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Abstract 

Background:  The biomedical use of nanosized materials is rapidly gaining interest, which drives the quest to eluci-
date the behavior of nanoparticles (NPs) in a biological environment. Apart from causing direct cell death, NPs can 
affect cellular wellbeing through a wide range of more subtle processes that are often overlooked. Here, we aimed to 
study the effect of two biomedically interesting NP types on cellular wellbeing.

Results:  In the present work, gold and SiO2 NPs of similar size and surface charge are used and their interactions with 
cultured cells is studied. Initial screening shows that at subcytotoxic conditions gold NPs induces cytoskeletal aberra-
tions while SiO2 NPs do not. However, these transformations are only transient. In-depth investigation reveals that Au 
NPs reduce lysosomal activity by alkalinization of the lysosomal lumen. This leads to an accumulation of autophago-
somes, resulting in a reduced cellular degradative capacity and less efficient clearance of damaged mitochondria. The 
autophagosome accumulation induces Rac and Cdc42 activity, and at a later stage activates RhoA. These transient 
cellular changes also affect cell functionality, where Au NP-labelled cells display significantly impeded cell migration 
and invasion.

Conclusions:  These data highlight the importance of in-depth understanding of bio-nano interactions to elucidate 
how one biological parameter (impact on cellular degradation) can induce a cascade of different effects that may 
have significant implications on the further use of labeled cells.
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Background
The biological behavior of nanoparticles (NPs) is cur-
rently receiving much attention, in particular to enhance 
our understanding of any potential hazards involved 
in NP exposure and to optimize the use of nanotech-
nology in biomedical applications [1–3]. Most studies 
to date involve the use of cell cultures as a good model 
system that can provide in-depth mechanistic insight 
into the precise nature of how the cells interact with the 
engineered NPs [4]. Other advantages of using cell cul-
ture models are the need for less animal studies which 
greatly enhances the speed with which the assays can be 
performed, while also reducing the number of animals 

required for in vivo studies. Novel technologies are being 
implemented to further increase the capacity to perform 
nanotoxicological research at high speeds, including 
automated high-content imaging, transcriptomics and 
proteomics [5–8].

The big efforts made have generated large amounts of 
data, which can be used to decipher the precise mecha-
nisms by which NPs interact with their biological envi-
ronment [9–13]. The wide variety in different types 
of NPs and conditions used for exposure of the NPs to 
their biological environment results in the generation of 
highly specific data that is relevant to a particular NP for-
mulation used under very specific conditions. Although 
these specific mechanisms are very interesting and need 
to be investigated, more emphasis has recently been put 
on large-scale comparative studies of highly similar NP 
formulations [9]. These studies either enable research-
ers to link particular biological effects to one single 
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NP-associated parameter [14], or define new general par-
adigms by which NPs can affect biological systems [15].

Based on the data obtained, several paradigms have 
been defined which appear to be vital in how the cell 
reacts to the presence of any NPs. The generation of oxi-
dative stress has been shown to be involved in most types 
of NPs among a wide array of cell types [16]. As differ-
ent cell types have different levels of natural antioxidants 
such as glutathione to defend themselves against the 
damages incurred from elevated levels of reactive oxygen 
species (ROS) [17], any elevation in ROS does not imme-
diately result in cell death, depending on the extent of 
ROS produced and the nature of the cell type used [17]. 
A second paradigm lies in the possible biodegradation of 
the NPs when subjected to the degradative microenvi-
ronment of the cellular endosomal network [18]. Several 
types of NPs (e.g. ZnO, CuO, Ag) have shown to display 
pH-dependent dissolution properties and when internal-
ized by the cells through endocytosis, the acidic endo-
somal lumen can promote NP degradation [19, 20]. The 
degradation is then linked to the release of potentially 
toxic metal ions, which can cause cell death [6, 19, 20]. 
It remains somewhat a matter of debate to what extent 
any observed effects are either due to the NPs them-
selves, the metal ions already present in the extracellular 
medium due to pre-dissolution of the NPs at neutral pH, 
or the metal ions released intracellularly after cellular 
NP uptake [6]. In most cases, all three components will 
contribute to the observed cellular effects, but intracel-
lularly released ions have been suggested to locally reach 
high levels which can exceed toxic thresholds and hereby 
induce cellular damage at levels where free metal ions 
that distribute more homogenously do not cause such 
effects [6].

A third paradigm is the disturbance of cellular 
autophagy levels through NP exposure [15]. The precise 
nature of this effect remains rather unclear and is the 
topic of interest in a wide number of studies [21–23]. 
Initially, several groups suggested that a large number 
of NPs were capable of inducing autophagy and result 
in so-called autophagic cell death [24, 25]. Although cell 
death through autophagy-related mechanisms is pos-
sible, the autophagy community has labelled autophagic 
cell death a misnomer [26], as it was often based on the 
wrong interpretation of results. Autophagy is primarily a 
self-protective mechanism, where any cell that is under-
going stress resulting in damaged organelles (e.g. mito-
chondria) can result in the induction of autophagy to 
clear the damaged organelles and recycle their constitu-
ents for other cellular processes [27]. As such, any dead 
cell can show signs of elevated autophagy as a secondary 
effect as the cell was simply trying to defend itself and 
recover from the damage to which it finally succumbed. 

