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Protein nanoparticles in drug delivery: 
animal protein, plant proteins and protein 
cages, albumin nanoparticles
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Abstract 

In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used 
to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the 
importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use 
of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical 
trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemother-
apy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and 
the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant 
protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages 
and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nano-
particles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceuti-
cal formulations.
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Introduction
Proteins and peptides are one of the most important 
and basic research fields in Nano medicine. At present, 
experts in various fields in Nano medicine, Nano bio-
technology, pharmacy, toxicology, immunology and 
other medical sciences are studying the various dimen-
sions of these vital biomolecules, including understand-
ing the interaction of the resulting nanostructures with 
the body and their application in diagnostic fields and 
are engaged in therapy [1–8]. Plants have been continu-
ously considered by researchers as safe and abundant, 
renewable and cheap resources in various pharmaceu-
tical, medical and food industries. Nano carriers made 

from some plant proteins have the ability to control the 
release of their cargo over a long period of time [9, 10]. 
The possibility of transmitting the disease from plant 
sources to humans is rare, and for this reason, the use 
of plant proteins to produce nano carriers for therapeu-
tic agents has been considered by experts in recent years 
[11–17]. On the other hand, some protein subunits, such 
as the capsid proteins of viruses, have the ability to self-
assemble and create hollow nanometer structures with 
well-defined and reproducible geometric shapes [18, 19]. 
The empty space inside these nanostructures or their sur-
face can be used as a reservoir to carry pharmaceutical 
and diagnostic agents. These nanostructures are called 
protein cages and have great potential in preparing phar-
maceutical formulations. Albumin is one of the animal 
proteins that has been considered since the early twen-
tieth century and has several therapeutic applications 
[20–22]. On the one hand, this protein has therapeutic 
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applications and on the other hand, it is used in various 
formulations to carry pharmacological and diagnostic 
agents [23–25]. The many benefits and potentials of this 
protein have made it the focus of Nano medical research-
ers [17, 26, 27]. Abraxane is a drug formulation based 
on albumin nanoparticles that sold more than 2 $ bil-
lion in 2012 alone and is considered by experts to be one 
of the main approaches to treating all types of cancer in 
the near future [28, 29]. The following section covers the 
most recent uses of therapeutic nanoparticles as selective 
delivery mechanisms in a variety of diseases, and Table 1 
summarizes the nano-drug formulations authorised by 
the Food and Drug Administration (FDA) and the Euro.

Nano medicine and proteins
Nano medicine and proteins in the field of treatment
Many proteins and peptides such as insulin, vaccines, 
antibodies and various recombinant proteins have been 
used in medicine and therapy, and among the important 
research areas in Nano medicine is the development of 

new drug delivery systems to improve their function 
and properties [41–43]. On the other hand, one of the 
most important challenges facing Nano pharmaceutical 
formulations is the interaction of different blood pro-
teins with them and the formation of a protein crown 
(Protein corona) around the nanoparticles, which plays 
an important role in the final performance of nanopar-
ticles (Fig.  1). These include immune system proteins, 
including antibodies, and complement systems. Exten-
sive efforts are being made to control the interaction of 
drug formulations with a variety of proteins, especially 
immune system proteins, to improve the performance 
of Nano drugs [44–47]. Various peptides and proteins 
have also been considered to target drug-containing 
nanoparticles to target tissue or tissues, such as tumor 
tissue, including cell-penetrating peptides (CPPs), anti-
bodies, and phage peptides (Fig. 2). Finally, protein nan-
oparticles themselves, as drug carriers, are among the 
new drug delivery systems. Abraxane, which contains 
albumin nanoparticles containing the anti-cancer drug 

Table 1  Food and Drug Administration and European Medicines Agency approved therapeutic nanoparticles

Pean Medicines Agency (EMA) since 2009

Nanostructure Production Nanoparticle 
formulation

Drug Indication(s) Confirmed Refs.

