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Abstract 

Background:  The outbreak and pandemic of coronavirus SARS-CoV-2 caused significant threaten to global public 
health and economic consequences. It is extremely urgent that global people must take actions to develop safe and 
effective preventions and therapeutics. Nanobodies, which are derived from single‑chain camelid antibodies, had 
shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity block-
ing SARS-CoV-2 spike interaction with ACE2 protein were developed.

Results:  Totally, four specific nanobodies against spike protein and its RBD domain were screened from a naïve 
VHH library. Among them, Nb91-hFc and Nb3-hFc demonstrated antiviral activity by neutralizing spike pseudotyped 
viruses in vitro. Subsequently, multivalent nanobodies were constructed to improve the neutralizing capacity. As a 
result, heterodimer nanobody Nb91-Nb3-hFc exhibited the strongest RBD-binding affinity and neutralizing ability 
against SARS-CoV-2 pseudoviruses with an IC50 value at approximately 1.54 nM.

Conclusions:  The present study indicated that naïve VHH library could be used as a potential resource for rapid 
acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91-Nb3-hFc may serve as a potential 
therapeutic agent for the treatment of COVID-19.
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Background
Coronavirus disease 2019 (COVID-19) is caused by 
infection of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) [1, 2]. It has spread global and had 
been announced by World Health Organization (WHO) 
in March 2020 as the first coronavirus severe pandemic 
in the history of humanity [3, 4]. More than 83.92  mil-
lion individuals have been infected and caused about 

1.82 million people deaths globally (as of January 2, 2021, 
source: Johns Hopkins University), and the number is still 
increasing. It is extremely urgent that global people must 
take actions to develop safe and effective preventions and 
therapeutics.

SARS-CoV-2 is an enveloped virus that belongs to the 
family Coronaviridae, the subfamily Orthocoronaviri-
dae and genus β-coronavirus [5]. The virus genome is a 
positive-sense, single-stranded RNA with a full length of 
30.0 kb, which is 96.2 % identical to a bat CoV RaTG13, 
whereas it shares 79.6 % identity to SARS-CoV [5, 6]. Its 
genome consists of six functional open-reading frames 
(ORFs), which encoded replicase (ORF1a/ORF1b), 
membrane (M), spike glycoprotein (S), envelope (E) and 
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nucleocapsid (N), most of the proteins encoded by SARS-
CoV-2 are similar with SARS-CoV [7, 8]. S protein can 
form a homotrimer complex and extrude from envelope 
to form the coronal in terms of morphological structure. 
It can be structurally or functionally divided into two 
subunits, called S1 and S2. S1 subunit contains the recep-
tor-binding domain (RBD), which binds to the extracellu-
lar domain of receptor angiotensin converting enzyme 2 
(ACE2) and mediate the virus entry into host cells, while 
the S2 subunit is necessary for membrane fusion [9–12]. 
Based on the characteristics of SARS-CoV-2 RBD immu-
nogen could induce neutralizing antibody in animals and 
is necessary for virus infection in host cells, thus, it can 
be used as a good target for the development of neutral-
izing antibodies [13, 14].

Heavy-chain only antibodies (hcAbs) derived from 
camelids or sharks that devoid of light chains and lack 
CH1, nevertheless have an extensive antigen-bind-
ing repertoire, its variable domain was named VHH 
or nanobody (Nb) (15  kDa) [15–18]. Nanobody offer 
advantages including high affinity and specificity, 
smaller size (1/10th the size of conventional mono-
clonal antibodies), thermostability, low immunogenic-
ity, and excellent tissue penetration-characteristics 
that are widely applied in oncotherapy, diagnosis and 
monitoring of disease, and prevent virus infection 
[19–24]. For example, numerous studies about Nbs 

antiviral activity for various challenging viruses have 
been reported, including MERS, HIV, HCV, IAV and 
SFTSV [24–27]. While many candidates are in preclin-
ical development and several antibodies (VIR-7831, 
LY-CoV016, BGB-DXP593, and CT-P59) have entered 
late-stage clinical trials, two neutralizing antibod-
ies, Lilly’s LY-Cov555 and Regeneron’s REGN-COV2, 
have received FDA emergency use authorization for 
the treatment of COVID-19. For nanobodies, most of 
them are in preclinical trials. For example, Twist Bio-
science Corporation recently announced two nano-
bodies, TB202-3 and TB202-63, protect against weight 
loss, a key indicator of disease severity, at the dose of 
1 mg/kg in a preclinical hamster challenge model.

