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Abstract 

Electrophoretic capture of an oversized object on a solid-state nanopore is a useful approach for single-particle 
analyses via post electrical and optical measurements. Here we report on nanoparticle discriminations by the volume 
through combining this nanopore trap method with the cross-membrane ionic current measurements. We investi-
gated ion transport through a pore channel being partially occluded by an electrophoretically-drawn nanoparticle at 
the orifice. We found distinct difference in the amount of current blockage by particles of different sizes. Multiphys-
ics simulations revealed dominant contribution of particle volume over the other properties. We also demonstrated 
single-particle discriminations of two different sizes in a mixture solution. The present results demonstrate that this 
electrical capturing is a promising technique to immobilize a target at a single particle level that concomitantly offer 
wealth of information concerning their volume.
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Introduction
Nanopore analyses are a simple and strong method for 
a particle characterization that enables evaluations of 
various parameters such as the shape, volume, and sur-
face charge density [1–8]. In the measurement, electro-
phoretic entering of analytes into the nanoscale conduit 
causes a short-time decreasing of the cross-pore ionic 
current, and the associated blockade current is used for 
studying the physical characteristics of individual ana-
lytes [9–12]. This method, however, cannot be used for 
repetitive measurements of single-particles unless addi-
tional probes are incorporated to regulate the fast trans-
location motions such as dielectrophoresis [13], optical 
tweezer [14], and a magnetic force [15].

On the other hand, nanopore trap method is a more 
simple and facile strategy for the target immobilization 
at a single-particle level (Fig.  1a) [16, 17]. This method 
utilizes a nanopore with a diameter smaller than that of 
analytes of interest. Unlike conventional resistive pulse 
measurements [18], the targets are not able to pass 

through the pore but become immobilized at the ori-
fice under the applied electrophoretic voltage. Previ-
ous works [16] have proven the ability of discrimination 
between surface charges of equi-sized nanoparticles 
using a low thickness-to-diameter aspect ratio nanop-
ore. Here, in this report, we investigated the feasibility 
of the nanopore trap method for discriminating particles 
by the volume. We repetitively measured the ionic cur-
rent blockage of two nanoparticles having different sizes. 
As a result, larger particles were found to block the ion 
transport more effectively whereby enabled discrimina-
tions of single-particles by the volume. This finding can 
open the prospect for tracing target condition to gain 
wealthy information about the trapped analyte such as in 
the situation of cell growth and shows the advantage in 
the incorporation of additional probes such as tunneling 
current via nanoelectrode employing capability of the 
method as a delivery and capture system [19–22].

Methods
The fabrication process of a nanopore is described 
elsewhere [8, 17]. Briefly, 20  mm × 20  mm sized sili-
con chips constructed with three layers, SiN/Si/
SiN = 50  nm/0.5  mm/50  nm, were used as substrates. 
Through a reactive ion etching (RIE) for removing 
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partial area of SiN layer on one side of the surfaces and 
following anisotropic wet etching of Si in KOH aq., a 
50 nm-thick SiN membrane was prepared. After form-
ing metal patterns (thickness: Cr/Au = 2  nm/30  nm) 
by photolithography, radio-frequency magnetron 
sputtering, and lift off in N, N-dimethylformamide, a 
600 nm-sized pore was excavated using electron-beam 
lithography and RIE (Fig.  1b) in the thin membrane 
through using the metal patterns as markers.

For the nanopore measurements, polydimethylsi-
loxane (PDMS) blocks having microchannels were 
attached on both sides of the chip. Suspension of tar-
get particles was then injected through inlet and out-
let holes penetrated in the polymeric blocks. After the 
injection, Ag/AgCl electrodes were set on the both 
blocks for application of the electrophoretic voltage 
Vb and measuring the ionic current Iion using Keithley 
6487 picoammeter/source (Tektronix, Inc.) under the 
particle trap control by the handmade program using 
Visual Basic 6.0.

As target analyte, two carboxylated-polystyrene par-
ticles (PS-COOH) with diameter 780 nm and 900 nm 
(Fig. 1c, d, Thermo Fisher Scientific, Inc.) are utilized 
after dispersion into TE buffer (10  mM Tris–HCl, 
1 mM EDTA). Their ζ-potentials were measured using 
Zetasizer Nano ZS (Malvern Panalytical Ltd., Zeta-
sizer software ver. 7.12). For each particle, we obtained 
the values of − 73.8  mV and − 68.6  mV, respectively. 
Note that these oversized particles are not capable of 
translocating through a 600 nm pore.

