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Abstract 

Background and aims:  Cerium oxide nanoparticles are effective scavengers of reactive oxygen species and have 
been proposed as a treatment for oxidative stress-related diseases. Consequently, we aimed to investigate the 
effect of these nanoparticles on hepatic regeneration after liver injury by partial hepatectomy and acetaminophen 
overdose.

Methods:  All the in vitro experiments were performed in HepG2 cells. For the acetaminophen and partial hepatec‑
tomy experimental models, male Wistar rats were divided into three groups: (1) nanoparticles group, which received 
0.1 mg/kg cerium nanoparticles i.v. twice a week for 2 weeks before 1 g/kg acetaminophen treatment, (2) N-acetyl-
cysteine group, which received 300 mg/kg of N-acetyl-cysteine i.p. 1 h after APAP treatment and (3) partial hepatec‑
tomy group, which received the same nanoparticles treatment before partial hepatectomy. Each group was matched 
with vehicle-controlled rats.

Results:  In the partial hepatectomy model, rats treated with cerium oxide nanoparticles showed a significant 
increase in liver regeneration, compared with control rats. In the acetaminophen experimental model, nanoparticles 
and N-acetyl-cysteine treatments decreased early liver damage in hepatic tissue. However, only the effect of cerium 
oxide nanoparticles was associated with a significant increment in hepatocellular proliferation. This treatment also 
reduced stress markers and increased cell cycle progression in hepatocytes and the activation of the transcription fac‑
tor NF-κB in vitro and in vivo.

Conclusions:  Our results demonstrate that the nanomaterial cerium oxide, besides their known antioxidant capaci‑
ties, can enhance hepatocellular proliferation in experimental models of liver regeneration and drug-induced 
hepatotoxicity.

Keywords:  Liver regeneration, Oxidative stress, Cerium oxide nanoparticles, Partial hepatectomy, Acetaminophen-
induced liver injury

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of Nanobiotechnology

*Correspondence:  morales@clinic.cat
†Bernat Córdoba-Jover and Altamira Arce-Cerezo contributed equally to 
this study
1 Biochemistry and Molecular Genetics Department, Hospital Clínic 
of Barcelona, IDIBAPS, CIBERehd, 170 Villarroel St., 08036 Barcelona, Spain
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9074-2272
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-019-0544-5&domain=pdf


Page 2 of 12Córdoba‑Jover et al. J Nanobiotechnol          (2019) 17:112 

Background
The liver regenerative capability is essential in the success 
of some treatments for chronic liver diseases, such as 
tumor resection and donor liver transplantation, which 
are conditioned by adequate liver regeneration [1, 2]. 
However, there are some clinical situations in which the 
liver shows poor regenerative capacity, such as in the case 
of liver cirrhosis and severe drug-induced liver injury 
(DILI) [3, 4].

One pathological process that is common to these two 
clinical conditions is oxidative stress, which is caused by 
the excessive formation of reactive oxygen species (ROS). 
The presence of oxidative stress has been described in 
most of the clinical conditions associated with chronic 
liver injury (i.e.: nonalcoholic steatohepatitis, hepatitis 
C viral infection, alcoholic liver cirrhosis) [5, 6]. In addi-
tion, recent reports suggest that drug-induced oxidative 
stress also significantly correlate with increased DILI risk 
[7]. Concurrently, the association between high levels of 
oxidative stress and a reduction of antioxidant defenses 
has also been reported in most of these pathological situ-
ations [8, 9]. According to the results obtained by several 
studies, the imbalance between the production of ROS 
and antioxidant defense in some of these liver diseases 
affects liver regeneration [10–12]. One of the reasons 
that explain this ROS effect is that ROS modulates the 
expression of a variety of regulators that play major roles 
in liver regeneration, including growth factors, transcrip-
tion factors and cell cycle proteins such as β-catenin [13], 
cyclin D [14], p53 [15], Nrf2 [16] and JNK/p38 mitogen 
activated kinases [17].

