu-
mulation in particular sites is very important to increase
drug bioavailability within the therapeutic window at
the right rates and times. Drug loading in liposomes is
attained by active (drug encapsulated after liposome for-
mation) and passive (drug encapsulated during liposome
formation) approaches [135]. Hydrophilic drugs such
as ampicillin and, 5-fluoro-deoxyuridine are typically
confined in the aqueous core of the liposome and thus,
their encapsulation does not depend on any modification
in the drug/lipid ratio. However, the hydrophobic ones
such as Amphotericin B, Indomethacin were found in the
acyl hydrocarbon chain of the liposome and thus their
engulfing are subjected to the characteristics of the acyl
chain [136]. Among the passive loading approaches the
mechanical and the solvent dispersion method as well as
the detergent removal method can be mentioned [135].

There are obstacles with the use of liposomes for drug
delivery purposes in the form of the RES (reticuloen-
dothelial system), opsonization and immunogenicity
although there are factors like enhanced permeability
and EPR (retention effect) that can be utilized in order
to boost the drug delivery efficiency of the liposomes
[133, 135]. Once liposomes get into the body, they run
into opsonins and high density lipoproteins (HDLs) and
low density lipoproteins (LDLs) while circulating in the
bloodstream by themselves. Opsonins (immunoglobu-
lins and fibronectin, for example) assist RES on recog-
nizing and eliminating liposomes. HDLs and LDLs have
interactions with liposomes and decrease their stability.
Liposomes tends to gather more in the sites like the liver
and the spleen, this is an advantage because then a high
concentration of liposomes can help treat pathogenic dis-
eases, although in the case of cancers this can lead to a
delay in the removal of lipophilic anticancer drugs. This
is the reason why as mentioned at the beginning, differ-
ent types of liposomes have been developed, in this case
PEGylated ones. Dimov et al. [137] reported an incessant
procedure of flow system for the synthesis, functionali-
zation and cleansing of liposomes. This research consists
of vesicles under 300 nm in a lab-on-chip that are use-
ful and potential candidates for cost-intensive drugs or
protein encapsulation development [137]. This is very
important because costs of production also determine
whether or not a specific drug can be commercialized.
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Liposome-based systems have now been permitted by
the FDA [133, 135, 138-140].

Polymeric micelles Polymeric micelles are nanostruc-
tures made of amphiphilic block copolymers that gather
by itself to form a core shell structure in the aqueous solu-
tion. The hydrophobic core can be loaded with hydropho-
bic drugs (e.g. camptothecin, docetaxel, paclitaxel), at the
same time the hydrophilic shell makes the whole system
soluble in water and stabilizes the core. Polymeric micelles
are under 100 nm in size and normally have a narrow dis-
tribution to avoid fast renal excretion, thus permitting
their accumulation in tumor tissues through the EPR
effect. In addition, their polymeric shell restrains non-
specific interactions with biological components. These
nanostructures have a strong prospective for hydropho-
bic drug delivery since their interior core structure per-
mits the assimilation of these kind of drugs resulting in
enhancement of stability and bioavailability [141, 142].
Polymeric micelles are synthesized by two approaches:
(1) convenient solvent-based direct dissolution of poly-
mer followed by dialysis process or (2) precipitation
of one block by adding a solvent [142, 143]. The factors
like, hydrophobic chain size in the amphiphilic molecule,
amphiphiles concentration, solvent system and tem-
perature, affects the micelle formation [144]. The micelle
assembly creation starts when minimum concentration
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known as the critical micelle concentration (CMC) is
reached by the amphiphilic molecules [143]. At lower
concentrations, the amphiphilic molecules are indeed
small and occur independently [143]. Drugs are loaded
within polymeric micelles by three common methodolo-
gies such as direct dissolution process, solvent evapora-
tion process, and the dialysis process. As of the direct
dissolution process, the copolymer and the drugs com-
bine with each other by themselves in the water medium
and forms a drug loaded with the micelles. While in
the solvent evaporation process, the copolymer and the
intended drug is dissolved using a volatile organic solvent
and finally, in case of the dialysis process, both the drug
in solution and the copolymer in the organic solvent are
combined in the dialysis bag and then dialyzed with the
formation of the micelle [145].

The targeting of the drugs using different polymeric
micelles as established by various mechanism of action
including the boosted penetrability and the holding
effect stimuli; complexing of a definite aiming ligand
molecule to the surface of the micelle; or by combina-
tion of the monoclonal antibodies to the micelle corona
[146]. Polymeric micelles are reported to be applicable
for both drug delivery against cancer [143] and also for
ocular drug delivery [147] as shown in Fig. 3 in which a
polymeric micelle is used for reaching the posterior ocu-
lar tissues [147]. In the work by Li et al. [148], dasatinib
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Fig. 3 Polymeric micelles used for reaching the posterior ocular tissues via the transcleral pathway after topical application (the figure is
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was encapsulated within nanoparticles prepared from
micellation of PEG-b-PC, to treat proliferative vitreo-
retinopathy (PVR), their size was 55 nm with a narrow
distribution and they turned out to be noncytotoxic to
ARPE-19 cells. This micellar formulation ominously
repressed the cell proliferation, attachment and reloca-
tion in comparison to the free drugs [148]. The polymeric
micelles is habitually get into the rear eye tissues through
the transcleral pathway after relevant applications (Fig. 3;
[147]).