More recent studies have however shown that high levels 
of autophagy can result in cell death as the cells is literally 
“eating itself” [27]. From the NP community, similar con-
fusing findings have been reported, where in most stud-
ies it has been shown that NPs cause cell death through 
autophagy, while several other studies have reported the 
induction of autophagy as a cellular defense mechanism 
to cope with the NPs [28, 29]. Any such effects may be in 
part explained by differences in cellular NP levels, where 
initially, autophagy induction may be self-protective and 
inhibit apoptotic signaling, while at higher levels, apopto-
sis itself can result in cell death [5]. Another point of con-
fusion lies in whether autophagy is actively induced [30] 
or whether it is related to an accumulation of autophago-
somes due to a reduced clearance by lysosomes [31]. 
Although autophagy disturbances have been associated 
to a wide variety of NPs [15], it is not yet considered a 
general mechanism either.

Autophagy is a cellular degradation mechanism and 
may come into play when the overall degradative capac-
ity of the cell is reduced [27]. In the present work, we 
employ gold and silicon dioxide NPs of similar size and 
surface charge as models agents to study the contribution 
of the composition of NP cores on their cellular effects, 
with a special emphasis on any disturbances in the capac-
ity of cellular degradation and associated signaling.

Results and discussion
Nanoparticle characterization
In the present study, commercially available gold and sili-
con dioxide NPs were used. The NPs had actual sizes of 
25.3 and 20.4 nm, for gold and SiO2 respectively, as meas-
ured by transmission electron microscopy (TEM) (Fig. 1). 
In phosphate buffered saline, their hydrodynamic diam-
eters were 39.8 and 35.7 nm, indicating high colloidal sta-
bility, which is likely bestowed by their negative surface 
charges of − 27.1 and − 35.4 mV, respectively. No endo-
toxins were found in the NP suspensions as determined 
by a LAL-assay. The small hydrodynamic diameter also 
suggests the high monodispersity of both samples and 
the lack of any substantial aggregation, which was fur-
ther supported by the low polydispersity index (0.131 and 
0.168, respectively). In the present work, the NPs were 
used to label two commonly used cell types, being human 
bronchial epithelial cells (BEAS-2B) and murine mesen-
chymal stem cells (MSCs).

Nanoparticle‑mediated cell death and oxidative stress
As a first step, both cell types were exposed to a wide 
concentration range of either NP, after which a wide 
number of cellular parameters were evaluated using 
a validated high-content imaging based procedure 
[5, 6, 14]. Figure  2 reveals concentration-dependent 
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loss of cell viability with is linked with an increase of 
cell membrane damage. Under our conditions, signifi-
cant toxicity was only observed at concentrations of 
200  µg/ml for both the Au and SiO2 NPs, in either of 
the cell types used. As no significant membrane dam-
age was observed at subcytotoxic conditions, this sug-
gests that the observed damage was a secondary effect 
of the dying process, rather than being a NP-induced 
mechanism, as has been observed for other NPs, such 
as hydrophobically-capped Au NPs [14, 32, 33]. At the 
highest subcytotoxic concentration, both NPs induced 
significant levels of oxidative stress, which is in line 
with literature data [34, 35]. Oxidative stress can cause 
a variety of secondary effects, but as mentioned above, 
is not always correlated with cell death, due to the 

cellular antioxidant capacities which can differ widely 
between different cell types [17]. Here, for both NP 
types, oxidative stress correlated nicely with the onset 
of mitochondrial stress, indicating cellular damage, 
which may eventually have led to the observed cell 
death at higher NP concentrations. Mitochondria are 
the main energy providers for the cell, but their meta-
bolic processes such as oxidative phosphorylation also 
generate ROS, making them susceptible to additional 
forms of oxidative stress [36]. Stressed and damaged 
mitochondria can directly result in cell death, as mito-
chondrial leakage and release of cytochrome c is known 
to be a key component in the intrinsic apoptotic path-
way [37]. Together, these data suggest that the oxidative 
stress and associated mitochondrial damage incurred 

Fig. 1  Representative transmission electron microscopy images of the Au (left) and SiO2 (right) NPs used in the present work
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by cellular NP internalization are likely the underly-
ing causes of the observed cell death at higher NP 
concentrations.