Here, several nanobodies directed to spike protein 
and its RBD domain with high affinity were obtained 
after multiple rounds of enrichment from a naïve VHH 
library (Scheme  1a). Based on the production plat-
form of the nanobody-hFc, S and RBD protein specific 
nanobodies were expressed (Scheme  1a). To determi-
nate the neutralizing activity of specific nanobodies, 
the SARS-CoV-2 spike pseudotyped lentivirus were 
produced firstly using HEK293T cells (Scheme  1b). 
Neutralizing nanobodies could significantly inhibit 
SARS-CoV-2 pseudoviruses infection in host 
HEK293T-ACE2 cells through blocking spike protein 
interaction with ACE2 by targeting RBD (Scheme 1c). 

Scheme 1  Schematic presentation of screening nanobodies, SARS-CoV-2 spike pseudovirus production and neutralization assay. a Screening 
specific nanobodies against S and RBD protein from naïve VHH library, and the expression of nanobody-hFc fusions. b Production of SARS-CoV-2 
spike pseudovirus using HEK293T cells as the host cells. c Determination the neutralizing activity of multivalent nanobodies
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We believe that nanobodies may serve as a potential 
agent for prevention and therapy of COVID-19.

Materials and methods
Cell lines and vectors
HEK293T cell lines were purchased from ATCC and cul-
tured in Dulbecco’s Modified Eagle’s Medium (Gibco, 
USA) containing 10 % fetal bovine serum (FBS, BI, USA) 
at 37  °C in 5 % CO2. Spodoptera fruited (sf9) cells were 
maintained in the SIM SF medium (Sino Biological, Bei-
jing, China). All cell lines have been tested negative for 
contamination with mycoplasma. HEK293T cells were 
used to construct HEK293T-ACE2 stable cell lines, 
express recombinant nanobodies, and produce SARS-
CoV-2 pseudovirus of the novel coronavirus; sf9 cells 
were applied to express spike and RBD protein of SARS-
CoV-2. The pMECS vector was used to construct phage 
display library. The pcDNA3.1 vector (V790-20, invit-
rogen, USA) was used for eukaryotic expression of the 
nanobodies. pLenti-EGFP-luciferase expressing plasmid 
and gag/pol plasmid were used to prepare SARS-CoV-2 
pseudoviruses.

Gene cloning, protein expression and purification 
of recombinant SARS‑CoV‑2 proteins
The spike and RBD protein of SARS-CoV-2 were 
expressed using the Bac-to-Bac baculovirus expression 
system (Invitrogen) as previously described [14]. Briefly, 
a gp67 signal peptide sequence [28] was inserted into 
pFastBac1 vector between BamHI and EcoRI restriction 
sites, and then the coding sequence (codon optimized for 
insect cells) of spike ECD (extracellular domain, 16–1213 
aa) and RBD (319–545 aa) of SARS-CoV-2 Wuhan-Hu-1 
isolate (Genbank accession number MN908947) were 
followed by the gp67 signal peptide. In addition, 8× 
His tag was fused to C-terminal to profit protein puri-
fication. The bacmid was transfected into sf9 cells with 
LipoInsect Transfection regent (Beyotime Biotechnol-
ogy, Jiangsu, China) according to the manufacture’s 
instruction for recombinant baculovirus package and 
protein expression. Subsequently, the culture superna-
tant that containing S and RBD protein were harvested 

after 72  h transfection and purified using Ni-NTA 6FF 
Agarose (SMART, Changzhou, China), respectively. The 
expression and purity of recombinant were analyzed by 
SDS-PAGE.