Dendrimers Dendrimers are highly bifurcated, mono-
disperse, well-defined and three-dimensional structures.
They are globular-shaped and their surface is function-
alized easily in a controlled way, which makes these
structures excellent candidates as drug delivery agents
[149-151]. Dendrimers can be synthesized by means of
two approaches: The first one is the different route in
which the dendrimer starts formation from its core and
then it is extended outwards and the second is the conver-
gent one, starts from the outside of the dendrimer [152].
Dendrimers are grouped into several kinds according to
their functionalization moieties: PAMAM, PPI, liquid
crystalline, core—shell, chiral, peptide, glycodendrimers
and PAMAMOS, being PAMAM, the most studied for
oral drug delivery because it is water soluble and it can
pass through the epithelial tissue boosting their transfer
via the paracellular pathway [153]. Dendrimers are lim-
ited in their clinical applications because of the presence
of amine groups. These groups are positively charged or
cationic which makes them toxic, hence dendrimers are
usually modified in order to reduce this toxicity issue or to
eliminate it. Drug loading in dendrimers is performed via
the following mechanisms: Simple encapsulation, electro-
static interaction and covalent conjugation [154].

Drug is basically delivered by the dendrimers follow-
ing two different paths, a) by the in vivo degradation of
drug dendrimer’s covalent bonding on the basis of avail-
ability of suitable enzymes or favorable environment that
could cleave the bonds and b) by discharge of the drug
due to changes in the physical environment like pH, tem-
perature etc., [154]. Dendrimers have been developed
for transdermal, oral, ocular, pulmonary and in targeted
drug delivery [155].

Jain et al. [156] have described the folate attached
poly-L-lysine dendrimers (doxorubicin hydrochloride)
as a capable cancer prevention drug carrier model for
pH dependent drug discharge, target specificity, antian-
giogenic and anticancer prospective, it was shown that
doxorubicin-folate conjugated poly-L-lysine dendrimers
increased the concentration of doxorubicin in the tumor
by 121.5-fold after 24 h compared with free doxorubicin.
Similarly, (Kaur et al. [157] developed folate-conjugated
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polypropylene imine dendrimers (FA-PPI) as a metho-
trexate (MTX) nanocarrier, for pH-sensitive drug release,
selective targeting to cancer cells, and anticancer treat-
ment. The in vitro studies on them showed sustained
release, increased cell uptake and low cytotoxicity on
MCE-7 cell lines [157]. Further, it has to be pointed out
that the developed formulations, methotrexate (MTX)-
loaded and folic acid-conjugated 5.0G PPI (MTX-FA-
PPI), were selectively taken up by the tumor cells in
comparison with the free drug, methotrexate (MTX).

Inorganic nanoparticles Inorganic nanoparticles
include silver, gold, iron oxide and silica nanoparticles
are included. Studies focused on them are not as many
as there are on other nanoparticle types discussed in
this section although they show some potential applica-
tions. However, only few of the nanoparticles have been
accepted for its clinical use, whereas the majority of them
are still in the clinical trial stage. Metal nanoparticles, sil-
ver and gold, have particular properties like SPR (surface
plasmon resonance), that liposomes, dendrimers, micelles
do not possess. They showed several advantages such as
good biocompatibility and versatility when it comes to
surface functionalization.

Studies on their drug delivery-related activity have not
been able to clear out whether the particulate or ionized
form is actually related to their toxicity, and even though
two mechanisms have been proposed, namely paracel-
lular transport and transcytosis, there is not enough
information about their in vivo transport and uptake
mechanism [158]. Drugs can be conjugated to gold nan-
oparticles (AuNPs) surfaces via ionic or covalent bond-
ing and physical absorption and they can deliver them
and control their release through biological stimuli or
light activation [159]. Silver nanoparticles exhibited
antimicrobial activity, but as for drug delivery, very few
studies have been carried out, for example, Prusty and
Swain [160] synthesized an inter-linked and spongy poly-
acrylamide/dextran nano-hydrogels hybrid system with
covalently attached silver nanoparticles for the release of
ornidazole which turned out to have an in vitro release
of 98.5% [160]. Similarly in another study, the iron oxide
nanoparticles were synthesized using laser pyrolysis
method and were covered with Violamycine B1, and
antracyclinic antibiotics and tested against the MCEF-7
cells for its cytotoxicity and the anti-proliferation prop-
erties along with its comparison with the commercially
available iron oxide nanoparticles [161].