Cerium oxide nanoparticles (CeO2NPs) have drawn 
considerable attention as a potential therapeutic tool in 
the prevention and treatment of oxidative stress related 
diseases. This interest relies on the multi-enzyme 
mimetic properties of CeO2NPs due to their unique elec-
tronic structure [18–20]. At the nanoscale, the oxygen 
vacancies that appear in the CeO2 nanocrystals modify 
their electronic structure enabling them to participate 
as a catalyst in a wide range of reactions (e.g. promoting 
the simultaneous oxidation of Carbon Monoxide (CO) 
and hydrocarbons to CO2 and the reduction of Nitrogen 
Oxides (NOx) to N2 in three way catalytic converters) 
[21]. Similarly, in biological contexts, it has been reported 
that cerium oxide nanoparticles can mimic enzymatic 
antioxidants such as superoxide dismutase [22] and cat-
alase [23]. The beneficial effects of CeO2NPs have been 
reported in different clinical conditions associated with 
excess production of ROS such as neurology [24–27], 
diabetes [28, 29], chronic inflammation [30], cirrhosis 
[31] and cancer [32–34].

Considering the above, we hypothesize that CeO2NPs 
may improve liver regeneration by scavenging ROS in 

regenerative livers. To test our hypothesis we studied 
the hepatic regenerative process using two different rat 
experimental models of liver regeneration that are com-
monly associated with ROS production: partial hepatec-
tomy (PHx) [35, 36] and DILI caused by acetaminophen 
(APAP) overdose. In the last case, the therapeutic effect 
of CeO2NPs was compared with the gold standard treat-
ment for APAP-induced injury, N-acetylcysteine (NAC) 
[4].

Results
Characterization and biodistribution of cerium oxide 
nanoparticles in rats
Cerium oxide nanoparticles (CeO2NPs) were analyzed by 
HR-TEM. The engineered nanoparticles showed spheri-
cal morphology (Fig.  1a, b) and were predominantly in 
the size range of 4 nm. The UV–visible absorption spec-
trum of CeO2NPs showed a characteristic absorption 
peak of Ce4+ at 298  nm (Fig.  1c). The X-ray diffraction 
pattern of the CeO2NPs showed pure CeO2NPs with the 
typical peak broadening characteristic of nanosize parti-
cles (Fig. 1d). Measured zeta potentials of the CeO2NPs 
were (+) 41.2 mV (Fig. 1e). The hydrodynamic diameter 
of the CeO2NPs dispersed in saline solution at pH = 5.5 
was 37 nm (Fig. 1f ). These optimally engineered nanoce-
ria were used further in our animal studies.

Several studies have described that after systemic dis-
tribution small inorganic NPs accumulate in the liver 
and spleen [31, 37]. In agreement, CeO2NPs treated rats 
showed CeO2NPs retention into the liver and, to a lesser 
extent, in spleen as early as 90 min following i.v. injection. 
In these organs and at this time point, CeO2NPs reached 
concentrations of 160.9 μg and 36.0 μg of CeO2NPs per 
gram of tissue, respectively (Fig. 1g). Interestingly, cerium 
was still detected in liver and spleen for over 8  weeks 
although in lower concentrations. CeO2NPs retention 
was barely detected in the lungs and the kidneys of the 
rats at different time points after the intravenous injec-
tion (Fig. 1g).

To investigate the antioxidant properties of CeO2NPs, 
we induced oxidative stress in the hepatocyte cell line 
HepG2 by H2O2 treatment, as previously reported 
[38, 39]. ROS were assessed in these cells by using the 
dichlorofluorescein (DCF) assay [31]. When exposed to 
H2O2, CeO2NPs-treated HepG2 cells showed a signifi-
cant reduction in the accumulation of DCF in compari-
son to that observed in non-treated cells (Fig. 1h).

Rats treated with CeO2NPs showed increased liver 
regeneration and hepatocellular proliferation after PHx
Oxidative stress mediate cell growth arrest and impairs 
hepatic regeneration in mice [13, 14]. Therefore, testing 
new anti-oxidant drugs to improve liver regeneration 