Construction of naïve VHH library
Total 200  mL Bactrian camel blood samples (contain-
ing 50 camels) were collected from Jinchang city, Gansu 
province in China. The peripheral blood lymphocytes 
(PBLs) were extracted by Leucosep® tubes (Greiner Bio-
One, Germany) for naïve library construction. Total RNA 
was extracted and used to synthesise the cDNA. Next, 
the VHH genes were amplified by nest-PCR according 
to previous description [29–31], and then cloned into 
phagemid pMECS vector. The recombinant phagemids 
were electro-transformed into freshly competent E. coli 
TG1 Electrocompetent cells. Cells were cultured on LB 
agar plates that containing ampicillin and D-glucose 
overnight at 37  °C. On the second day, the cells were 
scraped and stored at −  80  °C at LB medium, and then 
the positive rate of the constructed library was deter-
mined according to previous description [32]. Finally, 36 
clones were randomly selected for sequencing to analyze 
the library’s diversity.

Screening and identification specific nanobodies 
against SARS‑CoV‑2 spike and RBD protein
To select the spike and RBD nanobodies, four rounds of 
phage rescue and screening were performed as described 
previously [30, 31, 33]. Briefly, purified S and RBD protein 
were immobilized in microtiter plate (Nunc, Thermo). 
For each round an uncoated well was used as a negative 
control. The wells were washed with PBS’T buffer (PBS 
with 0.05 % Tween 20 (v/v)) and then were blocked with 
blocking buffer (PBS’T containing 5 % (w/v) skimmed 
milk) at 37 °C for 1 h. Then, rescued recombinant phages 
were added to microplate wells that containing S and 
RBD protein and incubated for 1 h at 37 °C. After being 
washed, the retained phages were eluted with Glycine-
HCl buffer (pH 3.0) and neutralized immediately with 
Tris-HCl buffer (pH 8.5) to a neutral condition. Next, the 
eluted phages were used to infect E. coli TG1 cells and 

Table 1  Primer sequences of amplification VHH genes for recombinant plasmids pcDNA3.1-Nbs-hFc construction

Underline indicates position of restriction enzyme sites

Primer Sequences

Nbs-F 5′-CAG​GGA​TCC​CAG​GTG​CAG​CTG​GTG​GAG​TC-3′

Nbs-R 5′-CGC​CTC​GAG​TGA​GGA​GAC​GGT​GAC​CTG​GG-3′

biNbs-R1 5′-TGA​ACC​GCC​TCC​ACC​GCT​GCC​GCC​TCC​GCC​TGA​GGA​GAC​GGT​GAC​CTG​GG-3′

biNbs-F2 5′-GGT​GGA​GGC​GGT​TCA​GGA​GGT​GGC​GGA​TCT​CAG​GTG​CAG​CTG​GTG​GAG​TC-3′

triNbs-R32 5′-AGA​TCC​GCC​ACC​TCC​GCT​GCC​GCC​TCC​GCC​TGA​GGA​GAC​GGT​GAC​CTG​GG-3′

triNbs-F3 5′-GGA​GGT​GGC​GGA​TCT​GGT​GGA​GGC​GGT​TCA​CAG​GTG​CAG​CTG​GTG​GAG​TC-3′
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amplified overnight at 37 °C after infecting with M13KO7 
helper phages. Subsequently, the amplified phages were 
purified using PEG 4,000/NaCl precipitation for the next 
round bio-panning.

After four rounds of screening, the enrichment of S 
and RBD specific phage particles were calculated with 
polyclonal phage ELISA, and then 96 clones were picked 
randomly for monoclonal identification using an indirect 
ELISA with HRP-conjugated goat anti-M13 IgG anti-
body (Sino Biological, Beijing, China). Finally, all posi-
tive clones were sequenced and grouped based on their 
complementary determining regions (CDRs) amino acid 
sequence.

VHH cloning into HEK293FT expression vector
A pcDNA3.1 expression vector was constructed firstly 
to express the S and RBD protein specific nanobodies in 
HEK293FT cells. In brief, some elements were designed 
and cloned into commercial pcDNA3.1(+) vector 
between NheI and XbaI sites. DNA sequences, includ-
ing a secreting signal sequence from the human IgGκ 
chain, multiple cloning site (MCS), human IgG1 Fc, and 
6× His tag following a stop coding sequence, were syn-
thesized (GENERAL BIOL, Anhui, China) and cloned 
into the multiple cloning sites of the commercial vec-
tor pcDNA3.1, and named as pcDNA3.1-MCS-hFc. The 
VHHs encoding sequences were amplified by PCR using 
the Nbs-F, Nbs-R primers (Table 1) and cloned between 
the BamHI and XhoI sites in the pcDNA3.1-MCS-hFc 
vector. The positive recombinant plasmids were con-
firmed by sequencing.