Liposomes Marqibo® Sphingomyelin and 
cholesterol

Vincristine sulfate Acute lymphoid leu-
kemia

FDA 2012 [30]

Liposomes Mepact® 1-Palmitoyl-2-oleoyl-
snglycero-3-phos-
phocholine and 
1,2-Dioleoyl-sn-
glycero-3-phospho-l-
serine liposomes

Mifamurtide Non-metastasizing 
osteosarcoma

Europe 2009 [31]

Liposomes Onivyde® Nanoliposomes Irinotecan Pancreatic cancer, colo-
rectal cancer

FDA 2015
Europe 2016

[32]

Liposomes Vyxeos® Distearoylphosphati-
dylcholine, dis-
tearoylphosphatidylg-
lycerol, cholesterol

Daunorubicin
Cytarabine

Acute myeloid leukemia FDA 2017 [33]

Lipid-based (non-
liposoma)

Onpattro® Lipid nanoparticles Transthyretin targeted 
siRNA

Transthyretin-mediated 
amyloidosis

FDA 2018 [34]

Polymer-based Glatopa® l-glutamic acid polymer 
with l-alanine, l-lysine, 
and l-tyrosine (Glati-
ramer)

–- Multiple sclerosis FDA 2015 [35]

Protein-drug conjugates Kadcyla® Maytansine derivative, 
DM1

Trastuzumab HER2 + breast cancer FDA 2013 [36]

Protein-drug conjugates Abraxane® Albumin Paclitaxel Non-small lung cancer, 
pancreatic cancer

FDA 2012
Europe 2005, FDA 2013
Europe 2008

[37]

Protein-drug conjugates Krystexxa® PEGylated uricase Pegloticase Gout disease FDA 2010
Europe 2013

[38]

Protein-drug conjugates Plegridy® PEGylated interferon-1a Interferon-1a Multiple sclerosis FDA 2014
Europe 2014

[38]

Protein-drug conjugates Adynovate® PEGylated factor VIII Factor VIII Hemophilia FDA 2015 [39]

Protein-drug conjugates Rebinyn® Glycopegylated coagu-
lation factor IX

Factor IX Hemophilia FDA 2015 [40]
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Paclitaxel, has been approved by the relevant interna-
tional organizations in recent years, and the significant 
annual growth trend of this drug and its effectiveness 
in treating various cancers has attracted the atten-
tion of many researchers Has attracted drug delivery 
[48–51]. Mathematical modeling plays an important 
role in facilitating the design of drug delivery systems 

by identifying key factors and molecular mechanisms of 
release [52–54].

Nano medicine and proteins in the field of diagnosis
On the one hand, proteins are important factors in the 
diagnosis of diseases and on the other hand, they are 
used in the manufacture of sensors to diagnose other 

Fig. 1  Nanoparticle protein crown: the formation of a protein crown around transferrin-targeted nanoparticles obscures the second transferrin 
binding and prevents it from binding to the surface of the target cell [48–51]

Fig. 2  Cell penetrating peptides: a cell-penetrating peptides enter the cell by various mechanisms directly or through endocytosis pathways 
and can enter the cell-bound cargo. b AIDS TAT peptide is one of the cell-penetrating peptides that has been used in various studies to introduce 
nanoparticles into cells [48–51]
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diseases [55–57]. Various Nano biosensors are being 
studied to detect a variety of proteins, antibodies, anti-
gens and biomarkers, and factors such as antibodies 
and enzymes are being used to diagnose the disease 
[58–60]. For example, antibodies are used to detect a 
variety of viral diseases and the enzyme glucose oxi-
dase is used in the manufacture of glucose Nano bio-
sensors (Fig. 3).

Advantages and disadvantaged of the general 
protein‑based nanoparticle fabrication methods
The appropriate properties of protein nanoparticles have 
made them one of the important options in drug deliv-
ery and tissue engineering. The advantages and disad-
vantages of these fabrication methods are summarized in 
Table 2. Some of the most important of these benefits are 
[61–66]:

Fig. 3  Nano sensors in the detection of proteins: different types of Nano biosensors are made to detect antibodies, antigens and protein 
biomarkers [55–57]

Table 2  Advantages and disadvantaged of the general protein-based nanoparticle fabrication methods

Method Advantages Disadvantages Refs.

pH Variation Control for particle size
Control secondary structure of protein
Control for zeta potential
Produces chemically and physically stable particles 

Experimentally simple

Post-fabrication drug loading is required
Limited to small scale production

[35]

Spray-drying Cost effective
Experimentally simple
Easily encapsulate hydrophilic drugs
Useful for heat-sensitive samples
Control for particle size

Limited to small scale production
Challenging to incorporate hydrophobic drugs

[36]