Page 3 of 12Córdoba‑Jover et al. J Nanobiotechnol          (2019) 17:112 

has clinical interest. To this aim, we studied the effect 
of CeO2NPs treatment on liver regeneration after per-
forming PHx in rats. Rats were treated with 0.1  mg/kg 
CeO2NPs intravenously twice a week for 2 weeks before 
PHx. As shown in Fig. 2a, we did not observe any substan-
tial change in body weight between the groups without 
treatment, vehicle treatment, and CeO2NPs treatment. 
Also, we performed liver laboratory tests in rat serum to 
quantify the liver function (glucose and albumin) and the 
liver damage (ALT and AST) in response to the CeO2NPs 

treatment in rats that were fasted for 12  h. We did not 
detect any significant change of these laboratory parame-
ters between vehicle and CeO2NPs treated groups (Addi-
tional file 1: Figure S1). These results support the concept 
that the CeO2NPs pretreatment is safe for the liver and 
is not associated with detectable side effects in the short 
term. Rats were sacrificed 6 days after the surgical proce-
dure and the wet liver remnant weight/total body weight 
ratio was used to calculate the hepatic regenerative 
index. Rats treated with CeO2NPs showed a significant 

Fig. 1  Characterization of cerium oxide nanoparticles. a, b Representative TEM images of CeO2NPs at different magnifications showing the 
non-aggregate and spherical shape of the engineered nanoparticles. Inset in b is a High Resolution TEM image of single particle showing pure 
CeO2 atomic planes; c UV–Visible absorption spectrum of the as-synthesized CeO2NPs; d XRD spectrum of the as-synthesized CeO2NPs after being 
dried under vacuum. e Z-Potential distribution and f Hydrodynamic diameter measured by DLS of the CeO2NPs dispersed in the physiological 
media (saline solution at pH = 5.5); g Cerium concentration in liver, spleen, lung and and kidney from rats treated with CeO2NPs for 90 min, 3, 6 and 
8 weeks (n = 4 for each group). h Oxidative stress was quantified in non-treated and CeO2NPs-treated HepG2 cells by measuring DCF fluorescence 
in basal condition and after inducing oxidative stress with 2 mM H2O2 added to the culture medium (#p < 0.0001 vs basal and *p < 0.0001 vs. 
non-treated, n = 10)
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Fig. 2  CeO2NPs treatment increased liver regeneration and cell proliferation after PHx. a Body weights of control rats without treatment and rats 
that received vehicle or CeO2NPs before PHx (n = 8). b Hepatic regenerative index at day 6 after PHx (n = 8, p < 0.05). c Blood levels of ALT (*p < 0.01), 
AST (*p < 0.05) and LDH (*p < 0.05) in vehicle or CeO2NPs-treated rats after 3 h post-PHx (n = 8; mean ± SEM). d Representative immunostaining 
for the Ki-67 antigen in liver histological sections of rats treated with either vehicle or CeO2NPs at different time points (t = 0 h, 24 h, 48 h, 7 days). 
Merged images show co-localization of Ki-67 (green) and nuclear DNA (DAPI, blue). Original magnification ×200 (n = 8 for each group and 
treatment). On the bottom, percentage quantification of positive Ki-67 liver cells for each time point and treatment (n = 8; mean ± SEM; *p < 0.05 
compared with vehicle at the same time points)
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11% increase in the hepatic regenerative index, com-
pared with vehicle-treated rats (p < 0.05) (Fig.  2b). The 
beneficial effect of CeO2NPs on liver regeneration was 
also accompanied by lower blood levels of alanine ami-
notransferase (ALT), aspartate aminotransferase (AST) 
and the enzyme lactate dehydrogenase (LDH) after 3  h 
post-PHx and compared with the vehicle group (Fig. 2c).

To further investigate the cause through which 
CeO2NPs improves liver regeneration, we assessed the 
expression of the cell proliferation marker Ki67 in liver 
sections of rats treated with nanoparticles. Rats receiv-
ing vehicle or CeO2NPs showed absence of hepatocel-
lular proliferation in resting livers (t = 0  h) (Fig.  2d). 
However after PHx, the remnant liver from rats 
treated with CeO2NPs showed a significant increase 
in Ki67+-hepatocytes at day 1 (*p < 0.05, t = 24  h) that 
reached a maximum at t = 48 h after partial hepatectomy, 
compared with vehicle (44.6 ± 4.5% vs. 38.5 ± 6.7% Ki67+ 
cells, *p < 0.05, t = 48  h); returning to nearly basal levels 
after 7  days (Fig.  2d). Therefore, improvement of liver 
regeneration caused by the CeO2NPs treatment is associ-
ated with enhanced hepatocyte proliferation.