Nanocrystals Nanocrystals are pure solid drug particles
within 1000 nm range. These are 100% drug without any
carriers molecule attached to it and are usually stabilized
by using a polymeric steric stabilizers or surfactants. A
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nanocrystals suspension in a marginal liquid medium
is normally alleviated by addition of a surfactant agent
known as nano-suspension. In this case, the dispersing
medium are mostly water or any aqueous or non-aqueous
media including liquid polyethylene glycol and oils [162,
163]. Nanocrystals possesses specific characters that per-
mit them to overcome difficulties like increase saturation
solubility, increased dissolution velocity and increased
glueyness to surface/cell membranes. The process by
which nanocrystals are synthesized are divided into top-
down and bottom-up approaches. The top-down approach
includes, sono-crystallization, precipitation, high gravity
controlled precipitation technology, multi-inlet vortex
mixing techniques and limited impinging liquid jet precip-
itation technique [162]. However, use of an organic solvent
and its removal at the end makes this process quite expen-
sive. The bottom-up approach involves, grinding proce-
dures along with homogenization at higher pressure [162].
Among all of the methods, milling, high pressure homog-
enization, and precipitation are the most used methods
for the production of nanocrystals. The mechanisms by
which nanocrystals support the absorption of a drug to the
system includes, enhancement of solubility, suspension
rate and capacity to hold intestinal wall firmly [162]. Ni
et al. [164] embedded cinaciguat nanocrystals in chitosan
microparticles for pulmonary drug delivery of the hydro-
phobic drug. The nanoparticles were contrived for contin-
uous release of the drug taking advantage of the swelling
and muco-adhesive potential of the polymer. They found
that inhalation efficacy might be conceded under the dis-
ease conditions, so more studies are needed to prove that
this system has more potential [164].

Metallic nanoparticles In recent years, the interest of
using metallic nanoparticles has been growing in different
medical applications, such as bioimaging, biosensors, tar-
get/sustained drug delivery, hyperthermia and photoabla-
tion therapy [35, 165]. In addition, the modification and
functionalization of these nanoparticles with specific func-
tional groups allow them to bind to antibodies, drugs and
other ligands, become these making these systems more
promising in biomedical applications [166]. Although the
most extensively studied, metallic nanoparticles are gold,
silver, iron and copper, a crescent interest has been exploited
regarding other kinds of metallic nanoparticles, such as,
zinc oxide, titanium oxide, platinum, selenium, gadolinium,
palladium, cerium dioxide among others [35, 165, 166].

Quantum dots Quantum dots (QDs) are known as sem-
iconductor nanocrystals with diameter range from 2 to
10 nm and their optical properties, such as absorbance and
photoluminescence are size-dependent [167]. The QDs
has gained great attention in the field of nanomedicine,
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since, unlike conventional organic dyes, the QDs presents
emission in the near-infrared region (<650 nm), a very
desirable characteristic in the field of biomedical images,
due to the low absorption by the tissues and reduction
in the light scattering [167, 168]. In addition, QDs with
different sizes and/or compositions can be excited by the
same light source resulting in separate emission colors
over a wide spectral range [169, 170]. In this sense, QDs
are very appealing for multiplex imaging. In the medicine
field QDs has been extensively studied as targeted drug
delivery, sensors and bioimaging. A large number of stud-
ies regarding the applications of QDs as contrast agents
for in vivo imaging is currently available in literature
[168, 171-173]. Han et al. [172] developed a novel fluo-
rophore for intravital cytometric imaging based on QDs-
antibodies conjugates coated with norbornene-displaying
polyimidazole ligands. This fluorophore was used to label
bone marrow cells in vivo. The authors found that the
fluorophore was able to diffuse in the entire bone marrow
and label rare populations of cells, such as hematopoietic
stem and progenitor cells [172]. Shi et al. [171] developed
a multifunctional biocompatible graphene oxide quantum
dot covered with luminescent magnetic nanoplatform for
recognize/diagnostic of a specific liver cancer tumor cells
(glypican-3-expressing Hep G2). According to the authors
the attachment of an anti-GPC3-antibody to the nano-
plataform results in selective separation of Hep G2 hepa-
tocellular carcinoma cells from infected blood samples
[171]. QDs could also bring benefits in the sustained and/
or controlled release of therapeutic molecules. Regard-
ing the controlled release, this behavior can be achieved
via external stimulation by light, heat, radio frequency or
magnetic fields [170, 174, 175]. Olerile et al. [176] have
developed a theranostic system based on co-loaded of
QDs and anti-cancer drug in nanostructured lipid carri-
ers as a parenteral multifunctional system. The nanoparti-
cles were spherical with higher encapsulation efficiency of
paclitaxel (80.7 +2.11%) and tumor growth inhibition rate
of 77.85%. The authors also found that the system was able
to specifically target and detect H22 tumor cells [176]. Cai
et al. [177] have synthesized pH responsive quantum dots
based on ZnO quantum dots decorated with PEG and
hyaluronic acid for become stable in physiological con-
ditions and for targeting specific cells with HA-receptor
CD44, respectively. This nanocarrier was also evaluated
for doxorubicin (DOX) sustained release. The nanocarrier
was stable in physiological pH and DOX was loaded in
the carrier by forming complex with Zn*" ions or conju-
gated to PEG. The DOX was released only in acidic intra-
cellular conditions of tumor cells due to the disruption of
ZnO QDs. The authors found that the anticancer activity
was enhanced by the combination of DOX and ZnO QDs
[177].
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Protein and polysaccharides nanoparticles Polysaccha-
rides and proteins are collectively called as natural biopol-
ymers and are extracted from biological sources such
as plants, animals, microorganisms and marine sources
[178, 179]. Protein-based nanoparticles are generally
decomposable, metabolizable, and are easy to functional-
ize for its attachment to specific drugs and other targeting
ligands. They are normally produced by using two differ-
ent systems, (a) from water-soluble proteins like bovine
and human serum albumin and (b) from insoluble ones
like zein and gliadin [180]. The usual methods to synthe-
size them are coacervation/desolvation, emulsion/solvent
extraction, complex coacervation and electrospraying.
The protein based nanoparticles are chemically altered
in order to combine targeting ligands that identify exact
cells and tissues to promote and augment their targeting
mechanism [180]. Similarly, the polysaccharides are com-
posed of sugar units (monosaccharides) linked through
O-glycosidic bonds. The composition of these monomers
as well as their biological source are able to confer to these
polysaccharides, a series of specific physical-chemical
properties [126, 179, 181]. One of the main drawback of
the use of polysaccharides in the nanomedicine field is its
degradation (oxidation) characteristics at high tempera-
tures (above their melting point) which are often required
in industrial processes. Besides, most of the polysaccha-
rides are soluble in water, which limits their application
in some fields of nanomedicine, such as tissue engineer-
ing [182, 183]. However, techniques such as crosslinking
of the polymer chains have been employed in order to
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guarantee stability of the polysaccharide chains, guaran-
teeing them stability in aqueous environments [182, 183].
In Fig. 4, examples of some polysaccharides used in nano-
medicine obtained from different sources are summa-
rized. The success of these biopolymers in nanomedicine
and drug delivery is due to their versatility and specified
properties such as since they can originate from soft gels,
flexible fibers and hard shapes, so they can be porous or
non-porous; they have great similarity with components
of the extracellular matrix, which may be able to avoid
immunological reactions [179, 184].