Nanoparticle‑mediated effects on cellular autophagy 
and endosomal network
Apart from inducing apoptosis, damaged mitochondria 
may also induce autophagy in an attempt to self-pre-
serve [38]. Figure  2 shows clear concentration-depend-
ent increases in cellular autophagy levels. Interestingly, 
although the levels of oxidative stress and mitochondrial 
damage were similar for the Au and SiO2 NPs, the level 
of autophagy induction was more outspoken for Au NPs 
(Fig. 3a, b). When cells were treated with N-acetyl cystein 
(NAC), a ROS scavenger, the level of oxidative stress 
and mitochondrial damage were completely reduced 
to control levels for both Au and SiO2 NP-treated cells 
(Fig.  3a, b) like what has been observed for TiO2 based 
nanoparticles [39]. However, the level of autophagy 
was only completely reduced for SiO2 NP-treated cells, 
whereas Au NP-treated cells displayed a clear but not 
complete reduction of cellular autophagy levels. This 
finding suggests that the elevated autophagy levels for 
Au NP-treated cells were not solely caused by induc-
tion due to mitochondrial damage, but were also influ-
enced by other factors. Other studies on gold NPs have 
revealed that they may induce an alkalizing effect on the 
endosomal system, which may reduce the functionality of 

the endosomes and hereby limit clearance of autophago-
somes, resulting in an accumulation of autophagy-related 
vesicles [31]. To verify this, the size of the endosomal net-
work and the average pH of the endosomes were moni-
tored, showing no significant changes in either of these 
factors for cells exposed to SiO2 NPs. Au NP-treated cells 
however showed an enlarged endosomal network and 
an increase in endosomal pH (Fig.  2). These data sug-
gest that the activity of the endosomes in which the Au 
NPs are localized may be affected. This was further con-
firmed by performing a lysosomal activity assay (Fig. 3c), 
which revealed a clear drop in lysosomal activity for Au 
NP-treated cells. From a mechanistic point of view, Au 
NPs could cause a loss of cellular degradative capacity 
by means of steric hindrance, where the persistent pres-
ence of non-biodegradable NPs within the endosomal 
network may diminish the overall degradative capacity 
of the cell. Alternatively, Au NPs have also been found to 
affect endosomal pH by interfering with the composition 
of the vacuolar H+(V)-ATPase, which regulates lysosome 
acidification. This ATPase is composed of a membrane-
associated ion conductance Vo protein complex and a 
peripherally associated ATPase V1 protein complex, 
and Au NPs have been found to result in a dissociation 
of both components, hereby reducing its functional-
ity [31]. The observed differences here between Au and 
SiO2 NPs suggests that the nature of the inorganic core 
plays a pivotal role in this alkalinization effect. This effect 

Fig. 2  a Heat maps of the high content imaging data obtained for MSC (left), or Beas2B cells (right) exposed to various concentrations (10–200 µg/
ml) of Au (top half ) or SiO2 (bottom half ) NPs for 24 h and analyzed for relative cellular health (Viab), membrane damage (MD), mitochondrial 
ROS (ROS), mitochondrial health (MitoStress), cell area (Area), cell skewness (Skewness), the level of autophagy, size of the endosomal network 
(Endo size), average endosomal pH (Endo pH) and total size of cellular focal adhesion complexes (FAC). Data are shown as relative values after 
z-normalization compared to untreated control cells (= 1) where the fold-change is indicated by the respective color-code. Data have been 
acquired for a minimum of 5000 cells/condition which were gathered from three independent experiments. b Representative high content images 
of MSCs either unlabeled (0 µg/ml) or labelled with Au (top row) or SiO2 (bottom row) NPs at the concentrations indicated for 24 h. Cells were 
stained with Live Dead dead cell stain (green) and MitoTracker Red CMXRos (red). Scale bars: 100 µm
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is likely to occur less for NPs that are prone to degrada-
tion (e.g. Ag, FexOy, ZnO, CuO) and even SiO2, which 
has also been found to degrade in an aqueous environ-
ment, albeit more rapidly under more alkaline conditions 
[40]. The impact of the coating of the NPs on these pro-
cesses remains unclear, where the impact on differences 
in cellular uptake levels, intracellular distribution and 
persistence against biodegradation may all affect cellular 
degradation capacities.

Deactivation of the lysosomes will have an impact 
on the cellular degradative capacity, which can result 
in changes in cellular signaling, enhancing cellular 
autophagy levels in a manner to overcome the loss in 
degradative capacity. Interestingly, the activity of the 
lysosomes in SiO2 NP-treated cells was found to slightly 
increase (Fig.  3c). Lysosomal activation has been rarely 
reported for NP-treated cells, but has indeed already 
been observed for silica NP-exposed cells [41]. Lysoso-
mal activation likely stems from the intrinsic nature of 
these organelles and the manner by which they deal with 
foreign pathogens. Changes in endosomal network have 
been described to stem from cellular conditioning to the 
presence of the NPs in an attempt to properly handle the 
influx of these foreign compounds [42].