CeO2NPs treated rats showed decreased liver 
damage and increased hepatocellular proliferation 
after acetaminophen‑induced liver injury
The previous results show us the role played by CeO2NPs 
on liver regeneration in the context of basal levels of 
ROS. Next we assessed whether CeO2NPs is equally 
effective after ROS induction caused by APAP toxicity. 
In this experimental model, excessive oxidative stress 
plays a major role in APAP hepatotoxicity [40]. The 
injury induced after 48  h of APAP administration was 
assessed in three experimental groups: rats previously 
treated with CeO2NPs, rats receiving vehicle and rats 
receiving a simultaneous treatment with NAC, which 
is the accepted clinical treatment for APAP overdose. 
Hematoxylin–eosin staining of livers from rats belong-
ing to the vehicle experimental group showed that APAP 
administration induced severe liver injury characterized 
by massive necrosis, hepatocyte vacuolation and vascular 
congestion. Liver injury was significantly reduced in the 
NAC and the CeO2NPs-treated groups, although vascu-
lar congestion was still present in both groups despite the 
NAC and the CeO2NPs treatments (Fig. 3a). As expected, 
APAP treatment induced a significant increase in hepatic 
ROS that was quantified by measuring 4-hydroxynon-
enal in the liver tissue (HNE), a widely accepted marker 
of lipid peroxydation and oxidative damage. Interestingly, 
both NAC (Fig. 3b second bar in the graph) and CeO2NPs 
(Fig.  3b third bar in the graph) are equally effective as 
antioxidant treatments for treating APAP-induced oxi-
dative stress when compared with the vehicle condition 

(Fig. 3b first bar in the graph). Despite sharing beneficial 
antioxidant properties, NAC and CeO2NPs treatments 
differed in their capability of stimulating hepatocellular 
proliferation. The liver from rats treated with CeO2NPs 
showed an extensive positivity for Ki67, compared with 
vehicle and NAC treated rats at day 2 after APAP injec-
tion (40.08 ± 5.04%, 10.70 ± 1.69% and 13.53 ± 3.13% 
Ki67+ cells, respectively; p < 0.05) (Fig. 3c).

We performed additional experiments to character-
ize better the liver injury induced by APAP and the 
degree of recovery of the different experimental groups. 
To this end, we quantified the serum concentration of 
transaminases (ALT, AST), glucose and albumin from 
CeO2NPs-treated and vehicle-treated rats at t = 0  h, 
t = 48  h, and t = 96  h. We found that the concentration 
of transaminases was significantly increased to a similar 
extent in the vehicle and the CeO2NPs-treated groups 
2  days after APAP administration (t = 48  h compared 
with t = 0  h). However, CeO2NPs treatment was associ-
ated with a significant decline in serum ALT, reaching 
basal levels at 96  h after the APAP injection; compared 
with the vehicle group (Additional file 1: Figure S2). This 
recovery phase marker, which is a more specific marker 
of liver injury than AST, points to a more efficient recov-
ery of the CeO2NPs-treated liver after drug-induced liver 
damage.

CeO2NPs treatment stimulates cell cycle progression 
in HepG2 cells and NFκB activation in vitro and in vivo
To ensure the generalization of the finding that CeO2NPs 
improves hepatocyte proliferation in vivo after PHx and 
APAP-induced toxicity in rats, we characterized the 
dynamics of the cell cycle in the human hepatocyte cell 
line HepG2. As shown in Fig. 4a, CeO2NPs treatment sig-
nificantly decreased the percentage of HepG2 cells that 
underwent apoptosis following 48  h of serum starva-
tion, as detected by propidium iodide staining and flow 
cytometry. Moreover, CeO2NPs treatment was associ-
ated with a higher percentage of HepG2 cells that were 
in the G2/M phase of the cell cycle, reflecting the stimu-
latory role played by CeO2NPs on cell cycle progression. 
We further validate these observations in the HepG2 cells 
by quantifying active caspase-3 and cyclin D1 (markers 
of apoptosis and cell cycle progression, respectively). 
CeO2NPs treatment of HepG2 cells reduced the amount 
of activated caspase-3 and increased the levels of cyclin 
D1 following 48 h of serum starvation (Fig. 4b).