There is not much literature related to these kind of
nanoparticles, however, since they are generated from
biocompatible compounds they are excellent can-
didates for their further development as drug deliv-
ery systems. Yu et al. [185] synthesized Bovine serum
albumin and tested its attachment and/or infiltration
property through the opening of the cochlea and mid-
dle ear of guinea pigs. The nanoparticles considered
as the drug transporters were tested for their loading
capacity and release behaviors that could provide better
bio-suitability, drug loading capacity, and well-ordered
discharge mechanism [185].

Natural product-based nanotechnology and drug
delivery

As per the World Health Organization (WHO) report, in
developing countries, the basic health needs of approxi-
mately 80% of the population are met and/or comple-
mented by traditional medicine [186]. Currently, the
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scientific community is focusing on the studies related to
the bioactive compounds, its chemical composition and
pharmacological potential of various plant species, to
produce innovative active ingredients that present rela-
tively minor side effects than existing molecules [5, 187].
Plants are documented as a huge sources of natural com-
pounds of medicinal importance since long time and still
it holds ample of resources for the discovery of new and
highly effective drugs. However, the discovery of active
compounds through natural sources is associated with
several issues because they originate from living beings
whose metabolite composition changes in the presence
of stress. In this sense, the pharmaceutical industries
have chosen to combine their efforts in the development
of synthetic compounds [187-189]. Nevertheless, the
number of synthetic molecules that are actually marketed
are going on decreasing day by day and thus research on
the natural product based active compounds are again
coming to the limelight in spite of its hurdles [189, 190].
Most of the natural compounds of economic importance
with medicinal potential that are already being marketed
have been discovered in higher plants [187, 191]. Sev-
eral drugs that also possess natural therapeutic agents
in their composition are already available commercially;
their applications and names are as follows: malaria treat-
ment (Artemotil® derived from Artemisia annua L., a
traditional Chinese medicine plant), Alzheimer’s disease
treatment (Reminyl®, an acetylcholinesterase inhibi-
tor isolated from the Galanthus woronowii Losinsk),
cancer treatment (Paclitaxel® and its analogues derived
from the Taxus brevifolia plant; vinblastine and vincris-
tine extracted from Catharanthus roseus; camptothecin
and its analogs derived from Camptotheca acuminata
Decne), liver disease treatment (silymarin from Silybum
marianum) [187].

The composition and activity of many natural com-
pounds have already been studied and established. The
alkaloids, flavonoids, tannins, terpenes, saponins, ster-
oids, phenolic compounds, among others, are the bio-
active molecules found in plants. However in most of
the cases, these compounds have low absorption capac-
ity due to the absence of the ability to cross the lipid
membranes because of its high molecular sizes, and
thus resulting in reduced bioavailability and efficacy
[192]. These molecules also exhibit high systemic clear-
ance, necessitating repeated applications and/or high
doses, making the drug less effective for therapeutic
use [189]. The scientific development of nanotechnol-
ogy can revolutionize the development of formulations
based on natural products, bringing tools capable of
solving the problems mentioned above that limits the
application of these compounds in large scale in the
nanomedicine [7, 189]. Utilization of nanotechnology
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techniques in the medical field has been extensively
studied in the last few years [193, 194]. Hence these
can overcome these barriers and allow different com-
pounds and mixtures to be used in the preparation of
the same formulation. In addition, they can change the
properties and behavior of a compound within the bio-
logical system [7, 189]. Besides, bringing benefits to
the compound relative to the solubility and stability of
the compounds, release systems direct the compound
to the specific site, increase bioavailability and extend
compound action, and combine molecules with varying
degrees of hydrophilicity/lipophilicity [7]. Also, there
is evidence that the association of release systems with
natural compounds may help to delay the development
of drug resistance and therefore plays an important role
in order to find new possibilities for the treatment of
several diseases that have low response to treatment
conventional approaches to modern medicine [7, 189].

