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extracellular vesicle‑microRNA signature 
as a minimally invasive predictor of risk 
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Abstract 

Background:  Breast cancer (BC) is the most frequently diagnosed cancer and the leading cause of cancer-associated 
deaths in women. Recent studies have indicated that microRNA (miRNA) regulation in genomic instability (GI) is asso-
ciated with disease risk and clinical outcome. Herein, we aimed to identify the GI-derived miRNA signature in extracel-
lular vesicles (EVs) as a minimally invasive biomarker for early diagnosis and prognostic risk stratification.

Experimental design:  Integrative analysis of miRNA expression and somatic mutation profiles was performed to 
identify GI-associated miRNAs. Then, we constructed a discovery and validation study with multicenter prospec-
tive cohorts. The GI-derived miRNA signature (miGISig) was developed in the TCGA discovery cohort (n = 261), and 
was subsequently independently validated in internal TCGA validation (n = 261) and GSE22220 (n = 210) cohorts for 
prognosis prediction, and in GSE73002 (n = 3966), GSE41922 (n = 54), and in-house clinical exosome (n = 30) cohorts 
for diagnostic performance.

Results:  We identified a GI-derived three miRNA signature (MIR421, MIR128-1 and MIR128-2) in the serum extracellular 
vesicles of BC patients, which was significantly associated with poor prognosis in all the cohorts tested and remained 
as an independent prognostic factor using multivariate analyses. When integrated with the clinical characteristics, 
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Background
Breast cancer (BC) is one of the most commonly diag-
nosed cancer types, accounting for 30% of all new can-
cer diagnoses in women. The incidence rate of BC has 
remained generally stable over the past few decades [1]. 
Despite the recent improvements in detection meth-
ods and therapeutic choice, BC remains a significant 
public health issue worldwide, and the clinical outcome 
of patients varies markedly due to the stage at diagno-
sis and molecular subtype [2]. Classic clinicopathologi-
cal features, including tumor size, histological subtypes 
and grades, lymphatic invasion, lymph node metastasis, 
estrogen receptor (ER), progesterone receptor (PR), and 
human epidermal growth factor receptor 2 (HER2) have 
effective value in guiding clinical decisions; Serum tumor 
markers, such as carcinoembryonic antigen (CEA), can-
cer antigen 19-9 (CA19-9), cancer antigen 125 (CA125), 
cancer antigen 15-3 (CA15-3), have been typically used 
for follow-up monitoring [3, 4]. However, BC patients are 
still faced with variable biological and clinical behaviors, 
due to high molecular and cellular heterogeneity [5, 6]. 
Therefore, it is urgently needed to identify reliable and 
robust biomarkers to enhance early risk detection and 
prognosis prediction with minimal invasion for improv-
ing clinical management and treatment decision-making 
for BC patients.

Genomic instability (GI) is defined as a process in 
which genomic changes are prone to increase and can 
influence the phenotype [7, 8], and has been recognized 
as an evolving hallmark or characteristic of most types 
of cancer [9]. GI promotes inter- and intra-tumor het-
erogeneity and is a major driving force for cancer cells 
to survive, proliferate, and disseminate [10]. Frequent GI 
was commonly observed in BC cells, including numeri-
cal and structural genomic changes [11, 12]. The molecu-
lar basis of GI in BC has not been fully elucidated, and 
BC can be characterized by vast GI-derived heterogene-
ity; therefore, understanding the molecular basis of GI 
in BC would not only enable the molecular etiology and 
pathobiology of BC to be determined, but also to develop 

improved cancer prevention, diagnosis, and prognosis 
methods [13, 14].

MicroRNA (miRNA) is a type of small, evolutionar-
ily conserved, single-stranded, non-coding RNA, that 
induces mRNA degradation or translational repres-
sion by completely or incompletely binding to the target 
mRNA [15–17]. Accumulating evidence has highlighted 
the important roles of miRNAs, as crucial master regu-
lators of various biological processes, including cell dif-
ferentiation, development, and homeostasis [18, 19]. 
Deregulation of miRNA function plays a vital role in can-
cer pathogenesis [20–23]. Previous studies have revealed 
that several miRNAs are involved in enhancing GI by 
impairing DNA repair or preventing GI by enhancing the 
response to DNA damage [24]. In addition, GI may be 
mediated by horizontal transfer of tumor-derived macro-
molecules, such as miRNAs, via EVs [25]. Whether these 
alterations of GI-associated miRNAs can be detected in 
EVs, and therefore have clinical utility as promising mini-
mally invasive biomarkers in BC, however, has not been 
investigated.