The NF-κB/Rel family of transcription factors (NFκB) is 
a central hub of signaling pathways that regulates apopto-
sis and cell proliferation. In addition, the activity NFκB 
is modulated by ROS [41–43]. These confluent evidences 
let us to assess whether the activity of NF-κB is affected 
by the CeO2NPs treatment in vitro and in vivo. In HepG2 
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Fig. 3  CeO2NPs treatment reduces histological damage and increases cell proliferation after APAP-induced injury. a Hematoxylin-eosin stained 
liver sections (n = 13). After vehicle or CeO2NPs treatments, rats received 1 g/kg APAP and were sacrificed after 48 h (vehicle + APAP and 
CeO2NPs + APAP, respectively). Another group was treated with 300 mg/kg NAC 1 h after APAP (NAC + APAP). Also, healthy non-treated rats were 
included as experimental controls (upper left panel), ×100. b Quantification of HNE in liver from vehicle + APAP, NAC + APAP and CeO2NPs + APAP 
groups (n = 13; mean ± SEM; *p < 0.05). c Immunostaining for Ki-67 in liver of rats treated with vehicle + APAP, NAC + APAP and CeO2NPs + APAP. 
Ki-67 (green) and DAPI (blue), ×200. On the right, quantification of Ki-67 positive cells (n = 13; mean ± SEM; *p < 0.05)

Fig. 4  CeO2NPs stimulates cell cycle progression and NF-κB activation. a Flow cytometry of HepG2 showing cell cycle profiles from propidium 
iodide DNA staining after vehicle or CeO2NPs treatment (n = 5; #p < 0.01 and *p < 0.05). b Western blot for activated caspase 3 and cyclin D1 
abundance from HepG2 incubated with vehicle or CeO2NPs. β-actin was used as loading control (mean ± SEM; n = 5; *p < 0.05 versus vehicle in the 
same experimental condition). O.D.: optical density. c Western blot for IκBα abundance from HepG2 (mean ± SEM; n = 5; *p < 0.05). d Transcription 
factor immunosorbent assay for NF-κB (p65) activity in HepG2 (n = 5, *p < 0.05). e Western blot for IκBα abundance in the liver vehicle and 
CeO2NPs-treated rats before and 3 h post-PHx (mean ± SEM; n = 5; #p < 0.01)

(See figure on next page.)
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cells treated with CeO2NPs, the abundance of IκBα (that 
function as an inhibitor of NFκB) significantly decreased 
when compared to vehicle-treated HepG2 cells (p < 0.05) 
(Fig.  4c). Next, the transcriptional activity of NF-κB 
was assessed by detecting specific p65 DNA binding in 
nuclear extracts from CeO2NPs treated and non-treated 
HepG2 cells. As shown in Fig. 4d, CeO2NPs treated cells 
showed increased p65 transcriptional activity compared 
with non-treated HepG2 cells (p < 0.05). We next investi-
gated whether the described stimulation of NF-κB activ-
ity by CeO2NPs was also detected in regenerative livers 
in  vivo. Before PHx, there were no differences in the 
expression of IκBα in the livers from vehicle or CeO2NPs 
treated rats. However, and in agreement with the results 
obtained in HepG2, the abundance of IκBα was signifi-
cantly lower in the livers from CeO2NPs treated rats 3 h 
after PHx, compared with the group of rats receiving 
vehicle (p < 0.01) (Fig. 4e).

Discussion
We previously described that CeO2NPs showed hepato-
protective activity in  vivo against fibrosis [31]. Another 
study also demonstrated the beneficial effects of these 
nanoparticles against hepatic oxidative damage caused by 
the pyrrolizidine alkaloid monocrotaline, which causes 
oxidative vascular damage in the liver [44]. Consider-
ing this hepatoprotective role of CeO2NPs, we further 
investigated whether these nanoparticles might also 
stimulate other hepatoprotective functions, such as liver 
regeneration. In the present study we describe for the 
first time that CeO2NPs stimulate liver regeneration in 
the rat experimental models of partial hepatectomy and 
DILI caused by acetaminophen overdose. Consistently 
with this observation, we demonstrated that CeO2NPs 
treatment decreases liver damage after PHx and APAP-
induced liver injury. The treatment with CeO2NPs also 
leads to the reduction of oxidative stress markers and 
stimulates the cell cycle progression in hepatocytes and 
the activation of the transcription factor NF-κB in vitro 
and in vivo.