The natural product based materials are of two cat-
egories, (1) which are targeted to specific location and
released in the specific sites to treat a number of dis-
eases [43, 195] and (2) which are mostly utilized in
the synthesis process [196]. Most of the research is
intended for treatment against the cancer disease, since
it is the foremost reason of death worldwide nowa-
days [197, 198]. In case of the cancer disease, differ-
ent organs of the body are affected, and therefore the
need for the development of an alternative medicine to
target the cancerous cells is the utmost priority among
the modern researchers, however, a number of applica-
tions of nanomedicine to other ailments is also being
worked on [199, 200]. These delivery systems are cat-
egorized in terms of their surface charge, particle size,
size dispersion, shape, stability, encapsulation potential
and biological action which are further utilized as per
their requirements [33]. Some examples of biological
compounds obtained from higher plants and their uses
in the nanomedicine field are described in Fig. 5. Phar-
maceutical industries have continuously sought the
development and application of new technologies for
the advancement and design of modern drugs, as well
as the enhancement of existing ones [71, 201]. In this
sense, the accelerated development of nanotechnology
has driven the design of new formulations through dif-
ferent approaches, such as, driving the drug to the site
of action (nanopharmaceutics); image and diagnosis
(nanodiagnostic), medical implants (nanobiomaterials)
and the combination diagnosis and treatment of dis-
eases (nanotheranostics) [71, 202, 203].

Currently, many of the nanomedicines under devel-
opment, are modified release systems for active ingre-
dients (AI) that are already employed in the treatment
of patients [203, 204]. For this type of approach, it is
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evaluated whether the sustained release of these Als
modifies the pharmacokinetic profile and biodistribution.
In this context, it can be ascertained that the nano-for-
mulation offers advantages over the existing formulation
if the AI is directed towards the target tissue shows
increased uptake/absorption by the cells and lower tox-
icity profile for the organism [205, 206]. This section is
focused on berberine, curcumin, ellagic acid, resveratrol,
curcumin and quercetin [8]. Some other compounds
mentioned are doxorubicin, paclitaxel and vancomycin
that also come from natural products.

Nanoparticles have been synthesized using natural
products. For example, metallic, metal oxide and sulfides
nanoparticles have been reported to be synthesized using
varjious microorganisms including bacteria, fungi, algae,
yeast and so on [207] or plant extracts [208]. For the first
approach, the microorganism that aids the synthesis pro-
cedure is prepared in the adequate growth medium and
then mixed with a metal precursor in solution and left
for incubation to form the nanoparticles either intracel-
lularly or extracellularly [209-211]. As for the second
approach, the plant extract is prepared and mixed after-
wards with the metal precursor in solution and incubated
further at room temperature or boiling temperature for a
definite time or exposed to light as an external stimulus
to initiate the synthesis of nanoparticles [212].

Presently, these natural product based materials are
considered as the key ingredients in the preparation and

processing of new nano-formulations because they have
interesting characteristics, such as being biodegrad-
able, biocompatible, availability, being renewable and
presenting low toxicity [178, 179, 213]. In addition to
the aforementioned properties, biomaterials are, for the
most part, capable of undergoing chemical modifications,
guaranteeing them unique and desirable properties for
is potential uses in the field of nanomedicine [45, 214].
Gold, silver, cadmium sulfide and titanium dioxide of
different morphological characteristics have been syn-
thesized using a number of bacteria namely Escherichia
coli, Pseudomonas aeruginosa, Bacillus subtilis and Kleb-
siella pneumoniae [211]. These nanoparticles, especially
the silver nanoparticles have been abundantly studied
in vitro for their antibacterial, antifungal, and cytotoxic-
ity potential due to their higher potential among all metal
nanoparticles [215, 216]. In the event of microorganism
mediated nanoparticle synthesis, maximum research is
focused on the way that microorganisms reduce metal
precursors and generate the nanoparticles. For instance,
Rahimi et al. [217] synthesized silver nanoparticles using
Candida albicans and studied their antibacterial activity
against two pathogenic bacteria namely Staphylococcus
aureus and E. coli. Similarly, Ali et al. [218] synthesized
silver nanoparticles with the Artemisia absinthium aque-
ous extract and their antimicrobial activity was assessed
versus Phytophthora parasitica and Phytophthora cap-
sici [218]. Further, Malapermal et al. [219] used Ocimum
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basilicum and Ocimum sanctum extracts to synthesize
nanoparticles and studied its antimicrobial potential
against E. coli, Salmonella spp., S. aureus, and P. aer-
uginosa along with the antidiabetic potential. Likewise,
Sankar et al. [220] also tested the effect of silver nano-
particles for both antibacterial and anticancer potential
against human lung cancer cell line. Besides the use of
microorganism, our group has synthesized silver, gold
and iron oxide nanoparticles using various food waste
materials such as extracts of Zea mays leaves [221, 222],
onion peel extract [223], silky hairs of Zea mays [224],
outer peel of fruit of Cucumis melo and Prunus persica
[225], outer peel of Prunus persica [226] and the rind
extract of watermelon [227], etc. and have tested their
potential antibacterial effects against various foodborne
pathogenic bacteria, anticandidal activity against a num-
ber of pathogenic Candida spp., for their potential anti-
oxidant activity and proteasome inhibitory effects.