In this study, we aimed to identify miRNAs involved 
in GI based on the mutator hypothesis by integrating 
expression and somatic mutation profiles, and develop a 
GI-derived miRNA signature (miGISig) for early diagno-
sis and prognosis prediction of BC patients. In addition, 
we also uncovered the functional roles of the newly iden-
tified three miRNAs in the regulation of GI and finally, 
we assessed the use of the miGISig, as a minimally inva-
sive biomarker in circulating exosomes to identify BC 
patients from asymptomatic controls.

Results
Identification of GI‑associated miRNAs in BC
Differential analysis of miRNA expression was per-
formed between the GU-like and GS-like groups using 
TCGA-BC cohort, in which, 18 differentially expressed 
miRNAs (DEmiRNAs) were identified (Additional 
file 1: Table S4). Among them, 14 and 4 miRNAs were 
found to be up- and downregulated, respectively, in 
the GS-like tumors compared with that in the GU-
like tumors. The unsupervised hierarchical clustering 

the composite miRNA-clinical prognostic indicator showed improved prognostic performance. The miGISig also 
showed high accuracy in differentiating BC from healthy controls with the area under the receiver operating charac-
teristics curve (ROC) with 0.915, 0.794 and 0.772 in GSE73002, GSE41922 and TCGA cohorts, respectively. Furthermore, 
circulating EVs from BC patients in the in-house cohort harbored elevated levels of miGISig, with effective diagnostic 
accuracy.

Conclusions:  We report a novel GI-derived three miRNA signature in EVs, as an excellent minimally invasive bio-
marker for the early diagnosis and unfavorable prognosis in BC.

Keywords:  Breast cancer, Genomic instability, Extracellular vesicle, Exosomes, microRNA
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analysis based on the expression level of the 18 DEmiR-
NAs produced two patient clusters: a GS-like cluster 
(n = 318) and a GU-like cluster (n = 204), respectively 

(Fig.  1a). There was a significantly high frequency of 
somatic mutations in the GU-like group compared 
with that in the GS-like group (median value 57.5 vs. 
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Fig. 1  Identification and functional characterization of GI-associated miRNAs in BC patients. a Unsupervised clustering of 522 BC patients based on 
the expression pattern of 18 DEmiRNAs. The left purple cluster is GS-like group, and the right khaki cluster is GU-like group. Violin diagram of CSPM 
burden (b), UBQLN4 expression level (c) and aneuploidy scores (d) in the GU-like group and GS-like group. Horizontal lines: median values. Statistical 
analysis was performed using the Mann–Whitney U test. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001. e, f. Functional enrichment analysis of 
KEGG and GO for target genes of miRNA. G. Kaplan–Meier estimates of overall survival of patients in the GU-like group and GS-like group. HRs and 
95% CIs for high vs. low miGISig score was estimated using the univariate Cox analysis. P values comparing risk groups were calculated with the 
log-rank test. BC breast cancer, CIs confidence intervals, GI Genome instability, CSPM cumulative somatic point mutation, GO Gene Ontology, GS 
genomically stable, GU genomically unstable, HRs Hazard ratios, KEGG Kyoto Encyclopedia of Genes and Genomes
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29; P < 0.001, Mann–Whitney U test; Fig.  1b). Mean-
while, the expression level of the UBQLN4 gene and 
aneuploidy score in the GU-like group was signifi-
cantly higher compared with that in the GS-like group 
(P < 0.001, Mann–Whitney U test; Figs.  1c and 1d). 

Functional enrichment analysis of the 18 DEmiRNAs-
specific mRNA targets identified several enriched 
biological processes and pathways (Figs.  1e and 1f ), 
including transforming growth factor (TGF)-β, regula-
tion of transcription, negative regulation of G1/S transi-
tion of mitotic cell cycle and cellular response to DNA 
damage stimulus, and the Notch signaling pathway, 
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Fig. 2  Development and validation of the miGISig in prognostic risk stratification. Kaplan–Meier estimates of OS or DRFS of patients with low or 
high miGISig score in the discovery cohort (a), internal testing cohort (b) and GSE22220 cohort (c). HRs and 95% CIs for high vs. low miGISig score 
were estimated using the univariate Cox analysis. P values comparing risk groups were calculated with the log-rank test. Violin diagram of CSPM 
burden and aneuploidy scores in the low risk group and high risk group in TCGA-BC cohort (d) and in the GS-like group and GU-like group in 
TCGA-OV cohort (e). Statistical analysis was performed using the Mann–Whitney U test. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001. BC breast 
cancer, CIs confidence intervals, CSPM cumulative somatic point mutation, DRFS Distant relapse-free survival, GI Genome instability, GS genomically 
stable, GU genomically unstable, HRs Hazard ratios, OS overall survival
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which are all known to be GI-related biological path-
ways. Furthermore, there was a significant difference in 
OS time between the GU-like and the GS-like groups 
(median OS, 11.7 vs. > 16 years; P = 0.027, log-rank test; 
Fig. 1g). These results suggested that the 18 DEmiRNAs 
were involved in GI and associated with BC patients’ 
prognosis. 