It is known that excess of oxidative stress inhibits effi-
cient regeneration after partial hepatectomy or acute 
liver failure caused by DILI. For example, the genetic 
deficiency of Nrf2 (a regulator of the cellular antioxidant 
response) and UCP2 (an uncoupling protein of the elec-
tron transport chain) cause enhanced oxidative stress 
and impaired liver regeneration in partially hepatecto-
mized mice [43]. Moreover, oxidative cellular damage in 
mitochondria and DNA is associated with deficient liver 
regeneration after acetaminophen toxicity [45]. There-
fore, several strategies have been investigated by others to 
diminish ROS in the context of liver regeneration in pre-
clinical models. For example, thymoquinone, an essential 

oil with free radical scavenging capacity, protects rat liver 
against ischemia/reperfusion injury [46] and prevents 
liver injury in hepatectomized mice under I/R by blunt-
ing oxidative stress, mitochondrial damage, endoplasmic 
reticulum stress and apoptosis [47]. Exogenous admin-
istration of GSH or resveratrol significantly decreased 
oxidative stress and protect against APAP-induced liver 
injury [48, 49]. Similarly, pharmacological inhibition of 
JNK activity, which enhances mitochondrial-derived 
ROS production upon APAP toxicity, reduced liver dam-
age [50]. Some drugs approved for its clinical use in dif-
ferent pathologies have also been tested pre-clinically 
for APAP hepatotoxicity. Both methylene blue and met-
formin reduced mitochondrial oxidant stress [51] and 
protected against APAP liver injury [52].

Our study has potential limitations regarding the 
APAP-induced toxicity model in rats. It has been shown 
that rats are more resistant to acetaminophen damage 
than mice [53]. Despite this observation, the presence 
of oxidative stress in the APAP-induced toxicity model 
in rats has broadly been demonstrated [54–56], regard-
less of the severity of the injury between species. There-
fore, this experimental model in rats is still valid to test 
the antioxidant properties of CeO2NPs treatment on 
liver regeneration after drug-induced injury. Regarding 
the metabolism of APAP in the rat liver, we found in our 
study that the concentration of transaminases was sig-
nificantly increased to a similar extent in the vehicle and 
the CeO2NPs-treated groups 2  days after APAP admin-
istration. This result confirmed that there is significant 
toxicity induced by APAP overdose in our experimental 
rat model and that the CeO2NPs pretreatment does not 
modify the metabolism of APAP in the liver. Neverthe-
less, the quantification of an intermediary metabolite of 
APAP (i.e., N-acetyl-p-benzoquinone imine) would have 
supported more robustly this conclusion.

Our study presents an innovative treatment for 
diminish ROS in the context of liver regeneration using 
nanoparticles. Some of the advantages of using CeO2 
nanomaterials over the traditional anti-oxidative drugs 
are: (1) minimal toxicity in cumulative doses [57, 58], 
(2) the multi-enzyme mimetic activities of CeO2NPs, 
which targets several sources of ROS generation and (3) 
the continuous regeneration of the CeO2NPs catalytic 
activity, which avoids the exhaustion of its anti-oxidative 
properties [58]. Among these theoretical benefits over 
traditional drugs, we also observed superior therapeutic 
performance compared with the gold standard treatment 
used for acetaminophen toxicity in patients, NAC. In our 
study, CeO2NPs treatment is equally effective reducing 
oxidative stress and tissue damage in rats receiving APAP 
overdose compared with NAC. However, while NAC 
did not affect hepatocyte proliferation in injured livers, 
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CeO2NPs robustly increased cell proliferation in vivo and 
in  vitro. In addition, we observed a significant decrease 
in the percentage of CeO2NPs-treated HepG2 cells that 
underwent apoptosis following 48 h of serum starvation, 
suggesting that the anti-apoptotic effect associated to the 
nanoceria treatment may also contribute to enhance liver 
regeneration.