For drug delivery purposes, the most commonly stud-
ied nanocarriers are crystal nanoparticles, liposomes,
micelles, polymeric nanoparticles, solid lipid nano-
particles, superparamagnetic iron oxide nanoparticles
and dendrimers [228-230]. All of these nanocarriers
are formulated for natural product based drug delivery.
For applications in cancer treatment, Gupta et al. [231]
synthesized chitosan based nanoparticles loaded with
Paclitaxel (Taxol) derived from Taxus brevifolia, and
utilized them for treatment of different kinds of cancer.
The authors concluded that the nanoparticle loaded drug
exhibited better activity with sustained release, high cell
uptake and reduced hemolytic toxicity compared with
pure Paclitaxel [231]. Berberine is an alkaloid from the
barberry plant. Chang et al. [232] created a heparin/ber-
berine conjugate to increase the suppressive Helicobacter
pylori growth and at the same time to reduce cytotoxic
effects in infected cells [232] which is depicted in Fig. 6.

Aldawsari and Hosny [233] synthesized ellagic acid-
SLNs to encapsulate Vancomycin (a glycopeptide
antibiotic produced in the cultures of Amycolatopsis
orientalis). Further, its in vivo tests were performed on
rabbits and the results indicated that the ellagic acid pre-
vented the formation of free oxygen radicals and their
clearance radicals, thus preventing damages and promot-
ing repair [233]. Quercetin is a polyphenol that belongs
to the flavonoid group, it can be found in citrus fruits and
vegetables and it has antioxidant properties. In a study by
Dian et al. [234], polymeric micelles was used to deliver
quercetin and the results showed that such micelles could
provide continuous release for up to 10 days in vitro, with
continuous plasma level and boosted complete accessibil-
ity of the drug under in vivo condition [234].

Daunorubicin is a natural product derived from a
number of different wild type strains of Streptomyces,
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doxorubicin (DOX) is a hydrolated version of it used in
chemotherapy [213]. Spillmann et al. [235] developed a
multifunctional liquid crystal nanoparticle system for
intracellular fluorescent imaging and for the delivery of
doxorubicin in which the nanoparticles were function-
alized with transferrin. Cellular uptake and sustained
released were attained within endocytic vesicles in HEK
293T/17 cells. Perylene was used as a chromophore to
track the particles and to encapsulate agents aimed for
intracellular delivery [235]. Purama et al. [236] extracted
dextran from two sucrose based lactic acid bacteria
namely Streptococcus mutans and Leuconostoc mesen-
teroides. Agarwal et al. [237] formulated a dextran-based
dendrimer formulation and evaluated its drug discharge
capacity and haemolytic activity under in vitro condi-
tion. They concluded that the dendritic structure selec-
tively enters the highly permeable portion of the affected
cells without disturbing the healthy tissues thereby mak-
ing more convenient for its application in the biomedi-
cal field [237]. Folate- functionalized superparamagnetic
iron oxide nanoparticles developed previously for liver
cancer cure are also been used for the delivery of Doxil
(a form of doxorubicin which was the first FDA-approved
nano-drug in 1995) [238]. The in vivo studies in rabbits
and rats showed a two- and fourfold decrease compared
with Doxil alone while folate aided and enhanced specific
targeting [239]. Liposomes are the nanostructures that
have been studied the most, and they have been used in
several formulations for the delivery of natural products
like resveratrol [240]. Curcumin, a polyphenolic com-
pound obtained from turmeric, have been reported to
be utilized in the cure of cancers including the breast,
bone, cervices, liver, lung, and prostate [241]. Liposo-
mal curcumin formulations have been developed for the
treatment of cancer [242, 243]. Cheng et al. [244] encap-
sulated curcumin in liposomes by different methods and
compared the outcomes resulting that the one dependent
on pH yielded stable products with good encapsulation
efficiency and bio-accessibility with potential applica-
tions in cancer treatment [244].

Opver all, it can be said that the sustained release systems
of naturally occurring therapeutic compounds present
themselves as a key tools for improving the biological activ-
ity of these compounds as well as minimizing their limita-
tions by providing new alternatives for the cure of chronic
and terminal diseases [8, 245]. According to BBC Research,
the global market for plant-derived pharmaceuticals will
increase from $29.4 billion in 2017 to about $39.6 billion
in 2022 with a compound annual growth rate (CAGR) of
6.15% in this period (BCC-RESEARCH). Some of nano-
structure-based materials covered in this section have
already been approved by the FDA. Bobo et al. [255] has
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provided the information on nanotechnology-based prod-
ucts already approved by the FDA (Table 1).