Nanoparticle‑mediated effects on cellular cytoskeleton 
network
Autophagy has also been shown to affect other cellu-
lar processes, such as for instance, the tubulin network 
[43]. Analysis of cell size and skewness through staining 
of cytoskeletal networks revealed a clear loss of cytoskel-
etal organization, which resulted in shrinkage and shape-
changes of cells exposed to the Au NPs at subcytotoxic 
conditions (Fig. 2). Interestingly however was that these 
alterations were not observed for SiO2 NP-treated cells 
(Fig. 2). Despite a difference in the degree of autophagy, 
SiO2 NPs still induced significant levels of autophagy, 
but this has no effect whatsoever on the cytoskeletal net-
work. Previous studies have reported clear effects of vari-
ous NPs including iron oxide, silver and gold on cell size 
and cytoskeletal network, predominantly affecting actin 
fibers [6, 44–47], while this effect was not observed for 
silica NPs [48]. Silica NPs have however been observed to 
affect tubulin fibers [49]. As silica NPs were also found to 
activate lysosomes [41], this may suggest an involvement 
of the lysosomal activity status on the precise nature of 
the cytoskeletal changes observed.

Both actin and tubulin network are involved in a 
wide array of cellular processes ranging from structural 

Fig. 3  a, b Histograms representing the high content imaging data for a MSC and b Beas2B cells exposed to Au or SiO2 NPs at 150 µg/ml for 
24 h (subcytotoxic conditions) in the absence or presence of 5 mM NAC, a free radical scavenger. The results for ROS, mitochondrial health and 
autophagy are presented relative to the level observed for untreated control cells. c Histograms representing the lysosomal activity of MSC and 
Beas2B exposed to Au or SiO2 NPs (150 µg/ml for 24 h) at 1 days after NP exposure. Data are expressed relative to the level for untreated control cells 
(100%). d Histograms representing the cellular proliferation of MSC and Beas2B exposed to Au or SiO2 NPs (150 µg/ml for 24 h) at 3 and 6 days post 
NP exposure. Data are expressed relative to the level for untreated control cells (100%). a–d Data are expressed as mean ± SD (n = 3). The degree of 
statistical significance is indicated when relevant (*p < 0.05; **p < 0.01; ***p < 0.001)
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support to mediators in various intracellular signaling 
pathways [50]. The effect of any NPs on these networks 
may therefore have profound effects on various signaling 
pathways, which could turn into a loss of cell migration, 
cell differentiation or even result in cell death [45, 49]. 
One of the key mediators in cytoskeletal signaling are the 
focal adhesion complexes (FAC) which connect the actin 
cytoskeleton to transmembrane integrin receptors and 
transmit external signals through various protein com-
plexes [51]. Here, we observed a significant loss of FAC 
for Au NP-treated cells, while no difference was observed 
for SiO2 NP-treated cells (Fig. 2). The functional implica-
tions of the loss of FACs were portrayed by the decrease 
in cell division rate for Au NP-treated cells, whereas no 
alterations in cell division times were observed for SiO2 
NP-treated cells (Fig. 3d).

Cellular alterations caused by lysosomal deactivation
Alterations to the cell size and shape have been fre-
quently reported to accompany cellular NP uptake and 
have been associated to changes invoked by alterations 
required for NP endocytosis or through steric hindrance 
caused by the intracellular presence of large volumes of 
NPs sequestered in the endosomal compartment [44, 
52]. To verify whether this is a transient phenomenon, 
the effect of the NPs on cell size was analyzed at several 
time points post cellular NP exposure. Figure 4a reveals 
that SiO2 NP did not have any effect at any time point, 
while the Au NPs resulted in significant but reversible 
effects. These effects were however delayed, where maxi-
mal effects occurred 2 days after NP exposure, while cells 
were nearly recovered after 5 days post NP exposure. The 
delayed effect suggests that the cytoskeletal changes were 
not inherent to the endocytic processes through which 
the cells took up the NPs, but rather hinted at transient 
cellular alterations. As SiO2 NPs did not cause any such 
effects, the elevated autophagy levels and loss of lysoso-
mal activity seen for Au NP-treated cells may be involved. 
A near identical pattern was observed upon analysis of 
cellular FACs (Fig.  4b), where SiO2 NPs had only mini-
mal effects, whereas Au NPs resulted in significant but 
transient reduction of total cellular FAC sizes. These data 
suggest that any functional effect observed will also be 
transient in nature. The latter may explain the high level 
of discrepancy observed for various NPs, mainly iron 
oxide NPs and their effect on stem cell differentiation. 
Various research groups have observed clear inhibition of 
chondrogenesis for iron oxide NP-labelled MSCs, while 
other groups saw no effect of the iron oxide NPs, even 
when identical commercial particles were used [53–56]. 
As the differentiation protocol takes rather long (up to 
2 weeks), but can vary between different protocols used, 
the occurrence of any inhibition may be explained by 

the time window used and whether cells had sufficiently 
recovered from their transient functional impediments.