Development and validation of a GI‑derived miRNA 
signature for prognostic risk stratification
We first analyzed the panel of 18 GI-related miR-
NAs using the univariate and multivariate Cox pro-
portional hazard regression analysis in the TCGA 
discovery cohort and identified three-miRNA sig-
nature (hereafter referred to as miGISig) as fol-
lows: miGISig score = (0.501 × expression level of 
MIR421) + (0.6808 × expression level of MIR128-
1) + (− 0.3617 × expression level of MIR128-2) (Addi-
tional file  1: Table  S5). When stratified by the optimal 
cut-off value (cut-off, 0.516), the miGISig demonstrated 
significant prognostic value, as shown by the Kaplan–
Meier curves of the risk groups, with high miGISig 
demonstrating poor prognosis (HR = 5.350, 95% CI 
1.616–17.710; P = 0.002, log-rank test; Fig.  2a). The 
5-year OS rates for miGISig-driven low-risk and high-
risk groups were 94.8 and 63.5%, respectively. The prog-
nostic value of the miGISig was subsequently validated in 
multiple independent datasets, which were in agreement 
with the findings driven from the initial TCGA discov-
ery cohort. The miGISig achieved significant or mar-
ginally significant discrimination for the survival time 
(internal testing cohort, P = 0.048, and GSE22220 cohort, 
P = 0.075, log-rank test; Fig. 2b, c). These results demon-
strated the robust performance of the miGISig in predict-
ing unfavorable prognosis in BC patients.

Next, we further examined the relationship between 
miGISig and CSPM burden, and aneuploidy score. In 
the TCGA-BC cohort, the CSPM burden and aneuploidy 
score of patients in the high-risk group was significantly 
higher compared with that in patients in the low risk-
group (median somatic mutations 56 vs. 34, P < 0.001; 
and median aneuploidy score 14 vs. 9, P = 0.002; Mann–
Whitney U test; Fig. 2d). One of the core features of OV 
is GI. The miGISig score of TCGA-OV patients was cal-
culated, the same used in the TCGA-BC cohort. These 
patients were then classified into the GU-like and GS-like 
groups based on the median score of miGISig. There was 
a similar trend as in BC, with significantly higher CSPM 
burden and aneuploidy score in the GU-like group com-
pared with that in the GS-like group (median somatic 
mutations 77 vs. 59.5, P < 0.001; and median aneuploidy 
score 14.5 vs. 13, P = 0.033; Mann–Whitney U test; 

Fig. 2e). These results highlighted the association of the 
miGISig with GI.

Association between the miGISig and clinical 
characteristics
We first compared the clinical characteristics between 
the miGISig-derived high-risk and low-risk groups, and 
found that ER, PR and TP53 mutations were significantly 
different (Additional file 1: Table S6). Patients with high 
miGISig were more likely to be characterized as ER-/
PR-negative and high TP53 mutation, whereas patients 
with ER-/PR-positive and low TP53 mutation rates were 
enriched in the miGISig-derived low-risk group, suggest-
ing that the miGISig was additionally associated with 
known prognostic factors. Therefore, to further examine 
whether the prognostic value of the miGISig was inde-
pendent of these common clinicopathological factors, the 
performance of miGISig was tested compared with com-
mon clinical variables, using multivariate analysis. The 
results demonstrated a significant association between 
miGISig and poor prognosis when adjusted for the vari-
ous clinical factors in all BC cohorts, indicating that the 
miGISig was an independent predictor of poor prognosis 
(Additional file 1: Figure S1).