NF-κB plays a major role in liver homeostasis and liver 
regeneration. For instance, NF-κB (p65) knockout mice 
show embryo lethality and display massive hepatocyte 
apoptosis [59]. In addition, the transduction of rat livers 
with different forms of IκB, an inhibitor of NF-κB activ-
ity, before PHx was associated with impaired liver regen-
eration [60]. Furthermore, the inactivation of NF-κB 
in Kupffer cells as well as in hepatocytes impaired the 
regenerative process after PHx [61]. Here, we demon-
strated that the treatment with CeO2NPs lead to the 
activation of the transcription factor NF-κB in vitro and 
in vivo. Our results are not sufficient to establish a robust 
link between NF-κB activation and the beneficial effects 
of CeO2NPs treatment on liver regeneration yet. How-
ever, the agreement between our findings and the studies 
mentioned above make this relationship plausible.

It has been described that oxidative stress can inhibit 
the transcriptional activity of NFκB through different 
mechanisms including direct interaction with NF-κB, 
inactivation of IKK (an IκB repressor), and alternative 
inhibitory phosphorylation of IκBα [41]. Our in vitro and 
in vivo results showed that CeO2NPs are associated with 
a significant decrease in the intracellular IκBα content, 
which is translated in the activation of NF-κB. Therefore, 
our findings suggest that the anti-oxidant property of 
CeO2NPs is responsible for the increase in NF-κB acti-
vation. However, our results are in disagreement with 
other studies which have shown that CeO2NPs treatment 
inhibits NF-κB in vivo mostly in the pathological context 
of sepsis [62–64]. One of the reasons that may explain 
the seemingly contradictory findings is differences in the 
CeO2NPs stability used in these studies, what has been 
recently recognized as key in order to employ CeO2NPs 
for medicine [22]. In addition, these studies used higher 
in  vivo doses of CeO2NPs compared with ours (from 
0.5  mg/kg to 3.5  mg/kg b.w. compared with 0.1  mg/kg 
b.w.). Our previous dosage standardization experiments 
[31] indicate that at higher doses CeO2NPs shows a hor-
metic-like dose response characterized by an increasing 
dose inefficacy in ROS scavenging.

Conclusions
In summary, drug-induced hepatotoxicity and impaired 
liver regeneration are major concerns in medical practice 
as they are leading causes of acute liver failure and liver 
transplantation. Our results demonstrated that CeO2NPs, 

besides their known antioxidant capacities, can enhance 
liver regeneration in experimental models that replicate 
these two clinical scenarios. Hence, CeO2NPs treatment 
may provide avenues to overcome deficient liver regen-
eration in patients.

Methods
Synthesis and characterization of CeO2NPs
CeO2NPs were synthesized by the chemical precipita-
tion of cerium (III) nitrate hexahydrated (Sigma-Aldrich, 
St. Louis, MO, USA) in aqueous solution, as reported 
elsewhere [19]. Controlling the pH of synthesis, small-
sized nanoceria can be obtained. Here, we used 4  nm 
nanoparticles at a concentration of 1 mg/mL. The surface 
charge of the NPs was characterized by the Z-potential 
in a Z-sizer (Malvern, Worcestershire, UK) while the 
crystal size was characterized by High Resolution Trans-
mission Electron Microscopy (HR-TEM) in the Tecnai 
G2 F20 (FEI, Oregon, USA). Nanocrystalline morphol-
ogy and composition was analyzed by HR-TEM (Tecnai 
200  kV) and XRD (Xpert Pannalytical, MA, USA), and 
the light interaction by UV–VIS spectroscopy (Shimatzu, 
Kyoto, Japan). Size distribution was computer analyzed 
by ImageJ (National Institutes of Health, Bethesda, MD, 
USA). CeO2NPs were stabilized with Tetramethylammo-
nium hydroxide (TMAOH), which was used as vehicle 
in all the experiments as a control condition, and kept at 
4 °C until use. Prior to the animal studies, 15 µL from the 
nanoparticles solution were dispersed on a copper grid 
coated with a formvar film. The samples were then let to 
dry for TEM observation and digital photomicrographs 
were taken (BioScan Gatan, CA, USA). Free CeO2NPs 
samples available for evaluation if requested.