The mitochondrial stress incurred by the Au or SiO2 
NPs may cause some metabolic disorders and reduce 
the overall cellular energy levels as mitochondria are 
the main sources of cellular ATP [36]. The induction of 
autophagosomes which can engulf the damaged orga-
nelles and then fuse to lysosomes to promote the degra-
dation of their contents produces new metabolites that 
can be used as sources of energy [57]. Promoting the 
cellular degradation capacity, as observed for the PS NP-
treated cells can therefore be seen as a cellular attempt 
to restore any loss in cellular energy levels. To test this 
hypothesis, cellular ATP levels were measured for SiO2 
and Au NP-treated cells (Fig. 4c), which revealed a clear 
transient loss of cellular ATP for Au NP-treated cells, 
while no effect was noticed for SiO2 NP-treated cells. 
For Au NPs, the process of energy restoration appears 
to be flawed. The loss of degradative capacity impedes 
the fusion of the autophagosomes and lysosomes and 
thus cannot restore any ATP. The alkalizing effect of the 
Au NPs on the endosomes can further decrease cellular 
ATP levels as maintenance of lysosomal pH is an ATP-
dependent process [57].

Mechanisms underlying cellular changes 
through lysosomal deactivation
The loss of FACs, cytoskeletal deformations and decrease 
in cell division rates in Au NP-treated cells may be linked 
to the observed changes in cellular degradative capacity 
(autophagy induction) and cellular ATP levels. We tested 
the activity levels of both Cdc42, Rac and RhoA, which 
are important GTPases involved in cytoskeletal organi-
zation and cell cycle progression [58]. The data reveal 
that SiO2 NP-treated cells, as expected, did not show any 
significant changes in the activity status of either of the 
three GTPases (Fig. 5).

Au NP-treated cells displayed clear activation of Cdc42 
and Rac immediately after cell labeling while RhoA activ-
ity decreased. This is in line with the known functions of 
Cdc42 and Rac, which increase FAC turnover and hereby 
reduce the number of FAC. After 2  days, the activity 
levels of Cdc42 and Rac decrease to return to normal 
baseline levels after 4  days, while the activity of RhoA 
increases and is significantly elevated 4 days after cellu-
lar NP exposure, and then also returns to baseline levels 
at 6 days post NP exposure. These findings are perfectly 
in line with our observed kinetic alterations of the cellu-
lar cytoskeleton network. Based on known activators of 
the different GTPases, the following mechanism can be 
hypothesized (Scheme 1). The three GTPases are known 
to be carefully regulated to provide tight control over 
FAC turnover. Cdc42 and Rac activation increases FAC 
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turnover while RhoA activation increases actin stress 
fiber formation and decreases FAC turnover [59]. Cdc42 
and Rac have been described to be activated through 
autophagy induction [59], while their activation typi-
cally reduces RhoA activity [60]. As the cellular degrada-
tive capacity is reduced and autophagosomes cannot be 
efficiently cleared through lysosomal fusion, autophagy 

induction is likely to only be short-term, resulting in 
the decrease of Cdc42 and Rac activity levels with time. 
While Cdc42 and Rac activities go down, RhoA activity 
is able to rise and get back to normal levels. However, the 
low levels of cellular ATP triggers RhoA activity [61] and 
makes it significantly elevated above baseline levels. The 
restoration of cellular mitochondria and increase in ATP 

Fig. 4  a, b Histograms representing high content imaging data for MSC and Beas2B cells exposed to Au or SiO2 NPs at 150 µg/ml for 24 h 
(subcytotoxic conditions). The data for a cell size and b FAC size are expressed as mean ± SD (n = 3) relative to the level for untreated control 
cells (100%). The results for ROS, mitochondrial health and autophagy are presented relative to the level observed for untreated control cells. c 
Histograms representing the cellular ATP levels of MSC and Beas2B exposed to Au or SiO2 NPs (150 µg/ml for 24 h) at 1 day and 4 days after NP 
exposure. Data are expressed as mean ± SD (n = 3) relative to the level for untreated control cells (100%). The degree of statistical significance is 
indicated when relevant (*p < 0.05; **p < 0.01). d Representative high content images of control MSC (D0) or MSC labelled with the Au or SiO2 NPs at 
150 µg/ml for 24 h and then stained for actin (red) and vinculin (green), a marker for focal adhesion complexes 3, 5 and 6 days after labelling. Scale 
bars: 50 µm
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levels will finally stabilize RhoA activity back to baseline 
levels. The initial elevated Cdc42 and Rac activity will 
cause the cytoskeletal deformations and impede cell divi-
sion, while the elevated RhoA activity at a later stage will 
restore FACs, actin stress fibers and cell cycle progression 
rates. Most effects observed here for the Au NP-treated 
cells are therefore transient ones that are related to the 
loss of lysosomal degradation capacity. Division of the 
cells and the associated dilution of the NPs amongst the 
two daughter cells helps the cells to recover and return to 
normal baseline physiological levels.

Overall, the Au NP-elicited effects are mainly caused by 
the precise chemical nature of the NP and the combina-
tion of several factors, being the induction of oxidative 
stress resulting in mitochondrial damage, the induction 
of autophagy and the loss in lysosomal activity inhibit-
ing autophagosome clearance. These parameters must 
all occur under specific conditions which do not inflict 
any cell death and will therefore only happen with cer-
tain NPs under specific conditions that are capable of 
inducing the right level of oxidative stress, autophagy and 
impede lysosomal activity. The affected cellular signaling 
pathways can however have great implications for cell 
functionality, including loss of stem cell differentiation 
capabilities, cell division rates or cell migration proper-
ties which warrants their careful evaluation [44, 49].