Results and discussions
As shown in Fig.  1a, the principle of a nanopore trap-
ping method is based on a physical blocking of ion trans-
port through a pore channel. The presence or absence 
of the particles at the pore can be checked by monitor-
ing temporal changes in Iion: when a particle is captured, 
the current rapidly decreases due to a partial blocking 
of ion transport through the pore. In trapping, a par-
ticle is floating at a vicinity of the channel as the result 
of balance between electrophoretic force and drag force 
of electroosmotic flow. Both of these forces are propor-
tional to the amplitude of voltage. The resistance of nano-
pore system can be described as a sum of two elements; 
R = Rpore + 2Racc. In this equation, Rpore = 4ρL/πd2

pore and 
Racc = ρ/2dpore with electrical resistivity ρ, pore diameter 
dpore, and thickness L are pore resistance which means 
the component from inside of a pore and access resist-
ance from electrodes to pore orifice, respectively [23–28]. 
In the measurement of Iion using a low aspect ratio nano-
pore, the factor of L/d2

pore in Rpore would approach to zero 
and the total resistance could be approximated as Racc. 
Therefore, the amplitude of current blockades in trapping 
strongly concerns with the volume and the surface charge 
density of entering particles.

Typical ionic current traces during a repetitive nanop-
ore trapping is shown in Fig.  2a and focused in Fig.  2b. 
Before trapping, the pore is fully open and the current 
values represent a constant ionic current Iopen. When a 
particle is captured, the flow of ions is suppressed and 
the drop to Itrap is observed [16, 17, 29]. As complete seal-
ing should lead Iion to zero, the non-zero Itrap indicates 
a particle floating at the vicinity of the pore because of 
the drag force of electroosmotic back flow antagonizing 
to the electrophoretic forces of the negatively-charged 
particle. After trapping, the particle can be released by 
a simple inversion of Vb. The consecutive traces indicate 
long-term stability and reproducibility of the trapping/
detrapping processes.

Figure  3a shows voltage-dependence of Iion in the 
course of trapping processes for the both particles. At 
every Vb conditions tested, bimodal distributions cor-
responding to Iopen and Itrap were obtained. To evalu-
ate the dependence of ionic current suppressions on the 
voltage conditions, the conductance Gtrap = Itrap/Vb was 
derived for the peak value in Fig. 3a. The voltage-depend-
ency of Gtrap for each particle is shown Fig.  3b. Despite 
of the similarity at Vb = 0.2 and 0.3 V. The displacement 
is observed at Vb = 0.1 and 0.4 V indicating further sup-
pression by the particles sized 900  nm. Assuming that 
linear relationship that higher (lower) voltage provide 
stronger (weaker) electrophoretical withdrawal of parti-
cles, this trend is counterintuitive. This diremption could 
be explained by contribution of electroosmotic flow. In 

Fig. 1  a Schematic image of nanopore trapping method and b–d 
scanning microscopic images of pore and particles. b A 600 nm-sized 
nanopore was employed for capturing carboxylated-polystyrene 
particles sized c 780 nm and d 900 nm
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trapping, the particles is at the vicinity of a pore orifice 
sufficiently under electrophoretic force. However, at the 
same time, it enables effective application of dragging 

force of electroosmosis. This exception suggests a shift 
of the equilibrium between the two counteractive forces. 
Consequently, values of Itrap has close relationship with 

Fig. 2  a Typical consecutive current traces of electrophoretic particle trap and b magnified view of a single trace showing open pore current Iopen 
and suppressed Itrap. Trapping/detrapping processes are controlled by inversion of Vb

Fig. 3  Voltage dependence of a current histogram, b occlusion amplitude of single-sized particles. c Current distribution of multiple particles 
trapping
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the position of the trapped particle. In the quantitative 
approach of our previous work [16], the order of these 
forces are nearly equal and electrophoretic force is lit-
tle larger. Hence, electroosmotic flow affect the particle 
position certainly. However, nanopore trapping system 
based on the force-balance is too complicated and further 
studies are needed in order to shed light on the detailed 
estimations. Besides, we also adopted a nanopore trap-
ping method to mixture of these particles (Fig. 3c). From 
current traces, a trimodal histogram was obtained. Each 
peak can be ascribable to Iopen, Itrap1 by the 780 nm-sized 
particle, and Itrap2 that of 900 nm-sized one. For assign-
ment, Itrap was utilized from each value at Vb = 0.3 V. As 
a result, the two values, 10.89 ± 0.20 and 12.17 ± 0.09 nA, 
were acquired as Itrap1 and Itrap2, respectively. Compared 
with the Itrap values of the individual particle measure-
ments in Fig. 3b, Itrap(780 nm) = 10.99 ± 0.21 nA and Itrap(900 

nm) = 11.02 ± 0.27  nA and its potential of particles dis-
crimination is confirmed. The results prove the pos-
sibility of discrimination of captured objects from their 
volume and surface charge properties.