Establishment of a composite miRNA‑clinical prognostic 
indicator
To further improve the prognostic performance, we 
combined the miGISig with stage and age to fit a multi-
variate cox regression model in TCGA discovery cohort 
and established a composite miRNA-clinical prognostic 
indicator (CMCPI) calculated as (0.069 × age) + (0.527 
× stage) + (1.363 × miGISig score). The median CMCPI 
score of the discovery cohort was used as a cut-off value 
for stratifying patients. Remarkably, the CMCPI was sig-
nificantly associated with prognosis in all BC cohorts, 
and the CMCPI-derived high-risk group had signifi-
cantly shorter survival times compared with patients in 
the CMCPI-derived low-risk group (HR = 13.107, 95% 
CI 1.657–103.700, P = 0.002 for TCGA discovery cohort; 
HR = 4.906, 95% CI 1.099–21.900, P = 0.022 for the inter-
nal testing cohort, and HR = 3.136, 95% CI 1.833–5.367, 
P < 0.001 for the GSE22220 cohort; Fig. 3a–c).

We further compared the CMCPI with the miGISig, 
age and stage in all BC cohorts. The CMCPI achieved sig-
nificantly improved survival estimation with 5-year ROC 
AUC of 0.88, 0.73 and 0.70 compared with age, stage and 
miGISig alone in all BC cohorts, respectively (Fig. 3d–f). 
These results further strengthened the clinical signifi-
cance of the miGISig in combination with additional 
important clinical features, with effective predictive per-
formance in predicting poor prognosis in BC patients.
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Minimally invasive diagnostic value of the miGISig for BC
In addition, we next examined the performance of the 
miGISig for risk assessment of BC. We first performed 
comparative expression analysis for MIR421, MIR128-
1 and MIR128-2 between tumors and healthy controls. 
The three miRNAs had significantly higher expression 
in breast tumors compared with that in healthy controls 
in TCGA, GSE73002 and GSE41922 cohorts (Fig. 4a–c), 
which indicated their oncogenic roles in BC develop-
ment and highlighted the potential of the miGISig for the 
risk assessment of BC. Therefore, we assessed the diag-
nostic accuracy of the miGISig in detecting BC patients. 
The miGISig could effectively differentiate BC from 
healthy controls in TCGA (AUC = 0.772), GSE73002 
(AUC = 0.915) and GSE41922 (AUC = 0.794) cohorts, 
despite the absence of MIR-128-2 in the GSE41922 
cohort (Fig. 4d–f), demonstrating the reliable and robust 
performance of the miGISig in BC risk prediction.

To further investigate the clinical adaptability of the 
miGISig as a potential minimally invasive diagnostic bio-
marker, we next analyzed the expression level of these 

miRNAs in circulating exosomes from our in-house clini-
cal cohort of 30 samples using small RNA-seq. Compared 
with that in healthy individuals, the expression level of 
exosomal miR-128 and miR-421 were significantly higher 
in the serum of BC patients (P = 0.003 for miR-128 and 
P = 0.002 for miR-421, Mann–Whitney U test; Fig.  4g). 
In addition, we evaluated the diagnostic value of exoso-
mal miR-128 and miR-421 using ROC analysis, which 
revealed that both exosomal miR-128 (AUC = 0.825) and 
miR-421 (AUC = 0.835) were significant predictors of BC 
risk (Fig.  4h). Furthermore, the expression levels were 
also significantly higher in BC patients with stage I for all 
the miRNAs tested (Figure S2A). BC patients with stage I 
were distinguished from healthy individuals with an AUC 
of 0.809 and 0.773 for miR-421 and miR-128, respectively 
(Additional file 1: Figure S2B). Taken together, our results 
validated and confirmed the in silico findings from public 
BC datasets and highlighted that the miGISig could serve 
as a minimally invasive diagnostic biomarker for early 
risk assessment of BC in the clinic.
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Overexpression of the miGISig increases genomic 
instability by inducing an S‑phase arrest and promotes 
the growth of breast cancer cells.
Since multi-nuclei and micro-nuclei are biomarkers 
of genotoxic and chromosomal instability [26, 27], we 
detected the frequency of multi-nuclei and micro-nuclei 
following overexpression of the three miRNAs. We first 
detected the expression level of miR-128-1, miR-128-2, 
and miR-421 in BC cells and healthy human mammary 
epithelial cells, 184A1 and MCF-10A, and then selected 
the genomically unstable aneuploid, MDA-MB-231 cell 