Functional effects caused by differences in cell signaling 
pathways
The affected activity of the GTPases can also result in 
losses of cellular functioning, as these GTPases are key 
signaling mediators in a broad number of cellular sign-
aling pathways [58]. Here, the effect of the NPs on cell 
migration was studied, which is an important func-
tional property for both cell types. For alveolar epithe-
lial cells like Beas-2B, cell migration plays a pivotal role 
in airway repair and remodeling involved in respiratory 
diseases such as asthma [62], while MSC are, amongst 
others, the cellular source of fracture healing and are 
recruited to bone fracture sites [63]. Figure 6 shows that 
the SiO2 NPs did not have any significant effect on the 
migration or invasion efficacy of either the Beas-2B or 
MSC cells, while at subcytotoxic concentrations, the Au 
NPs significantly impeded both migration and invasion. 
These findings are completely in line with the differ-
ences in cytoskeletal alterations and affected cell signal-
ing pathways. The reduced migration and invasion may 
be explained by the reduced ATP levels caused by the Au 
NPs, as low levels of cytoplasmic ATP reduce the func-
tion of vacuolar H+-ATPases, which has been shown to 
be associated with a reduction in cellular migration and 
invasion [64].

Together, these data indicate how relatively minor dif-
ferences in the initial biological effects of both NP types 
can result in large differences in cellular functionality. 
This knowledge can be very useful for a wide range of bio-
medical applications. Firstly, if time permits, cells can be 
labelled with Au NPs and then used for functional studies 
when sufficient time has passed and cellular functionality 
has been restored. If the migratory capacity of the cells is 
important, Au NPs appear to be less suitable than SiO2 
NPs. While both NPs are frequently being used as drug 
delivery vehicles, the nature of the drug may determine 
which type of NP would be better suited. For acid-labile 

Fig. 5  a–c Histograms representing a Cdc42, b Rac and c RhoA 
activity levels for MSC and Beas2B cells exposed to Au or SiO2 NPs at 
150 µg/ml for 24 h (subcytotoxic conditions). The data are expressed 
as mean ± SD (n = 3) relative to the level for untreated control cells 
(100%) and are given for 0, 2, 4 and 6 days post NP exposure. The 
degree of statistical significance is indicated when relevant (*p < 0.05; 
**p < 0.01)
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agents that rapidly degrade under acidic conditions, the 
Au NPs may offer some protection through the alkalini-
zation of the lysosomal lumen. Pro-apoptotic drugs may 
be better combined with SiO2 NPs, as the higher levels 
of autophagy for Au NPs may impede the pro-apoptotic 
signaling induced by the drugs. Autophagy-inducing 
anticancer drugs may then be more optimally suited for 
use with the Au NPs, where the pro-autophagy effects of 
both the carrier and the drug can be combined.

Conclusions
The present work highlights the importance of a full 
comprehension of bio-nano interactions to explain any 
observed functional behavior in biological components. 
Here, gold and SiO2 NPs had rather similar toxicity pro-
files, where they differed in one seemingly minor param-
eter, being the lysosomal activity. However, coupled with 
the other cellular alterations, including mitochondrial 
ROS and autophagy induction, this parameter became 
very important. For SiO2, lysosomal activity slightly 
increased, enabling an efficient clearance of autophago-
somes and recycling of autophagy-processed cellular 

materials, such as mitochondria. This led to an efficient 
clearance of damaged mitochondria and replacement by 
new ones. For Au NPs, lysosomal activity was decreased, 
which impeded clearance of the autophagosomes. This 
led to the activation of Rac and Cdc42, which affect 
cytoskeletal organization and actin-mediated signaling, 
slowing down cell division. This also resulted in a less 
efficient turnover of the damaged mitochondria, result-
ing in a loss of ATP, which activated RhoA signaling. 
Initially, Rac and Cdc42 activity inhibited RhoA activity, 
but upon recovery of the cellular degradative capacity, 
and decrease of Rac and Cdc42 activity, RhoA activity 
became more dominant. This resulted in a recovery of 
the baseline cytoskeletal architecture and actin-mediated 
signaling levels. Simultaneously, the increased cellular 
degradative capacity increases the turnover of damaged 
mitochondria and restores cellular ATP levels, which 
finally reduces RhoA activity back to baseline levels. 
These data reveal that a minor difference in biological 
impact of NPs can, in combination with other toxico-
logical effects, result in a wide range of altered signaling 
pathways which can have a broad range of functional 