Rapid Laminar Jet Control for particle size
Production of uniform particles
Production of strong, stable particles

Possibility of coalescence
Many parameters must be controlled for

[37]

Phase Separation Specialized equipment is not required
Particle size can be controlled by adjusting protein 

concentration
Uniform particles are produced

Particle sizes are limited to 50–500 nm in diameter
Organic solvents are required
Limited to small scale production

[38]

Milling Cost effective
Large scale production is possible
Control of nanoparticle size
Experimentally simple

Heat is released during the process requiring
chamber to be cooled
Little control over nanoparticle shape
Nanoparticles must be coarse

[39]

Polymer Chain
Collapse

Properties of the nanoparticle can be easily
controlled by selection of the precursor chain
Production of particles with high stability
Particles with improved spherical shape
are produced

Particle size is limited to 5–20 nm in diameter
Side reaction may be difficult to control

[40]
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•	 Biocompatibility

	 Proteins are among the major biomolecules that 
make up the body of all living organisms and there-
fore have little toxicity, especially compared to syn-
thetic polymers [67–69]. By absorbing water and 
creating a space repulsion, proteins can increase the 
stability of nanoparticles [70–72] and also reduce the 
recognition of Nano carriers by the immune system 
(Fig. 4).

•	 Biodegradability
	 These molecules are broken down in the body and 

the amino acids they produce are used by surround-
ing tissues to make proteins or produce energy [73, 
74].

•	 Possibility of easy and cheap production
	 Usually proteins are abundant in nature and are 

renewable sources by plants, animals, humans and 
other organisms. It is also possible to mass-produce 
a variety of proteins by recombinant protein produc-
tion methods [75, 76].

•	 High drug binding capacity
	 Proteins generally have many types of functional 

groups and therefore have the ability to bind and 
carry significant amounts of drug by different mecha-
nisms such as electrostatic interactions, hydrophobic 
interactions, and covalent bonds [77–79].

•	 Proper uptake by cells
	 Usually, proteins and polymer nanoparticles are 

removed by the cell by different mechanisms, for 
example, one of the effective factors mentioned in 
the anticancer drug Abraxane is the uptake of albu-
min nanoparticles by vascular endothelial cells [80–
82].

•	 Targeting
	 The structure and sequence of the protein and the 

presence of numerous different functional groups 
allow the binding of the drug to specific sites in the 
protein and the binding of different targeting ligands 
to the protein Nano carrier [83, 84].

Types of protein nanoparticles
Animal proteins
Gelatin nanoparticles
Gelatin is a denatured protein derived from the acidic 
hydrolysis or collagen base of animals. This biomolecule 
has been used for many years in the pharmaceutical, 
cosmetics and food industries. Gelatin stimulates the 
immune system due to denaturation. Gelatin is a Poly-
ampholyte compound and has cationic and anionic active 
groups and hydrophobic groups in a ratio of 1:1:1, so 
that the gelatin molecule has 13% positive charge (amino 
acids lysine and arginine), 12% negative charge (Glu-
tamic and aspartic amino acids) and 11% of hydrophobic 
amino acids (leucine, isoleucine, methionine and valine) 
[85–87]. The rest of the structure is made up of glycine, 
proline and hydroxyproline. Gelatin is commercially 
available as both cationic gelatin and anionic gelatin. 
Cationic gelatin is obtained from type 1 pig skin colla-
gen under acidic hydrolysis and anionic type from bovine 
collagen under hydrolysis [88, 89]. Gelatin is used in var-
ious drug formulations in systemic use. It is used clini-
cally as a plasma volume enhancer as well as a stabilizer 
in protein formulations, vaccines and gelatin sponges 
such as gel foam. Gelatin contains the arginine-lysine-
glycine sequence in its structure. The above sequence is 
an important sequence in many extracellular matrix pro-
teins and plays an important role in cell binding and cel-
lular messaging by binding to the beta subunit of integrin 
receptors at the cell surface [90–92]. This property is one 
of the important advantages of gelatin over polymers that 
lack cell recognition and binding sites. The active groups 
of gelatin make it possible to make a variety of chemi-
cal changes on it directly or by using different linkers, 
this feature is very important, especially when produc-
ing targeted drug delivery carriers and the possibility of 
attaching significant amounts of drug to carriers. Gelatin 
nanoparticles have been used to deliver various types of 
hydrophilic and hydrophobic drugs, including various 
anti-cancer drugs, anti-AIDS drugs, anti-malarial drugs, 
and analgesics, treatment of infectious diseases, mus-
cle relaxants, anti-inflammatory drugs, and treatment 
drugs. Diabetes is a topical ophthalmic drug, inhibitor 
of protein synthesis, activator of tissue plasminogen, 
gene delivery and delivery of protein drugs and vaccines 
[93–95]. SEM and TEM images of gelatin nanoparticles Fig. 4  Advantages of protein nanoparticles in drug delivery [67]
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is shown in Fig.  5, which clearly indicates the smooth 
And spherical nanoparticles with an average diameter of 
about 100–300 nm.