Generating bivalent and trivalent VHHs for HEK293FT 
expression
To generate bivalent and trivalent tail-to-head VHH 
constructs, the VHH sequences were amplified through 
combination the following primers, Nbs-F, Nbs-R, 
biNbs-R1, biNbs-F2, triNbs-R32, triNbs-F3 (Table  1), 
digested with both BamHI and XhoI enzymes and ligated 
into the vector pcDNA3.1-MCS-hFc. The positive plas-
mids were propagated with E. coli TransStbl3 cells and 
used to express recombinant VHH protein by transfec-
tion HEK293FT cells.

Expression and purification of nanobodies
To produce nanobody-hFc recombinant fusion proteins, 
the vectors containing monovalent, bivalent and triva-
lent VHHs were transfected into mammalian cell line 
HEK293FT cells cultured in Freestyle medium (Gibco, 
USA) using polyetherimide reagent (PEI, Polysciences 
Inc. Warrington, USA) based on the manufacture’s 
instruction. After 5 days, the medium that containing 

secreted nanobody-hFc fusion proteins were harvested 
by centrifugation at 10,000×g for 20 min at 4 °C, and then 
incubated with Ni-NTA 6FF Agarose for purification. 
The nanobody-hFc recombinant fusion proteins were 
eluted using elution buffer (20 mM Tris, 250 mM NaCl, 
250  mM imidazole, pH 7.8). The expression and purifi-
cation were verified using SDS-PAGE and subsequent 
Coomassie Blue staining. Next, purified VHHs were con-
centrated on filter tubes (Milipore, USA) and the elution 
buffer containing imidazole was exchanged with PBS (pH 
7.4). Finally, purified VHHs were used directly or stored 
at − 20 °C.

Indirect ELISA assay
Determination the binding of nanobody-hFc fusion pro-
teins against S and RBD protein, microtiter plates were 
coated overnight at 4  °C with recombinant S and RBD 
protein, respectively. After washed three times with 
PBS’T, the coated plates were blocked with 5 % skimmed 
milk in PBS’T. Dilution series (from 102 to 10− 5 µg/mL) 
of nanobody-hFc fusion proteins were added to the wells, 
followed by adding HRP-conjugated goat anti-human 
IgG (1/2000, Beyotime Biotechnology). After washing, 
tetramethylbenzidine liquid substrate (TMB, Sigma) was 
added to the plates and the reaction was stopped with 
2 M H2SO4, and the optical density at 450 nm (OD450nm) 
was measured using an automatic ELISA microplate 
reader. The binding ability was determined using four-
parameter nonlinear regression curve fit (Graphpad 
Prism 5.0).

Production of pseudoviruses
SARS-CoV-2  S pseudovirus production system was 
developed in our laboratory as previously described [14]. 
Briefly, a pLenti-EGFP-luciferase expressing plasmid, a 
plasmid encoding codon optimized SARS-CoV-2  S pro-
tein and a gag/pol expression plasmid were co-trans-
fected into HEK293T cells using polyetherimide reagent 
(PEI). After transfection 6  h, the medium was replaced 
with fresh DMEM medium supplemented with 10 % FBS. 
48  h post-transfection, the supernatant was harvested 
that containing SARS-CoV-2 pseudovirus, and the super-
natant was filtered through 0.45  µm-pore cellulose ace-
tate membranes. To increase the titer of pseudovirus, the 
supernatants were concentrated to 1 mL by ultracentrifu-
gation and stored at − 80 °C until use.