Regulation and reality: products now

on the market

In the current medical nanotechnology scenario, there
are 51 products based on this technology [204, 246—248]
which are currently being applied in clinical practice
(Table 2). Notably, such nanomedicines are primarily
developed for drugs, which have low aqueous solubility
and high toxicity, and these nanoformulations are often
capable of reducing the toxicity while increasing the
pharmacokinetic properties of the drug in question.

According to a recent review by Caster et al. [249],
although few nanomedicines have been regulated by
the FDA there are many initiatives that are currently
in progress in terms of clinical trials suggesting many
nanotechnology-based new drugs will soon be able to
reach the market. Among these nanomaterials that are in
phase of study, 18 are directed to chemotherapeutics; 15
are intended for antimicrobial agents; 28 are for different
medical applications and psychological diseases, auto-
immune conditions and many others and 30 are aimed
at nucleic acid based therapies [249]. The list of nano-
medicine approved by FDA classified by type of carrier/
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material used in preparation of the formulation is shown
in Table 2.

Nanotechnology has dynamically developed in recent
years, and all countries, whether developed or not, are
increasing their investments in research and develop-
ment in this field. However, researchers who work with
practical applications of the nano-drugs deal with high
levels of uncertainties, such as a framing a clear defini-
tion of these products; characterization of these nanoma-
terials in relation to safety and toxicity; and the lack of
effective regulation. Although the list of approved nano-
medicine is quite extensive, the insufficiency of specific
regulatory guidelines for the development and charac-
terization of these nanomaterials end up hampering its
clinical potential [250]. The structure/function relation-
ships of various nanomaterials, as well as their character-
istics, composition and surface coating, interacts with the
biological systems. In addition, it is important to evaluate
the possibility of aggregate and agglomerate formation
when these nanomedicines are introduced into biologi-
cal systems, since they do not reflect the properties of
the individual particle; this may generate different results
and/or unexpected toxic effects depending on the nano-
formulation [250].

The lack of standard protocols for nanomedicines
characterization at physico-chemical and physiological/
biological levels has often limited the efforts of many
researchers to determine the toxic potential of nano-
drugs in the early stages of testing, and that resulted in
the failures in late-phase clinical trials. To simplify and/
or shorten the approval process for nano based medi-
cines/drugs, drug delivery system etc., a closer coopera-
tion among regulatory agencies is warranted [204, 251].

As a strategy for the lack of regulation of nanomedi-
cines and nano drug delivery system; the safety assess-
ment and the toxicity and compatibility of these are
performed based on the regulations used by the FDA
for conventional drugs. After gaining the status of a new
research drug (Investigational New Drug, IND) by the
FDA, nanomedicines, nano-drug delivery systems begin
the clinical trials phase to investigate their safety and effi-
cacy in humans. These clinical trials are divided into three
phases: phase 1 (mainly assesses safety); phase 2 (mainly
evaluates efficacy) and phase 3 (safety, efficacy and dos-
age are evaluated). After approval in these three phases
the IND can be filed by the FDA to request endorsement
of the new nanomedicine or nano drug delivery systems.
However, this approach to nanomedicine regulation has
been extensively questioned [204, 246, 252].

Due to the rapid development of nanotechnology as
well as its potential use of nanomedicine, a reformed and
more integrated regulatory approach is urgently required.
In this regard, country governments must come together
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to develop new protocols that must be specific and suf-
ficiently rigorous to address any safety concerns, thus
ensuring the release of safe and beneficial nanomedicine
for patients [204, 252, 253].

Future of nanomedicine and drug delivery system
The science of nanomedicine is currently among the
most fascinating areas of research. A lot of research in
this field in the last two decades has already led to the
filling of 1500 patents and completion of several dozens
of clinical trials [254]. As outlined in the various sections
above, cancer appears to be the best example of diseases
where both its diagnosis and therapy have benefited
from nonmedical technologies. By using various types of
nanoparticles for the delivery of the accurate amount of
drug to the affected cells such as the cancer/tumour cells,
without disturbing the physiology of the normal cells, the
application of nanomedicine and nano-drug delivery sys-
tem is certainly the trend that will remain to be the future
arena of research and development for decades to come.

The examples of nanoparticles showed in this com-
munications are not uniform in their size, with some
truly measuring in nanometers while others are meas-
ured in sub-micrometers (over 100 nm). More research
on materials with more consistent uniformity and drug
loading and release capacity would be the further area
of research. Considerable amount of progress in the use
of metals-based nanoparticles for diagnostic purposes
has also been addressed in this review. The application
of these metals including gold and silver both in diagno-
sis and therapy is an area of research that could poten-
tially lead to wider application of nanomedicines in the
future. One major enthusiasm in this direction includes
the gold-nanoparticles that appear to be well absorbed in
soft tumour tissues and making the tumour susceptible
to radiation (e.g., in the near infrared region) based heat
therapy for selective elimination.