Synthesis of gelatin nanoparticles
Several methods are used to make gelatinous nanoparti-
cles (Fig. 6). These methods include precipitation, phase 
separation, emulsion-solvent evaporation, self-assembly 
of gelatin molecules (which have been deformed by the 
bonding of chemical groups) or self-assembly of drugs 
and gelatin molecules, micro emulsion, and so on. The 
following is an example of the self-assembly of gelatin 
molecules (Fig. 7) [96].

Collagen nanoparticles
Collagen is a structural protein in the vertebrate body 
and is the most abundant protein in the mamma-
lian body, accounting for 20–30% of the body’s total 

proteins. The basic structure of collagen is tropocolla-
gen three-stranded molecules that are twisted together 
in three spirals and connected by various nono covalent 
bonds [97–100]. Collagen is eventually produced by the 
formation of covalent crosslinks between tropocollagen 
molecules (Fig. 8). Due to its good biocompatibility and 
low stimulation of the immune system and biodegrada-
bility, this protein is widely used in medicine. Collagen 
nanoparticles are removed by the body’s Reticuloen-
dothelium system and can therefore increase the uptake 
of certain compounds, such as anti-AIDS drugs, into 
some cells, especially macrophages [101–104]. Col-
lagen nanoparticles due to their small size with high 
contact surface, high absorption capacity and ability 
to disperse in water to form a stable and clear colloidal 
solution have been used as drug carriers for long-term 
release of antimicrobial and steroid drugs, especially in 
dermatology [105–107].

Fig. 5  a SEM and b TEM images of gelatin nanoparticles [93–95]

Fig. 6  Synthesis of gelatin nanoparticles has been done in different ways, most of which in the final stages of synthesis, it is necessary to use a 
combination of linker (cross linking agent) to stabilize the nanoparticles
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Milk proteins
Milk proteins are natural carriers of biologically active 
substances. Based on their structure, they can be classi-
fied into two categories [108, 109]:

1.	 The group of proteins with linear and flexible struc-
ture including caseins and proteins with spherical 
structure including whey proteins (whey) [110].

2.	 Beta-lactoglobin and alpha-lactoglobin are the main 
proteins in whey that have been studied to make 
drug Nano carriers. Among the characteristics of 
these proteins are their high resistance to breakdown 
by enzymes that break down proteins in the stomach 
[111, 112].

Casein
Casein is the main protein in milk. Its advantages as 
drug-carrying nanoparticles include low cost, easy 
access to its sources, high stability and nono Taxol [113, 
114]. Many of the structural and physicochemical prop-
erties of caseins make it possible to use them as drug 
delivery systems. Some of these properties include the 
ability to bind to a variety of ions and molecules, excep-
tional stability and surface activity properties, excel-
lent self-assembly and emulsification properties, and 
water-binding and gel-forming capacity. Caseins are 
not temperature sensitive, while whey globular pro-
teins undergo denaturation and fundamental struc-
tural changes at temperatures above 70  °C [115–117]. 
The high tensile strength of casein films has made these 
proteins attractive in use as tablet coatings. Another 
important property of caseins is their protective effect, 
which is essential for the protection of sensitive car-
goes. For example, casein with the ability to absorb 
strong light, especially in the wavelength range of 200–
300  nm can protect its cargo against radiation, espe-
cially in the range of ultraviolet light [118–120]. The 
mentioned features suggest casein as a suitable candi-
date for building conventional and newer drug delivery 
systems such as nano-camels. However, limitations of 
caseins include immunosuppression and allergy con-
cerns. It should be noted that casein in milk is absorbed 
as amino acids after decomposition in the gastroin-
testinal tract, but in cases such as direct intravenous 

Fig. 7  Synthesis of gelatin nanoparticles by self-assembly method: in this method, hexanoic anhydride molecules are first attached to it through 
the lysine roots in collagen, resulting in the formation of an amphipathic structure that spontaneously Nanoparticles accumulate [96]

Fig. 8  Structure of collagen fibers [101–104]
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injection of these proteins, the immune response to 
them should be considered [121–123].