Pseudotyped virus neutralization assay
To determinate the neutralizing activity of SARS-
CoV-2 spike and RBD-specific nanobodies against 
SARS-CoV-2 infection, a pseudovirus neutralization 
assay was performed. HEK293T-ACE2 stable cell lines 
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were constructed as previously described [14]. In brief, 
HEK293T cells were transfected with a lentivirus vector 
encoding human ACE2 and puromycin selection marker. 
Cells were selected with puromycin, and puromycin-
resistant clones were expanded and verified by FACS for 
ACE2 expression. HEK293T-ACE2 cells were plated into 
96-well cell-culture plates with 2 × 104 cells/well and cul-
tured overnight at 37 °C with 5 % CO2. The pseudovirus 
was preincubated with tenfold serial dilution of Nbs at 
37 °C for 1 h before being added to cells. Pseudovirus in 
culture media without Nbs were used as negative control. 
Medium were changed the following day after infection. 
48 h later, EGFP expression was determined by fluores-
cent microscopy and flow cytometry to evaluate the 

neutralization ability. While the cells were lysed using 
lysis reagent (Promega) after washing with PBS, and rela-
tive luciferase activity was measured immediately in the 
Ultra 384 luminometer (Tecan). The relative lumines-
cence signals (RLU) from the negative control wells were 
normalized and used to calculate neutralization percent-
age for each concentration.

Statistical analysis
All statistical analyses were performed using GraphPad 
Prism version 5.0 (GraphPad Software, San Diego, CA, 
USA). All presented data were shown as mean ± SD, 
which contains three replicates. Comparisons among 
multiple groups were performed using a two-way 

Fig. 1  A naïve VHH library construction and screening the SARS-CoV-2 S and RBD specific nanobodies. a Amplification of VHH genes (~ 400 bp) by 
nest-PCR from PBLs, and estimation the correct insertion rate of VHH library. b Expression and purification of recombinant S and RBD protein were 
detected using SDS-PAGE. M: Marker; lane 1: purified S protein; lane 2: purified RBD protein. c Analysis of the enrichment of phage particles against 
S and RBD specific nanobodies with polyclonal indirect ELISA. d and e Identification of the recombinant VHH-gpIII protein from the 96 clones 
specifically binding with S protein (17 clones) and its RBD domain (40 clones), respectively. f Alignment of the amino acid sequences of specific 
nanobodies against S and RBD protein. The sequences were classified into four groups according to their CDRs. g Phylogenetic tree of the isolated S 
and RBD-directed VHHs based on the neighbor joining method by using DNASTAR software
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ANOVA test with Bonferroni post-test. P-values < 0.05 
were considered statistically significant (*P < 0.05; 
**P < 0.01; ***P < 0.001).

Results
Construction of the naïve VHH library
Total 4.3 × 108 PBLs were isolated from 200  mL Bac-
trian camel blood samples. After reverse-transcription 
using the extracted RNA as a template, a target band of 
about 400 bp in size was amplified by nest-PCR (Fig. 1a), 
and then the PCR fragments and pMECS vectors were 
digested, ligated, and transformed into TG1 cells. Finally, 
a phage display naïve VHH library was successfully con-
structed that containing of approximately 5.7 × 109 indi-
vidual transformants. Additionally, the insertion rate of 
VHH genes were evaluated by PCR through randomly 
picked 48 clones, which was determined to be 93.75 % 
(Fig.  1a). Subsequently, the sequences of 36 individual 
clones indicated that the library had good diversity (data 
not shown).

Preparation of the SARS‑CoV‑2 recombinant proteins
The recombinant spike (ECD) protein and its RBD 
domain of SARS-CoV-2 were produced using Baculo-
virus Expression System. The culture supernatant that 
containing recombinant S and RBD proteins was har-
vested and purified by immobilized metal affinity chro-
matography (IMAC) using Ni-NTA. The results showed 
that recombinant RBD proteins (27 kDa) were expressed 
successfully and the target was obtained after purifica-
tion (Fig.  1b), however, there were several bands in the 
S protein lane (Fig. 1b), and the possible reason is that S 
protein was cleaved at the S1/S2 protease cleavage site, in 
keeping with published data [34–36].