Scheme 1  Schematic representation of the cellular effects of Au (left side) and SiO2 NP (right side) exposure. Au NPs enter the cells and induce 
ROS (a1) which causes mitochondrial damage (a2). This stimulates autophagy induction, but autophagosomes cannot be efficiently cleared due 
to the reduced lysosomal activity (a3), resulting in an accumulation of autophagosomes. This stimulates Rac and Cdc42 activity (a4), which affects 
cytoskeletal organization and actin-mediated signaling. Simultaneously, Cdc42 and Rac inhibit RhoA activity (a5). Mitochondrial damage and 
accumulation of autophagosomes lowers cellular ATP levels which in turn stimulates RhoA activity. Upon recovery of the cellular degradative 
capacity, autophagosome clearance occurs more efficiently (a7), which reduces cellular autophagy levels and Rac and Cdc42 activity. The low ATP 
levels then result in increased RhoA activity, which will return back to baseline levels as turnover of damaged mitochondria occurs more efficiently. 
RhoA activity will restore the cellular cytoskeleton and actin-mediated signaling. SiO2 NPs also enter the cells and induce ROS (b1), which affects 
mitochondrial health. This stimulates autophagy (b2) which promotes clearance of the damaged mitochondria. Upon fusion with the lysosomes, 
mitochondrial turnover remains normal, resulting in an efficient management of cellular ATP levels
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implications. In the present study, the clear impact on 
cytoskeletal alterations was easily noticed, but more sub-
tle differences can often be overlooked. Here, the effects 
were only transient, indicating the need for more kinetic 
studies to further elucidate the impact of NPs on biologi-
cal components.

Experimental section
Nanoparticles and characterization
Gold and silica NPs were obtained commercially via 
NanoComposix, Ltd (product numbers AULB20-5M and 
SISN20-25M, respectively). The gold NPs were provided 
with lipoic acid, while silica NPs had free silanol groups 
at their surface. The purchased NPs were both 20  nm 
diameter according to the company.

In-house characterization was performed, includ-
ing analysis of size [transmission electron microscopy 
(TEM)], hydrodynamic size and surface charge (dynamic 
light scattering) and sterility tests (LAL-endotoxin assay). 
For the TEM specimen preparation, a drop of nanopar-
ticle solution was dropped on the Cu-grid with C-film 
for the TEM investigation. All the grids with the sample 

were dried at RT followed by scanning the large regions 
of the grid. The low and high resolution TEM of the sam-
ple were examined using transmission electron micros-
copy (TEM) on a FEI Titan 80/300 microscope equipped 
with a Cs corrector for the objective lens, a Fischione 
high angle annular dark field detector (HAADF), GATAN 
post-column imaging filter and a cold field emission gun 
operated at 300  kV as an acceleration voltage. Electro-
phoretic mobilities and hydrodynamic radii were meas-
ured with a Zetasizer ZS90 instrument (Malvern, UK) at 
25  °C. To optimise the response for every given sample, 
the samples were diluted with PBS (1/100) immediately 
prior to the measurement. The LAL-assay was performed 
according to the manufacturer’s protocol (Pierce).

Cell culture
Human bronchial epithelial cells (BEAS-2B) were grown 
in high glucose containing Dulbecco’s modified Eagle’s 
medium (DMEM), supplemented with 10% fetal calf 
serum, 1 mM sodium pyruvate, 2 mM l-Glutamine and 
1% penicillin/streptomycin (Gibco, Invitrogen, Belgium). 
The BEAS-2B cells were passaged upon reaching 80% 
confluence and reseeded at a ratio of 1:5.

Mouse mesenchymal stem cells (MSCs) were main-
tained in high glucose containing Dulbecco’s modified 
Eagle’s medium (DMEM), supplemented with 10% fetal 
calf serum, 10% horse serum, 1 mM sodium pyruvate and 
2  mM l-Glutamine (Gibco, Invitrogen, Belgium). Cells 
were passaged when reaching nearly 80% confluence and 
reseeded at a density of 100,000 cells/flask in 75 cm2 tis-
sue culture flasks (Nunc, Belgium).

High‑content analysis of cell‑nanoparticle interaction 
studies
For high-content imaging studies, both cell types were 
seeded at 7500  cells/well in a 24 well plate (Nunc, Bel-
gium). Cells were allowed to attach overnight in a humid-
ified atmosphere at 37  °C and 5% CO2, after which the 
cells were incubated with either the Au or PS NPs for 
24 h in full growth medium. For cellular exposure stud-
ies, cells were incubated with the NPs at 10, 25, 50, 75, 
100, 125, 150, 175 and 200 µg/ml. Each experiment was 
performed in three independent repeats and data were 
analyzed using full data sets of the different repeats. The 
different assays were performed as described elsewhere 
[5, 14].

Heat maps
The generation of heat maps was performed using con-
ditional formatting of Excel sheets after z-normalization 
of all the data. Data are expressed as the fold increase 
of a certain parameter (cell death, membrane damage, 
mitochondrial ROS, mitochondrial stress, cell area, cell 

Fig. 6  a, b Histograms representing a relative cell migration and b 
relative cell invasion levels for MSC and Beas2B cells exposed to Au 
or SiO2 NPs at 150 µg/ml for 24 h (subcytotoxic conditions). The data 
are expressed as mean ± SD (n = 3) relative to the level for untreated 
control cells (100%). The degree of statistical significance is indicated 
when relevant (*p < 0.05; **p < 0.01)
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skewness, autophagy levels, endosomal size, endoso-
mal pH, focal adhesion complexes) compared to the 
control levels where the level of increase is indicated by 
colour-codes.