To shed light on the relationship between Itrap and 
positions of a particle, multiphysics simulation was con-
ducted (Fig.  4 and see Additional file  1) [16, 17]. We 
approximate the pore-particle distance (Δd) by compari-
sons between the experimental Itrap with simulated ones. 
Interestingly, we found that under different Vb, the trajec-
tories of particles are quite different. Specifically, in both 
cases, it seems that Δd tends to decrease with the volt-
age. It is inspiring that the shapes of voltage dependency 
of Δd is similar with that of Gtrap. However, in the same 
manner as Gtrap, the displacement also appears in Δd at 

the Vb = 0.2 and 0.3  V. In other words, these particles 
show similar ionic suppression despite of deeper incur-
sion of the particle sized 780 nm. It seems that 900 nm-
sized particle cannot invade into a pore as 780  nm due 
to stronger application of electroosmotic flow, whereas 
lower curvature occupies transport pass for ions more 
effectively. It demonstrates ionic transports inhibited 
equally as a result of commensuration between contribu-
tion of particle curvatures and positions.

For further evaluation of relationship between the 
amplitude of ionic current suppression and blocking fac-
tor; volume and surface charge density, we applied nano-
pore trapping method to various particles (dPS = 0.78, 
0.90 μm (Thermofisher Scientific Inc.) and 0.79, 0.99 μm 
(Polyscience, Inc.). If the surface charge density is the 
dominant factor of ionic current suppression, 0.99  μm 
PS-COOH (ζ-potential: − 81.9  mV) should show the 
smallest Itrap. However, the comparison showing in Addi-
tional file  1: Figure S2 reveals smaller particle which 
has relatively weak charge (dPS = 0.78 and 0.79  μm) can 
block ionic flow more effectively. This means that the 
certain superior of volume in ionic blockade. In addi-
tion, we employed a smaller pore sized 300  nm to trap 
two particles of dPS = 0.49 and 0.52  μm (ζ-potentials: 
− 61.4 and − 62.7  mV, respectively) in 0.4× PBS buffer 
(Additional file  1: Figure S3a). Despite the similarity 
of their ζ-potentials, the smaller particle demonstrates 
larger suppression. This result proves our assumption; 
the dominant cause of target volume on trapping cur-
rent. Furthermore, we also attempted to capture the large 
particles (dPS = 0.78, 0.79, 0.90, and 0.99  μm) using this 
smaller pore (Additional file  1: Figure S3b). In spite of 

Fig. 4  a Particle positions and ionic currents in trapping derived from multiphysics simulations. b The commensuration between contribution of 
particle curvatures and positions at Vb = 0.2 and 0.3 V
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the larger ζ-potentials than two particles trapped steady 
by this pore, the ionic currents in capturing shows great 
fluctuations indicating an incomplete immobilization 
since the effective electrical field is smaller and the con-
tribution of electroosmotic force become large relatively. 
It reveals that the limitation of nanopore trapping is 
depend on the size of analyte.

Conclusion
In conclusion, it was revealed that a nanopore trapping 
method has ability of volume-specific discrimination 
with similarity of surface charge. In the particle trapping 
process using a pore, the factor determining ionic sup-
pression is mixing of surface charge and particle size and 
their priority would appear in the similarity of another. 
The amplitude of ionic flow is reflected a particle proper-
ties of analytes representing a volume and the usefulness 
as status diagnostic method for single-particle is demon-
strated. Besides, contradistinction between similarity of 
ionic blockade and dissimilarity of trajectory indicated 
detail electrokinetic factor in nanoscale. This result also 
suggests the possibility to serve as position modulator of 
micro-nano scale by a simple control of applied voltage 
in liquid condition and provide extensibility of sensing in 
such conditions.

Additional file

Additional file 1. Multiphysics simulation of particle blocking events, 
Distribution of ionic current in trappings of various particles, and Particle 
trapping employing a smaller nanopore.
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