line with a low-level expression of the three miRNAs 
to perform the following experiments (Fig.  5a). miR-
NAs mimics were transfected into MDA-MB-231 cells 
and cultured for 48  h, and the expression level of miR-
128-1, miR-128-2 and miR-421 was markedly increased 
(Fig.  5b). Using a high-content system, we showed that 
overexpression of miR-128-1, miR-128-2 and miR-
421 spontaneously increased the proportion of multi-
nuclei and micro-nuclei in the MDA-MB-231 cell line 
(25, 31 and 22% in the miR-128-1, miR-128-2 and miR-
421, groups, respectively, vs. 18% in the control group) 
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(Fig.  5c). Since GI can result from defects in cell cycle 
regulation [28–33], we examined whether the overex-
pression miR-128-1, miR-128-2 and miR-421 lead to the 
aberrant cell cycle progression. FACS analysis showed 
that the proportion of cells in the S phase increased, 
while the number of cells in G2/M phase decreased fol-
lowing the overexpression of the three miRNAs using 
mimics in the MDA-MB-231 and MCF-7 cell lines 
(Fig. 5d and Additional file 1: Figure S3A and S3B). Con-
sistent with these results, the CCK-8 assay demonstrated 
that the proliferative ability of the MDA-MB-231 and 
MCF-7 cell lines was significantly increased following the 
overexpression of miR-128-1, miR-128-2 and miR-421 
(Fig. 5e and Additional file 1: Figure S3C). These results 
demonstrated that the miGISig was associated with GI 
and could serve as oncogenes to promote the growth of 
breast cancer cells. 

Discussion
BC is the most frequently diagnosed cancer and the lead-
ing cause of cancer-associated death in women. Con-
siderable efforts have been made in the development of 
precision medicine for BC; however, its early diagnosis 
and prognosis risk stratification, using a minimally inva-
sive method is still a clinical challenge. In this study, 
we focused on miRNAs involved in GI, as evaluated by 
expression alteration and tumor mutator phenotype 
and identified 18 candidate GI-related miRNAs. Tar-
get genes of the 18 candidate GI-related miRNAs were 
enriched in known GI pathways. For example, TGF-β 
maintains genomic stability by enhancing the DNA dam-
age response [34]. Activation of the PI3K/Akt pathway 
can support tumor growth and progression, and can 
lead to inhibition of DNA repair, which may contribute 
to GI. Recent studies have indicated that sustained mito-
gen-activated protein kinase signaling relaxes the cell 
cycle checkpoints and allows cells to escape prolonged 
G2 arrest by inducing the accumulation of the pro-
mitotic kinase, thereby enhancing GI [35]. DNA damage 
response (DDR) assures the maintenance of GI, while a 
recent report has shown that Notch is a direct negative 
regulator of DDR.

Fig. 6  Study flowchart. The study was performed in multicenter 
cohorts, including TCGA-BC, GSE22220, GSE73002, GSE41922, and 
in-house clinical exosome cohorts. Genome instability-derived miRNAs 
signature (miGISig) was identified in the discovery cohort. The miGISig 
was applied to an internal validation cohort and multiple external 
validation cohorts to verify its value in prognosis and diagnosis of BC. 
The effects of the miGISig on BC growth were investigated using the 
in vitro functional assays. BC breast cancer, GI Genome instability

▸
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Furthermore, the 18 candidate GI-related miRNAs can 
differentiate BC patients into two clusters with signifi-
cantly different prognosis, UBQLN4 expression and ane-
uploidy score. A recent study indicated that UBQLN4 is 
an essential driver of GI and its overexpression represses 
homologous recombination-mediated double-strand 
break repair in aggressive tumors [36]. The aneuploidy 
score reflects the total burden of arm-level copy-number 
alterations and is an indicator of chromosome instability 
[37, 38]. These results provided evidence to support the 
relevance of the 18 miRNAs in GI. The identification of 
these miRNAs involved in GI will not only enhance our 
understanding of the biology of GI, but it will also provide 
new candidates for early diagnosis and prognosis of BC.