Screening and identification of specific nanobodies 
against S and RBD protein
After four rounds bio-panning using purified S and 
RBD protein, the specific nanobodies particles against 
S and RBD protein were enriched (Fig.  1c) and the 
ratio of positive/negative clones (P/N) increased, from 

17.8 to 1.5 × 103, and from 1.5 to 1.8 × 103, respectively 
(Table  2). The indirect ELISA results revealed that 17 
clones (Fig.  1d), and 40 clones (Fig.  1e) could specifi-
cally bind with S and RBD protein, respectively. After 
the positive clones were sequenced, 4 unique nanobod-
ies were obtained according to the amino acid sequences 
of the CDRs (Fig.  1f ). Multiple sequence alignment 
and phylogenetic analysis using the neighbor-joining 
method revealed that 2 unique S-Nbs and 2 unique RBD-
Nbs were isolated. The gene evolution and homology 
between Nb91-hFc and -Nb3-hFc were higher than oth-
ers (Fig. 1g).

Expression and purification of the nanobodies against S 
and RBD protein using HEK293FT mammalian system
The platform of expression nanobody-hFc fusion pro-
teins were constructed successfully based on the com-
mercial pcDNA3.1 vector. In detail, the DNA sequences, 
including a IgGκ singal peptide, MCS, human IgG1 Fc, 
6× His tag, and stop codon were cloned into pcDNA3.1 
vector using NheI and XbaI enzymes digestion (Fig. 2a). 
In addition, a flexible linker was added between Nbs and 
human IgG1 Fc to increase the flexibility and avoid the 
formation of higher structures that affect the function of 
Nbs (Fig. 2a). SDS-PAGE results showed that high purity 
Nbs-hFc fusions (Nb82-hFc, Nb91-hFc, Nb3-hFc, and 
Nb35-hFc) were obtained after purification (Fig. 2b). The 
indirect ELISA results revealed that: (1) Nb82-hFc could 
specifically bind with S protein (Fig. 2c), but did not bind 
with RBD protein (Fig. 2d); (2) Nb91-hFc could bind with 
S protein (Fig.  2c), as well as RBD protein (Fig.  2d); (3) 
Nb3-hFc and Nb35-hFc could recognize RBD protein 
(Fig. 2d); Nb12-hFc targeting VP2 protein of porcine par-
vovirus was used as the negative control.

Nanododies neutralize SARS‑CoV‑2 pseudotyped viruses
To evaluate the antiviral activity of the S and RBD-
directed nanobodies, SARS-CoV-2  S pseudovirus was 
used to perform neutralization assays in  vitro. The flow 
cytometry results revealed that the infection efficiency of 

Table 2  Enrichment of  phage particles against  SARS-CoV-2-spike and  -RBD specific nanobodies during  four rounds 
of panning

Round of screening Input (pfu/well) P output (pfu/well) N output (pfu/well) Recovery (P/input) P/N

S RBD S RBD S RBD S RBD

1st round 1.0 × 1011 1.5 × 104 1.4 × 104 8.4 × 103 9.1 × 103 1.5 × 10− 7 1.4 × 10− 7 17.8 1.5

2nd round 1.0 × 1011 6.5 × 105 3.4 × 105 3.4 × 103 2.9 × 103 6.5 × 10− 6 3.4 × 10− 6 1.9 × 102 1.2 × 102

3rd round 1.0 × 1011 2.6 × 107 1.9 × 107 4.5 × 104 3.8 × 104 2.6 × 10− 4 1.9 × 10− 4 5.7 × 102 5.0 × 102

4th round 1.0 × 1011 5.4 × 108 5.2 × 108 3.6 × 105 2.7 × 105 5.4 × 10− 2 5.2 × 10− 2 1.5 × 103 1.8 × 103
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S pseudovirus was approximately 28.35 % (Fig.  3a). The 
pseudovirus luciferase assay results indicated that Nb91-
hFc and Nb3-hFc neutralized SARS-CoV-2 pseudotyped 
virus with an IC50 value at approximately 54.07  nM 
(2.65  µg/mL) and 32.36  nM (1.79  µg/mL), respectively, 
whereas Nb82-hFc and Nb35-hFc had no inhibition effect 
(Fig. 3b). Similar results were obtained from fluorescence 
and flow cytometry assays (Fig. 3c).