Despite the overwhelming understanding of the
future prospect of nanomedicine and nano-drug deliv-
ery system, its real impact in healthcare system, even
in cancer therapy/diagnosis, remains to be very lim-
ited. This attributes to the field being a new area of
science with only two decades of real research on the
subject and many key fundamental attributes still
being unknown. The fundamental markers of diseased
tissues including key biological markers that allow
absolute targeting without altering the normal cellu-
lar process is one main future area of research. Ulti-
mately, the application of nanomedicine will advance
with our increasing knowledge of diseases at molecu-
lar level or that mirrors a nanomaterial-subcellular size
comparable marker identification to open up avenues
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for new diagnosis/therapy. Hence, understanding the
molecular signatures of disease in the future will lead
to advances in nanomedicine applications. Beyond
what we have outlined in this review using the known
nanoprobes and nanotheragnostics products, further
research would be key for the wider application of
nanomedicine.

The concept of controlled release of specific drugs at
the beleaguered sites, technology for the assessment of
these events, drug’s effect in tissues/cellular level, as well
as theoretical mathematical models of predication have
not yet been perfected. Numerous studies in nanomedi-
cine areas are centered in biomaterials and formulation
studies that appear to be the initial stages of the bio-
medicine applications. Valuable data in potential applica-
tion as drug therapeutic and diagnosis studies will come
from animal studies and multidisciplinary researches
that requires significant amount of time and research
resources. With the growing global trend to look for more
precise medicines and diagnosis, the future for a more
intelligent and multi-centered approach of nanomedicine
and nano-drug delivery technology looks bright.

There has been lots of enthusiasm with the simplistic
view of development of nanorobots (and nanodevices)
that function in tissue diagnosis and repair mecha-
nism with full external control mechanism. This has not
yet been a reality and remains a futuristic research that
perhaps could be attained by mankind in the very near
future. As with their benefits, however, the potential
risk of nanomedicines both to humans and the environ-
ment at large require long term study too. Hence, proper
impact analysis of the possible acute or chronic toxicity
effects of new nanomaterials on humans and environ-
ment must be analyzed. As nanomedicines gain popular-
ity, their affordability would be another area of research
that needs more research input. Finally, the regulation of
nanomedicines, as elaborated in the previous section will
continue to evolve alongside the advances in nanomedi-
cine applications.

Conclusion

The present review discusses the recent advances in
nanomedicines, including technological progresses in the
delivery of old and new drugs as well as novel diagnos-
tic methodologies. A range of nano-dimensional mate-
rials, including nanorobots and nanosensors that are
applicable to diagnose, precisely deliver to targets, sense
or activate materials in live system have been outlined.
Initially, the use of nanotechnology was largely based on
enhancing the solubility, absorption, bioavailability, and
controlled-release of drugs. Even though the discovery
of nanodrugs deal with high levels of uncertainties, and
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the discovery of pharmacologically active compounds
from natural sources is not a favored option today, as
compared to some 50 years ago; hence enhancing the
efficacy of known natural bioactive compounds through
nanotechnology has become a common feature. Good
examples are the therapeutic application of nanotech-
nology for berberine, curcumin, ellagic acid, resveratrol,
curcumin and quercetin. The efficacy of these natural
products has greatly improved through the use of nano-
carriers formulated with gold, silver, cadmium sulphide,
and titanium dioxide polymeric nanoparticles together
with solid lipid nanoparticles, crystal nanoparticles,
liposomes, micelles, superparamagnetic iron oxide nano-
particles and dendrimers.

There has been a continued demand for novel natu-
ral biomaterials for their quality of being biodegradable,
biocompatible, readily availability, renewable and low
toxicity. Beyond identifying such polysaccharides and
proteins natural biopolymers, research on making them
more stable under industrial processing environment and
biological matrix through techniques such as crosslink-
ing is among the most advanced research area nowadays.
Polymeric nanoparticles (nanocapsules and nanospheres)
synthesized through solvent evaporation, emulsion
polymerization and surfactant-free emulsion polymeriza-
tion have also been widely introduced. One of the great
interest in the development of nanomedicine in recent
years relates to the integration of therapy and diagnosis
(theranostic) as exemplified by cancer as a disease model.
Good examples have been encapsulated such as, oleic
acid-coated iron oxide nanoparticles for diagnostic appli-
cations through near-infrared; photodynamic detection
of colorectal cancer using alginate and folic acid based
chitosan nanoparticles; utilization of cathepsin B as met-
astatic processes fluorogenic peptide probes conjugated
to glycol chitosan nanoparticles; iron oxide coated hya-
luronic acid as a biopolymeric material in cancer therapy;
and dextran among others.

Since the 1990s, the list of FDA-approved nanotech-
nology-based products and clinical trials has stagger-
ingly increased and include synthetic polymer particles;
liposome formulations; micellar nanoparticles; protein
nanoparticles; nanocrystals and many others often
in combination with drugs or biologics. Even though
regulatory mechanisms for nanomedicines along with
safety/toxicity assessments will be the subject of fur-
ther development in the future, nanomedicine has
already revolutionized the way we discover and admin-
ister drugs in biological systems. Thanks to advances
in nanomedicine, our ability to diagnose diseases and
even combining diagnosis with therapy has also became
a reality.
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