By focusing on these miRNAs involved in GI, we iden-
tified three oncogenic miRNAs (MIR421, MIR128-1 and 
MIR128-2), with the independent prognostic value from 
the list of 18 candidate GI-related miRNAs and produced 
a three-miRNA signature, termed miGISig, which is pre-
dictive of GI and clinical outcome. The predictive value 
of miGISig was validated by its association with clinical 
outcome and GI in TCGA and other public BC datasets 
across different platforms. Furthermore, the miGISig is 
not only an independent predictor, but also exerts supe-
rior or comparable performance to other clinical fac-
tors. We further leveraged the complementary value of 
molecular and clinical characteristics and showed that 
combining the miGISig with several complementary 
clinical factors could provide a more accurate estima-
tion of prognosis in BC. For the miGISig identified here, 
MIR421 has been reported to cause the failure of DNA 
repair by suppressing the expression of ataxia-telangi-
ectasia mutated, a core component of the DNA repair 
system, thus enhancing GI [39]. Furthermore, the over-
expression of MIR421 has been previously shown to pro-
mote cancer cell proliferation in BC and in non-small cell 
lung cancer [40, 41]. MIR128-1 and MIR128-2, members 
of the miRNA MIR128 family, encoded the same mature 
miR-128 whose expression pattern and roles in tumo-
rigenesis and development vary in different types of can-
cer. However, little is known about their association with 
GI in BC. Our in vitro functional assays suggested that 
overexpression of the miGISig increases GI, induces an 
S-phase arrest and promotes the growth of breast cancer 
cells. Many studies have suggested that aberrant miRNA 
expression is not only involved in cancer prognosis, but is 
also an early event in tumorigenesis [42–44]. In addition, 
miRNA levels have high stability and activity, which ena-
bles their detection in the serum, plasma, and other body 
fluids, using RT-qPCR, miRNA microarrays and deep 
sequencing techniques [20], highlighting the superiority 
of circulating miRNAs, as minimally invasive biomark-
ers in cancers. However, the mechanisms and biological 

impact of circulating miRNAs still remain unknown. 
Exosomes are cell-driven vesicles, which carry nucleic 
acids, proteins, lipids, and metabolites from their host 
cells [45]. Exosomes can be isolated from readily available 
biological fluids, such as blood and urine, and this mini-
mally invasive advantage presents an attractive novel bio-
marker for diagnostic applications [46]. For the miRNA 
markers identified here, little is known with respect to 
their potential for minimally invasive diagnosis of BC. 
Therefore, we integrated circulating exosomal miRNA 
profiles from TCGA and GEO tissue datasets and found 
that the miRNAs in the miGISig were all upregulated in 
both BC tissues and circulating exosomes when com-
pared with normal breast tissues or circulating exosomes 
from healthy subjects. Furthermore, the miGISig revealed 
higher efficacy and stability in distinguishing BC from 
healthy subjects. Collectively, these results suggested that 
the miGISig was a GI-derived oncogenic maker that rep-
resents a promising minimally invasive clinical genomic 
tool for BC detection and prognosis; however, additional 
cohorts are required to validate these findings. Further-
more, the miGISig identified in the EVs provided fur-
ther evidence supporting exosome-mediated delivery of 
oncogenic miRNAs is associated with BC carcinogenesis 
and prognosis. From a therapeutic perspective, identifi-
cation of oncogenic GI-associated miRNAs in EVs also 
implied potential therapeutic strategy via transfecting 
anti-miRNA compounds or miRNA-based agents into 
exosomes to interfere with the load or delivery of these 
oncogenic exo-miRNAs for targeting genomic instability 
as a multimodality treatment strategy of BC.

Conclusions
In summary, using genome-wide miRNA expression 
profiles from the tumor, healthy tissues and circulating 
exosomes, our study indicated the clinical value of GI-
associated miRNAs and established a GI-derived three-
miRNA signature allowing early detection and prognostic 
risk stratification with minimal invasion for BC. Follow-
ing further investigation in prospective cohort studies, 
our study highlighted the potential clinical value of the 
EVs-derived GI-associated miRNAs, as a minimally inva-
sive genomic tool to improve BC precision medicine.

Methods
Study design
The overall research design was illustrated in Fig. 6. The 
study was performed using multicenter prospective 
cohorts, including The Cancer Genome Atlas (TCGA)-
BC, GSE22220, GSE73002, GSE41922, and in-house 
clinical exosome cohorts. miGISig was identified in 
the discovery cohort. The miGISig was then applied 
to an internal validation cohort and multiple external 
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validation cohorts to verify its value in the prognosis and 
diagnosis of BC. The effects of the miGISig on BC growth 
were investigated using in vitro functional assays.