Detection the binding ability of multivalent neutralizing 
nanobodies
To further improve the antiviral properties of the neu-
tralizing nanobodies against SARS-CoV-2, multivalent 
nanobodies were produced. Firstly, homodimer (biNb91-
hFc, biNb3-hFc), heterodimer (Nb91-Nb3-hFc) and 
homotrimer (triNb91-hFc, triNb3-hFc) of Nb91 and Nb3 
were tandem linked with flexible linker and constructed 
into pcDNA3.1-MCS-hFc vector (Fig. 4a). The expression 
procedure of multivalent nanobodies was consistent with 
monovalent Nbs. After purification, bivalent and trivalent 
VHHs were obtained from the supernatant of HEK293FT 
cells (Fig. 4b). The indirect ELISA results indicated that 
the binding affinity of homodimer and homotrimer with 
RBD protein were significantly higher than monovalent 
Nbs (P < 0.001) (Fig. 4c and d), and among them, Nb91-
Nb3-hFc shows the highest affinity (P < 0.001) (Fig. 4d).

Neutralization efficiency of the monovalent, bivalent 
and trivalent nanobodies
The procedure of multivalent nanobodies pseduovirus 
neutralization assay were same with monovalent nano-
bodies. Results showed that the heterodimer nanobody 
Nb91-Nb3-hFc exhibited the highest neutralizing abil-
ity, with an IC50 at 1.54 nM against pseudotyped SARS-
CoV-2 (Fig. 5a, b). The neutralizing ability of triNb91-hFc 
(IC50 = 4.89  nM) improved 11.06 fold compared to the 
monovalent form (IC50 = 54.07  nM), and triNb3-hFc 
(IC50 = 4.70  nM) improved 6.88 fold than monovalent 
construct (IC50 = 32.36 nM) by the pseudovius luciferase 
assay (Fig. 5a, b). These results revealed that the neutral-
izing ability of nanobodies could be obviously improved 
by tandem linking monovalent Nbs (Fig.  5b). Mean-
while, the antiviral activity of multivalent nanobodies 
were also determined using fluorescent microscopy and 
flow cytometry assays and similar results were obtained 
(Fig. 5c).

Discussion
The COVID-19 pandemic has resulted in an unprec-
edented world public health crisis. Currently, efficient 
therapeutics for treatment of COVID-19 are lacking, 
and the development of a vaccine is likely to take at least 
12–18 months [37, 38]. Convalescent plasma is utilized 

Fig. 2  Expression, purification and binding ability determination of monovalent nanobodies. a Schematic presentation of the vector for nanobody 
expression in mammalian cells. b SDS-PAGE detection of the expression and purification of recombinant nanobody-hFc fusions (55 kDa). M: Marker; 
lane 1: Nb82-hFc; lane 2: Nb91-hFc; lane 3: Nb3-hFc; lane 4: Nb35-hFc. c Measurement the binding ability of recombinant monovalent nanobodies 
using indirect ELISA
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to improve therapeutic efficacy in patients with severe 
COVID-19 because the presence of neutralizing anti-
bodies in the plasma of convalescent patients. Hence, 
neutralizing antibodies are promising for prevention and 
therapy of SARS-CoV-2 infection [39, 40]. Although the 
importance of neutralizing antibodies for protection is 
indisputable, cross-reactive antibodies or sub-optimal 
concentration of antibodies can promote pathology, 
resulting in a phenomenon known as antibody-depend-
ent enhancement (ADE), which has been reported fol-
lowing secondary infections or vaccination with dengue 
virus and other viruses [41]. According to previous stud-
ies, the ADE mechanisms of SARS-CoV and MERS-CoV 
vaccines are mediated mainly by the engagement of Fc 
receptors (FcRs) expressed on macrophages, B cells and 
monocytes [42, 43]. So far, the clinical evidence has not 
shown the COVID-19 vaccines or antibodies to have 
such an effect. However, given ADE is a theoretical pos-
sibility, close monitoring is important to ensure that ADE 
can be ruled out as a side effect of COVID-19 vaccines or 
neutralizing antibodies.