Animal experimentation and In vivo CeO2NPs treatment
This study was performed in male Wistar rats (Charles-
River, Saint Aubin les Elseuf, France). Rats were fed with 
standard chow diet and housed on a 12 h light/12 h dark 
cycle. For each experiment of this study, treated rats were 
administered 0.1  mg/kg CeO2NPs dispersed in saline 
solution as a bolus (500 μL), given intravenously through 
the tail vain twice a week for 2  weeks. Control groups 
without treatment and treated with vehicle (TMAOH) 
were also included in the study. At the end of each exper-
iment rats were euthanized by isoflurane anesthesia 
overdose.

CeO2NPs tissue quantification
For tissue quantification, at the end of the 2 weeks treat-
ment, rats were euthanized at days 1, 21, 42, and 56 
(90  min, 3, 6 and 8  weeks respectively) and their livers, 
spleens, lungs and kidneys dissected and kept at − 80 °C 
for further analysis. For CeO2NPs quantification, samples 
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were diluted in an aqueous solution of HNO3 2% w/w 
(Trace Metal Basis; Sigma-Aldrich, St. Louis, MO, USA) 
and analyzed for cerium concentration by inductively 
coupled plasma mass spectrometry (ICP-MS, Agilent 
7500; Agilent Technologies, California, USA). The quan-
titative results were obtained by interpolation in a stand-
ard curve obtained from a commercial 1000  ppm Ce 
standard (Sigma-Aldrich, St. Louis, MO, USA).

Reactive oxygen species quantification
Reactive oxygen species were measured by fluorescence 
spectrophotometry using 2′,7′-DCF-DA as a probe. 
For these experiments, HepG2 cells alone or treated 
with H2O2 in the presence or absence of CeO2NPs were 
washed with phosphate-buffered saline (PBS) and incu-
bated with 10  μM DCF-DA (Thermo Fisher Scientific, 
Waltham, MA, USA) in Dulbecco’s modified Eagle 
medium (DMEM) for 40  min at 37  °C in the dark. The 
supernatant was collected to measure the extracellular 
production of ROS, and the intensity of fluorescence was 
immediately read in a fluorescence spectrophotometer 
(FLUOstar Optima; BMG Labtech, Ortenberg, Germany) 
at 485 nm for excitation and at 520 nm for emission.

In vitro CeO2NPs treatment
The human cell line HepG2 (a suitable in vitro model sys-
tem for the study of polarized human hepatocytes) was 
obtained from the American Type Culture Collection 
(ATCC; Manassas, VA, USA). HepG2 cells were cultured 
and maintained in DMEM containing 10% FBS, 100 U/
mL penicillin and 100 μg/mL streptomycin at 37 °C in a 
humidified atmosphere containing 5% CO2. Cells were 
serum-starved and treated with 0.1 mg/mL CeO2NPs, or 
vehicle as a control condition, for 48 h.

Measurement of NF‑κB activation
NF-κB activity in HepG2 cells was measured using a 
NF-κB Transcription Factor Assay Kit (specific for p65), 
following the manufacturer’s instructions (Cayman 
Chemical, Ann Arbor, MI, USA). To this end, nuclear 
extracts from HepG2 were incubated with double 
stranded DNA immobilized in a 96-well plate that con-
tained the κB response motif site. The complex p65-DNA 
was detected by enzyme-linked immunosorbent assay 
using specific primary antibody directed against p65 and 
a secondary antibody conjugated to HRP. The results 
were quantified by measuring absorbance at 450 nm in a 
FLUOstar Optima (BMG Labtech, Ortenberg, Germany).

Statistical analysis
Quantitative data were analyzed using GraphPad Prism, 
version 6 (GraphPad Software, Inc., San Diego, CA, 

USA) and public libraries from The Comprehensive R 
Archive Network (CRAN; http://CRAN.R-proje​ct.org) 
rooted in the open source statistical computing envi-
ronment R, version 3.4 (http://www.R-proje​ct.org/). 
The statistical analysis of the results was performed 
using unpaired Student’s t-tests and ANOVA models 
(with Tukey’s post hoc test) with normally distributed 
data. For other type of data, the Mann–Whitney U-test 
and the Kruskal–Wallis tests (with Dunn post hoc test) 
were used. Results are expressed as mean ± sem and 
considered significant at a p value lower than 0.05.

Additional Materials and Methods are shown in 
Additional file  1. Free CeO2NPs samples available for 
evaluation if requested.
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