Casein structure
Milk casein contains about 94% protein and 6% low 
molecular weight compounds called colloidal calcium 
phosphate. These Phosphoprotein have a molecular 
weight of 19–25  kDa and an isoelectric pH of 4.6–4.8. 
Caseins contain multiple roots of hydrophilic and hydro-
phobic amino acids, and are therefore dual-protein 
proteins capable of producing block copolymers with 
a high tendency to self-regulate micelles in the range 
of 50–500  nm (average 250  nm) [124]. These spheri-
cal micelles have a hydrophobic inner part whose outer 
surface is surrounded by a layer of hydrophilic casein 
kappa (κ) that stabilizes the micelles by creating an elec-
trostatic and spatial repulsion between the micelles 
(Fig. 9). In fact, casein micelles in milk are natural nano 
carriers that are responsible for transporting and sup-
plying amino acids and calcium phosphate from mother 

to baby [125–127]. These micelles are very stable and 
maintain their structural stability while performing vari-
ous processes on milk to prepare a variety of dairy prod-
ucts. More recently, casein or copolymer micelles have 
been used with other polymers to transport hydrophobic 
cargoes, effectively inhibiting vitamin D and omega-3 
unsaturated fatty acids and beta-carotene (a precursor to 
vitamin A) against degradation and oxidation by Protect 
from ultraviolet light (Fig. 10). Casein nano micels have 
been used as carriers of various anticancer drugs such 
as curcumin, mitoxantrone, vinbelastin, docetaxel, and 
paclitaxel (Fig. 11). Beta casein is a candidate for target-
ing gastric tumors due to its degradability in the stomach. 
By degrading beta-casein nanoparticles in the stomach 
by the enzyme pepsin, paclitaxel is released from them 
and effectively reduces the growth of gastric cancer cells. 
Nano mysel protects the drug by protecting the drug 
inside it and preventing the drug from being released 
before it reaches the stomach, as well as preventing its 
toxic effect on higher areas of the gastrointestinal tract 
such as the mouth and esophagus. Gels from this protein 
are sensitive to pH changes and can be used in the con-
struction of intelligent drug delivery systems. Another 
potential of casein nanoparticles is their ability to be lyo-
philized without the need for cryo-protectants when pre-
paring drug formulations [128, 129].

Silk fibroin
Silk is a natural protein polymer produced by the larvae 
of some insects, such as silkworms and spiders. Due to 
their good biocompatibility, these proteins are being 
studied in drug delivery and tissue engineering. The main 
components of silk are the fibrin linear protein in the 
nucleus and the adhesive protein such as serein, which 
encapsulates the fibrin nucleus [130]. Among the poten-
tials of these proteins in making nanoparticles and scaf-
folds with low decomposition rate is their self-assembly 
ability and mechanical properties. Fibroin has a lower 
inflammatory response at the site of degradation than 
widely used biocompatible synthetic polymers such as 
polylactic acid. Fibroin nanoparticles have the ability to 
protect proteins and peptides such as conjugated insulin 
and vascular endothelial growth factor in blood serum 
and solution containing the enzyme trypsin (enzyme 

Fig. 9  a Structure of casein micelles: filamentous casein monomers 
and black circles represent calcium phosphate Nano clusters. b 
Casein structural proteins: These proteins include hydrophobic 
regions (light linear parts) that react with each other and hydrophilic 
regions (dark ring parts) also interact with calcium phosphate Nano 
clusters [128, 129].

Fig. 10  Cases of the casein and dextran copolymers have the ability to load and protect beta-carotene molecules [128, 129]
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that breaks down proteins in the human stomach) and 
increase the duration of active release of these com-
pounds [131–133].