To date, some monoclonal antibodies derived from 
COVID-19 patients, hybridoma and camelid VHH have 
been reported with various neutralizing efficiency [44–
46]. Here, we isolated several nanobodies binding to spike 
protein and its RBD domain from a naïve VHH library. 
Previously, it is reported that multivalent nanobod-
ies formed by tandem linking exhibited stronger bind-
ing affinity compare with the monomer nanobody [39, 
47]. Consistently, in the present study, we also observed 
this phenomenon and found the heterodimer nanobody 
Nb91-Nb3-hFc showed the highest binding affinity and 
neutralizing activity. Our study indicated that naïve 
VHH library can be used as a potential resource for rapid 
acquisition and exploitation of antiviral nanobodies.

Since natural SARS-CoV-2 virus culture and assays 
must be carried out in a biosafety level-3 laboratory. 
Therefore, the antiviral activity of nanobodies against 
authentic viruses in  vivo were not performed in the 
present study. However, compared with the natural 
viruses, pseudoviruses are well suited for virus entry 
assays because the pseudotyped particles have similar 

Fig. 3  The selection of the potent neutralizing nanobodies. a Analysis the infection efficiency of pseudovirus with fluorescent microscopy and flow 
cytometry assays. b and c Measurement the neutralization potency of nanobodies with luciferase assay, fluorescent microscopy and flow cytometry 
assays
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patterners, and can also efficiently simulate the infection 
process of natural viruses.

Compared with classical monoclonal antibodies, 
nanobodies show better tissue penetration and extrava-
sation based on the advantage of small size. Recently, 
caplacizumab, a bivalent nanobody, as the first nano-
body drug was approved by the FDA and European 
Medicines Agency (EMA) for treatment of patients 
with acquired thrombotic thrombocytopenic purpura 
[48–50]. Additionally, the lack of post-translational 
modifications of nanobodies allows it can be expressed 
in a variety of microbial systems including Escherichia 
coli, Pichia pastoris and Saccharomyces cerevisiae, 
which reducing production costs [51, 52]. However, 
the circulation half-life of nanobodies is significantly 

shorter in vivo due to their small size, which can be a 
limitation for disease treatment. Several approaches 
can be used to extend the half-life of nanobodies in vivo 
efficiently, such as PEGylation, fusion with Fc, HSA or 
HSA binding domain. On the other hand, for COVID-
19 management, nanobodies might be delivered via 
nasal spray, and in this condition the half-life will be 
not a problem. For example, ALX-0171, a trivalent nan-
obody, can reduce the viral load in children with res-
piratory syncytial virus infection through aerosolized 
inhalation [53, 54]. Therefore, the neutralizing nano-
bodies identified in the present study may be exploited 
to develop aerosolized inhalation products for preven-
tion of COVID-19.

Fig. 4  Development of multivalent nanobodies for highly efficient pseudovirus neutralization. a A schematic view of the multivalent nanobodies 
design. Homodimer, heterodimer and homotrimer were tandem linked with tail-to-head mode by flexibility linker. b The expression and purification 
of multivalent nanobodies fusions were analyzed with SDS-PAGE. M: Marker; lane 1 to 7: monoNb91-hFc, biNb91-hFc, triNb91-hFc, monoNb3-hFc, 
biNb3-hFc, triNb3-hFc and Nb91-Nb3-hFc, respectively. c and d Determination the binding affinity of multivalent nanobodies and monovalent Nbs 
with RBD protein using indirect ELISA
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Fig. 5  Evaluation the neutralizing abilities of the potent neutralizing nanobodies. a Neutralization potency was measured by using a pseudotyped 
virus luciferase neutralization assay. b A table summary of pseudotyped neutralization potency for seven nanobodies. IC50 were calculated by fitting 
a four-parameter logistic curve using Graphpad 5.0. c Neutralization potency of different multivalent nanobodies was performed using fluorescent 
microscopy and flow cytometry assays
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Conclusions
In the present work, four specific nanobodies against 
SARS-CoV-2-S or -RBD protein were screened from a 
non-immunized Bactrian camel VHH library. Nb91-hFc 
and Nb3-hFc exhibited highest affinity with RBD protein 
and neutralizing ability against S pseudovirus. We further 
compared the neutralizing capacities of tandem linked 
homo- or hetero-multivalent nanobodies. The results 
indicated that Nb91-Nb3-hFc possess the most potent 
neutralizing ability and may serve as an antiviral agent for 
prevention and treatment of COVID-19.
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