Evaluation of RhoA, Cdc42 and Rac1 activity
MSC and Beas-2B cells were seeded in 25  cm2 colla-
gen-coated tissue culture flasks at 1 * 105  cells/flask and 
allowed to settle overnight. Next, cells were incubated 
with fresh media (10 ml) containing the Au or SiO2 NPs 
at 150 µg/ml for 24 h. Media were removed, cells washed 
twice with ice-cold PBS, and cells were then either kept 
in culture for an additional 2, 4 or 6  days or processed 
immediately. At these time points, cell lysates and 
GTPase activities were prepared and measured according 
to the manufacturer’s instructions (RhoA, Rac1, Cdc42 
G-LISA activation kits, Cytoskeleton Inc, Denver, USA). 
Absorbance was recorded at 450  nm with an ELISA 
plate reader (Optima FluoStar, BMG LabTech GmbH, 
Ortenberg, Germany). For all three cell types, the results 
obtained for the NP-treated samples were normalized 
against the value obtained for untreated control cells at 
identical protein levels. Values are expressed as relative 
to those obtained for untreated controls cells (= 1) for a 
total number of three independent repeats.

Measurement of cellular ATP levels
MSC and Beas-2B cells were seeded in 25  cm2 colla-
gen-coated tissue culture flasks at 1 * 105 cells/flask and 
allowed to settle overnight. Next, cells were incubated 
with fresh media (10 ml) containing the Au or SiO2 NPs 
at 150 µg/ml for 24 h. Media were removed, cells washed 
twice with ice-cold PBS, and cells were then either kept 
in culture for an additional 4 days or processed immedi-
ately. To lyse the cells, 1  ml of ice-cold lysis buffer was 
added per flask (100  mM Tris + 4  mM EDTA, pH 7.5) 
after which the lysates were processed according to the 
manufacturer’s instructions (ATP Determination kit, 
Thermo Fisher Scientific, Waltham, MA, USA). Lumi-
nescence was measured using the IVIS Spectrum well 
plate option 10 min after addition of d-luciferin. For all 
three cell types, the results obtained for the NP-treated 
samples were normalized against the value obtained for 
untreated control cells at identical protein levels. Values 
are expressed as relative to those obtained for untreated 
controls cells (= 1) for a total number of three independ-
ent repeats.

Lysosomal activity measurements
MSC and Beas-2B cells were seeded in 25  cm2 colla-
gen-coated tissue culture flasks at 1 * 105 cells/flask and 
allowed to settle overnight. Next, cells were incubated 
with fresh media (10 ml) containing the Au or SiO2 NPs 

at 150 µg/ml for 24 h. Media were removed, cells washed 
twice with ice-cold PBS, after which cell lysates were pre-
pared and acid phosphatase activity measured according 
to the manufacturer’s instructions (Acid Phosphatase 
assay kit, Sigma-Aldrich, St. Louis—MO, USA). For all 
three cell types, the results obtained for the NP-treated 
samples were normalized against the value obtained for 
untreated control cells at identical protein levels. Values 
are expressed as relative to those obtained for untreated 
controls cells (= 1) for a total number of three independ-
ent repeats.

Cell migration and invasion
Both cell types were seeded in 25 cm2 collagen-coated tis-
sue culture flasks at 1 * 105 cells/flask and allowed to set-
tle overnight. Next, cells were incubated with fresh media 
(10 ml) containing the Au or SiO2 NPs at 150 µg/ml for 
24 h. Media were removed, cells washed twice with ice-
cold PBS, after which they were reseeded in new 24 well 
plates at a density of 1 * 104 cells/well, either the Radius™ 
24 well cell migration assay plate (Cell Biolabs Inc, San 
Diego, CA, USA) or a 8  µm-pore Boyden chamber 
(Cell Biolabs Inc, San Diego, CA, USA). After 24  h, the 
gel plug was removed from the Radius migration assay 
plate, allowing the cells to migrate. To promote migra-
tion of the Beas-2B cells, they were exposed to 20 ng/ml 
IL-6. For cell invasion studies, cell media were removed 
and fresh serum-free media was given to the cells in the 
upper compartment, while to lower compartment con-
tained full serum-containing medium. For Beas-2B cells, 
the lower compartment was also supplemented with 
20 ng/ml IL-6. Cell migration was measured fluorometri-
cally after 12  h, by fixing the cells, staining with PI and 
using the imaging shield which only allows light from the 
original gel plug-covered area to be measured. For cell 
invasion, the assay procedure was performed in accord-
ance with the manufacturer’s instructions.

Statistical analysis
All data are expressed as the mean ± standard devia-
tion (SD). For all experiments, any statistical significance 
between a single condition and untreated control cells 
were analyzed using one-way ANOVA followed by a 
Dunnett post hoc test using Graphpad 6.
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