Elastin
Elastin is the predominant protein in the extracellular 
matrix of arterial walls. This protein plays an impor-
tant role in creating elastic properties and flexibility in 
the arteries when blood pressure changes, as well as in 
many other tissues of the body such as the lungs, skin 
and ligaments [134, 135]. In their natural environment, 
the components of elastin first converge in the form of a 
water-soluble precursor molecule called their tropoelas-
tin, and then these precursors combine to form elastin 
fibers by forming covalent cross-links (Fig.  12). Genetic 
engineering techniques and the production of recom-
binant proteins have made it possible to make elastin-
like polymers (ELPs) [136]. The basic structure of these 
proteins is similar to the repetitive sequences found in 
elastin, but genetic engineering methods have made it 
possible to add specific sequences and create the desired 
properties of researchers in these polymers [137]. Due to 
their similarity to natural elastin in the body, the immune 
system does not react to them and they have the ability 
to escape from the immune system [138]. The possibility 
of designing and manufacturing elastin-like proteins by 
genetic engineering techniques gives several benefits to 
these proteins and their nanoparticles, including the abil-
ity to achieve appropriate pharmacokinetic properties, 
the ability to precisely control molecular weight, and the 
production of single-size polymers. (monodisperese), the 
ability to attach multiple drug molecules to them and the 
ability to attach nanoparticle targeting agents to specific 
tissues or locations in the body [139–142]. Also, a variety 

of polymers designed with these methods have the ability 
to change the phase rapidly in response to temperature 
changes (Fig. 13).

Plant proteins
The use of plant protein nano carriers is a new approach 
in drug delivery. Unlike animal protein nano carriers, 
plant proteins such as zein and gliadin have a longer drug 
release ability due to their hydrophobic nature [143–145]. 
Also, due to high hydrophobicity, stable nanoparticles 
of plant proteins may be produced without the need for 
chemical and physical treatments and the use of chemi-
cal linker molecules, which are often used in the manu-
facture of animal protein Nano carriers [146–148]. 
Vegetable proteins are widely available and are much 
cheaper than animal proteins. They are also not at risk of 
transmitting animal diseases to humans, such as bovine 
insanity. The presence of different functional groups in 
these proteins makes it possible to change the surface 
of the resulting nanoparticles to regulate the physical 
and chemical properties and bind the targeting agent 
[149–152].

Zein
Saddle is a water-soluble, alcohol-soluble protein with 
a molecular weight of about 40  kDa, which is found 
mainly in cereals [153]. 75% of its amino acids are hydro-
phobic and 25% are hydrophilic. Because zein is a natu-
ral protein and has good biodegradability, it has been 
approved by international organizations for use in the 
food and pharmaceutical industries [154]. It is also used 
as a degradable coating in foods and drugs today due to 
its low water absorption, high temperature resistance 
and suitable mechanical properties. This protein forms 

Fig. 11  Production of casein nanoparticles containing curcumin: at pH 7 = curcumin molecules are complex (large particles) but with increasing 
to about 12 molecules of drug particles are dispersed and casein molecules are opened. By reducing the pH again to the range of 7, casein nano 
drates containing the drug curcumin are formed [128, 129]
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nanoparticles in the alcoholic-aqueous solution in the 
range of 150–550 nm (Fig. 14) and due to high hydropho-
bicity is considered as a controlled drug delivery system 
for hydrophobic drugs. Also, the special shape of bricks 
like this protein enables the ability to carry hydrophilic 
compounds such as heparin, 5-fluorouracil, and doxoru-
bicin and control their release and improve their effect 
[155–157].

Gliadin
Wheat gluten is a complex containing proteins and car-
bohydrates, of which proteins are the main components. 
These proteins include glutenin and gliadin. Isolation 
and detection of these proteins is done with 70% alcohol. 
Glutenin is an alcohol insoluble protein with a molecu-
lar weight of 106  kDa. Gliadin is a set of proteins that 
are separated from alcohol by 70% of gluten and have a 
molecular weight in the range of 25–100 kDa. The struc-
ture of these proteins also contains large amounts of the 
amino acid glutamine (about 40%) [158, 159]. Gliadin has 