Public RNA‑sequencing (Seq), microarray and clinical data 
collection
Clinical characteristics, miRNA-seq [Illumina HiSeq 
reads per million (RPM) type] expression data, RNA-
seq (Illumina Hiseq fragments per kilobase of transcript 
per million type) expression data and somatic mutation 
information from patients with breast tumors and ovar-
ian cancers (OV) were obtained from TCGA Genomic 
Data Commons Data Portal (https​://porta​l.gdc.cance​
r.gov/). Only data from female patients, including paired 
miRNA, mRNA expression profiles, survival information 
and somatic mutation information, were retained. A total 
of 522 BC samples and 355 OV samples, using the afore-
mentioned information, were retained for further investi-
gation. The non-TCGA BC miRNAs microarray datasets 
used in the validation phase were downloaded from the 
Gene Expression Omnibus (GEO) database (https​://www.
ncbi.nlm.nih.gov/geo/), including GSE22220 (n = 210) 
[47], GSE73002 (n = 3966) [48] and GSE41922 (n = 54) 
[49]. Public BC miRNA datasets used in this study were 
listed in Additional file 1: Tables S1 and S2.

Plasma exosomal dataset
A total of 30 subjects, including 20 BC patients and 10 
age-matched healthy women were enrolled from the 
Cancer Hospital, Chinese Academy of Medical Sci-
ences (CHCAMS) for this study. Peripheral blood sam-
ples (10  ml) from these 30 subjects were collected for 
exosome isolation, which was confirmed by nanopar-
ticle tracking analysis (NTA), transmission electron 
microscopy (TEM), and western blot analysis according 
to previously reported protocols [50]. Small RNA-seq 
was performed using the Illumina HiSeq 2000 platform 
according to the manufacturer’s protocol and miRNA 
expression levels were calculated using the reads per mil-
lion (RPM) values. This study was approved by the Ethics 
Committee of the CHCAMS and written informed con-
sent was provided by all the participants.

Establishment of a miGISig
The GI for each TCGA sample was measured using the 
cumulative somatic point mutation (CSPM) burden 
within a cancer genome. Tumors with a high CSPM 
burden (ranked within the top 25%) were defined as the 
genomically unstable (GU)-like group and those with 
a low CSPM burden (within the last 25%) were defined 
as the genomically stable (GS)-like group. The differen-
tially expressed miRNAs between GU-like and GS-like 
groups were defined as candidate GI-associated miRNAs 

(GImiRs). Prognostic GImiRs were identified using 
the univariate Cox regression analysis for overall sur-
vival (OS) time. Finally, the miGISig was constructed as 
follows:

where N  is the number of prognostic GImiRs, expression 
of miRNAi is the expression value of prognostic GImiRi, 
and Coefficienti is the estimated regression coefficient of 
GImiRi in the multivariable Cox regression analysis.

The optimal cut-off value for risk stratification was 
determined using the point representing the 100% true-
positive rate and 0% false-positive rate in the receiver 
operating characteristics (ROC) curve, in the discovery 
cohort.

Cell culture and transfection
The MCF-7, BT549, SKBR-3, BT474, T47D, SW527 and 
MDA-MB-231 breast cancer cell lines, and the 184A1 
and MCF-10A normal human mammary epithelial cell 
lines were purchased from the American Type Culture 
Collection (ATCC; Rockville, MD, USA). The 184A1 
and MCF-10A cell lines were maintained in DMEM-
F12 containing 2  mM l-glutamine, 20  ng/ml EGF, 
100 ng/ml cholera toxin, 0.01 mg/ml insulin, 500 ng/ml 
hydrocortisone and 5% horse serum (HyClone, USA). 
The MCF-7 cells were maintained in DMEM contain-
ing 2 mM l-glutamine, 1 mM sodium pyruvate, 10 mM 
HEPES and 10% FBS (Gibco, USA). The BT549 and 
SKBR-3 cells were cultured in RPMI-1640 supplemented 
with 10% FBS, while the BT474 and T47D cells were 
maintained in RPMI-1640 containing 2 mM l-glutamine, 
4.5 g/l glucose, 1.5 g/l sodium bicarbonate, 1 mM sodium 
pyruvate, 0.01  mg/ml insulin, 10  mM HEPES and 5% 
FBS. The SW527 cells were maintained in DMEM con-
taining 2 mM l-glutamine, 4.5 g/l glucose, 1.5 g/l sodium 
bicarbonate, and 10% FBS. All the cell lines were main-
tained at 37 °C in a humidified atmosphere with 5% CO2, 
while the MDA-MB-231 cells were maintained in Leibo-
vitz’s L-15 medium with 10% FBS at 37 °C.

miRNA mimics transfection
Sequences of miR-128-1-5p, miR-128-2-5p and miR-421 
were obtained from the miRBase database. The miR-
NAs mimics and negative controls were designed and 
synthesized from RiboBio (Guangzhou, China). The 
primer sequences of the miRNAs and controls were 
listed in Additional file  1: Table  S3. Transfections for 
miRNAs mimics were performed using HiperFect (Qia-
gen, Valencia, CA, USA) according to the manufacturers’ 
instructions.