little solubility in aqueous solutions [160–162]. Because 
they are similar to creatine, these proteins are rich in 
proline and have the ability to interact with the skin’s cre-
atine epidermis and have the potential to produce skin 
formulations. Various studies have shown the ability of 
Gliadin nanoparticles as drug release control systems for 
hydrophobic compounds and amphiphilic compounds 
such as vitamin A, vitamin E, amoxicillin [163, 164]. 
One of the useful properties of Gliadin is its high ability 
to bind to the body mucosa [165, 166]. Due to the pres-
ence of glutamine and hydrophobic amino acids in its 
structure, Gliadin on the one hand gives abundant hydro-
gen bonds with the mucous layer of the mucosa and on 
the other hand can interact with the cell membrane by 
hydrophobic interactions. For this reason, Gliadin nano-
particles have shown good potential in the preparation of 
oral formulations, especially for the treatment of gastric 
diseases such as gastric ulcers. Due to their interaction 
with gastric mucus, these nanoparticles increase bioavail-
ability and increase the release time of the drug, resulting 

Fig. 12  Elastic fiber structure. Changing the pattern of bonds between elastin molecules causes elastic properties and flexibility in elastin fiber and 
tissue [139–142]
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in the effective removal of Helicobacter pylori (the cause 
of gastric ulcer) from the mucosa of this organ [167, 168].

Lectin
Lectins are a diverse group of glycoproteins or proteins 
capable of binding to carbohydrates. Wheat germ agglu-
tinin (WGA) is one of the most popular plant lectins that 
is of great interest. This protein has high stability, low 
toxicity and immunogenicity, resistance to proteolytic 
degradation as well as specific identification and binding 
site to glycosylated components of intestinal mucosa and 
therefore can improve the absorption of oral drug for-
mulations [169–172]. In the last two decades, lectins in 
two the main area has been considered by the pharma-
ceutical industry. The first is to improve the absorption 
of existing drugs with low bioavailability and the second 
is to prepare targeted drug formulations in the treatment 
of cancers [173–176]. In addition, several types of lec-
tins, including WGA, have shown significant antitumor 
effects by inducing apoptosis in cancer cells. Numerous 
proteins and phospholipids are present in cell mem-
branes attached to different oligosaccharide roots and 
have the ability to bind specifically [177–179]. Lectins to 

these sugar roots at the cell surface are the basis for tar-
geted drug delivery by lectins (Fig. 15). Because different 
cells produce and display different types of oligosaccha-
ride chains on their surface, cancer cells also often show 
different oligosaccharide patterns than normal cells of 
the same type, so different lectins can be used as Carriers 
are used to deliver the drug to different tissues and cells 
(Fig. 16). Accordingly, many studies have been conducted 
in this field to cover different types of nanoparticles with 
lectins and to produce targeted drug delivery systems. 
Lectins can be introduced as the second generation of 
bioadhesive enhancers, because in addition to the release 
of nanoparticles from the mucosal layer of the mucosa by 
various mechanisms such as clathrin-dependent endo-
cytosis and endocytosis by the Caveola pathway causes 
increased cell uptake of drug formulations [180]. Lectins 
with the ability to bind to carbohydrates on the surface of 
Helicobacter pylori can also increase the effectiveness of 
treatment [175, 176, 181]. Lectins are also useful in the 
development of oral vaccines. Nanoparticles containing 
pathogenic antigens and coated with lectins targeted to 
the surface of Peyer’s patches in the intestine enhance 
the immune response of the oral vaccine [182, 183]. 

Fig. 13  Temperature responsive ELP nanoparticles. ELP. A with n-repeating peptide sequence (Val-Pro-Gly-X-Gly) is a temperature-sensitive 
polypeptide that is insoluble in water above the transfer temperature (Tt) and soluble in water at the bottom. B Drug-ELP conjugates in heated 
tumor tissue can aggregate to produce drug-containing ELP nanoparticles that will increase in size depending on their uptake into the target tissue 
(EPR mechanism). C Molecular thermal switches based on ELP nanoparticles. D Production of temperature-sensitive micelles by ELP molecules 
containing cysteine-rich sequences [139–142]
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Aged plaque cells are cells that display antigens and com-
ponents of the immune system located in the gut [184, 
185]. The ability to bind lectins to the mucosa is used not 
only for the gastrointestinal mucosa but also to improve 
drug delivery through non-oral pathways such as the 
nasal mucosa, vagina, lungs, eyes, as well as crossing the 
blood–brain barrier. odorranalectin, the smallest mem-
ber of the lectin family, is less immunogenic than other 
lectins and has the ability to specifically detect and bind 
to L-fucose. This sugar is abundant on the surface of cells 
lining the nasal mucosa. Nanoparticles containing this 
lectin have increased nose-to-brain delivery to the brain 
[186–189].