miGISig =

N∑

i=1

expression of miRNAi ∗ Coefficienti

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Reverse transcription‑quantitative PCR (RT‑qPCR)
Total RNA was isolated using the TRIzol® reagent 
(Thermo Scientific, Grand Island, NY, USA) and then 
reverse transcribed into cDNA using a Quantscript RT 
kit (Tiangen, Beijing, China). The RT-qPCR analysis was 
performed using a StepOnePlus Real-Time PCR system 
(Applied Biosystems, Foster City, CA, USA) according to 
standard procedures. The relative expression levels of the 
miRNA were normalized to that of U6, which served as 
an endogenous control.

Cell proliferation assays
The MCF-7 and MDA-MB-231 cell lines were plated 
into 96-well microplates at 1 × 103 cells per well. At the 
indicated time points, the viability of the cells was deter-
mined using a Cell Counting Kit-8 (CCK8, Dojindo) and 
measured at 450 nm, with the BioTek Gen5 system (Bio-
Teck, USA). The experiments were repeated three times, 
with the representative experiment shown in the figures.

Flow cytometry (FACS) analysis
The MCF-7 and MDA-MB-231 cell lines were plated into 
6-well microplates, and cells at 40–50% confluency were 
transfected with miRNAs mimics and cultured for 48  h 
(h). The collected cells were incubated with the cell cycle 
kit (Beckman Coulter, Pasadena, CA, USA) according to 
the manufacturer’s instructions and the results were ana-
lyzed using flow cytometry (Beckman Coulter, Pasadena, 
CA, USA).

Immunofluorescence staining
Cells were seeded into 6-well microplates, and cells at 
40–50% confluency were transfected with miRNAs mim-
ics and cultured for 24 h. Then, the cells were re-seeded 
in a plate and cultured for 24 h. Cells were fixed with 4% 
paraformaldehyde and permeabilized with Triton X-100 
(Sigma-Aldrich, St. Louis, MO, USA), and stained with 
DAPI (Shanghai Yeasen Biotechnology Co. Ltd. Shang-
hai, China) for 5 min. Then, the cells were imaged using 
high content analysis (HCA, Thermo Scientific, USA).

Construction of an integrated prognostic index
Multivariate cox regression analysis was applied to con-
struct an integrated prognostic index by combining age, 
stage and miGISig. The median score was used for the 
cut-off value for the integrated prognostic index. Time-
dependent ROC curve was used to compare the prog-
nostic performance among age, stage, miGISig and the 
integrated prognostic index.

Statistical analysis
All statistical analyses were performed using the R 
software (V.3.4.4) with the following packages: ‘samr’, 
‘ggpubr’, ‘survival’, ‘survminer’, ‘timeROC’ and ‘ROCit’. 
The Mann–Whitney U test was used to compare con-
tinuous variables. Survival analysis was conducted using 
the Kaplan–Meier method and the log-rank test. Uni-
variate and multivariate analyses with Cox proportional 
hazards regression for OS time were performed on the 
individual variables by calculating hazard ratios (HR) 
and 95% confidence intervals (CI). Differential expression 
analysis was performed using the Significance Analysis of 
Microarrays method, and fold change > 1.5 or < 0.67 and 
false discovery rate adjusted P < 0.05 was considered sig-
nificant. The time-dependent ROC curve was calculated 
with the nearest neighbor estimation method. The unsu-
pervised hierarchical clustering analysis was performed 
with Euclidean distance for determining the similar-
ity between patients and the ward’s linkage method for 
merging similar objects.

Target genes and functional enrichment analysis 
of miRNAs
Experimentally verified miRNA-target relationships 
were obtained from The Encyclopedia of RNA Inter-
actomes (ENCORI, http://starb​ase.sysu.edu.cn/) [51]. 
Pearson correlation coefficients were computed to 
measure the correlation between miRNAs and mRNAs. 
Experimentally verified miRNA targets with correlation 
coefficient < − 0.3 and P-value < 0.05 were selected as BC-
specific miRNA targets. Functional enrichment analysis 
was conducted for BC-specific miRNA targets to deter-
mine significantly enriched biological processes (BP) 
terms in Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway using DAVID Bio-
informatics Resources 6.8 (version 6.8; https​://david​.ncifc​
rf.gov/) [52].
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