Soy proteins
Soybeans are currently one of the most abundant 
sources of plant protein. The fortified form of soy 

protein is called soy protein isolate (SPI). Soy protein 
extract is a balanced combination of polar, non-polar 
and pregnant amino acids that allows its use in a variety 
of drugs. The main components of SPI are glycinin with 
a molecular weight of 360  kDa and beta-kan glycinin 
with a molecular weight of 180  kDa. In aqueous solu-
tion, SPI proteins form a spherical structure consist-
ing of a hydrophilic shell and a hydrophobic nucleus. 
Addition of precipitating agent (dissolvent = solvent) 
or linker molecules accumulate in different structures 
such as microsphere and hydrogel. By changing the 
amount of linker agents are added and as a result the 
percentage of binding in the resulting particles can be 
particle decomposition pattern to achieve the appropri-
ate pattern Drug release altered Soy protein nanopar-
ticles can be obtained from fresh SPI by desolvation or 
coacervation [190–193].

Fig. 14  Production methods of cup nanoparticles (nano sphere) and hollow nanoparticles (nano capsules) of zein [155–157]
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Protein cages
Viral protein cages
Protein cages are structures derived from viruses or 
virus-like particles. These particles often range in size 
from a few nanometers to a few tens of nanometers. 

Virus cages are actually the structural shell or cap-
sid of viruses without their nucleic acid content. The 
shape, size and stability of virus cages depend on the 
type of virus. These cages consist of a limited num-
ber of subunits that accumulate in the form of porous 
nano spheres. In this structure, three distinct areas 
are significant, which are the inner and outer surface 
of the cage and the distance between the subunits. 
All three regions can be modified by chemical meth-
ods or genetic engineering methods (by changing the 
nucleotide sequence of subunits) without changing the 
structure of the cage, for use in applications in medi-
cal diagnosis and treatment [194]. Protein cages usually 
have good stability in different chemical environments 
(to cause chemical changes on them). In this way, a pro-
tein cage can be designed that has the ability to perform 
several operations simultaneously, such as drug load-
ing, imaging agent, and cage targeting agent to a spe-
cific cell or tissue (Fig. 17). For example, by adding the 
amino acids cysteine and lysine to the cage by genetic 
engineering methods, it is possible to attach different 
drugs, imaging agents and fluorophores to the cage 
(Fig.  18). Another distinctive feature of protein cages 
compared to other protein structures is the uniform 
size of the cage. This property makes it possible to load 
relatively specific amounts of drug into these nanopar-
ticles, which is an important pharmacokinetic feature 
of a drug formulation. The resulting protein cage is nat-
urally stable in many physiological environments and 
protects drugs and therapeutic agents against chemi-
cal and enzymatic degradation. Cancer chemotherapy 
is another potential application of protein cages [195, 
196]. Due to their size (tens of nanometers), nanometer 

Fig. 15  Nanoparticles coated with a variety of lectins have the ability 
to bind to glycoproteins of the luminal surface of vascular endothelial 
cell membranes and can be used in targeted drug delivery [186–189]

Fig. 16  Some sugar sequences in tumors and viruses are different from those in normal cells. These sequences can be used as target lectin 
antigens in targeted drug delivery [186–189]
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cages do not pass through the endothelial layer of nor-
mal vessels, so they have a longer half-life in the blood-
stream, but these cages are smaller than the pores of 
tumor tissue vessels (Fenestrate) and can enter and 
Adhesion to the surface of cells and tumor tissue can 
effectively inject significant amounts of chemotherapy 
drug into tumor tissue. The small size of the cages also 

helps these particles escape from the macrophage cells 
of the liver tissue [197, 198].

Non‑viral protein cages
In addition to viruses, ferritin/apophytin protein cages 
and small heat shock shock protein are among the pro-
tein cages. Ferritin cages consist of 24 subunits that are 
arranged in the form of hollow structures with a diameter 

Fig. 17  Mechanism of loading doxorubicin chemotherapy into the protein cage alone (A1, A2) or simultaneously with the binding of the targeting 
agent (folic acid) to the protein cage (B1, B2, B3) [195–198]
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of 12 nm and an internal space of 8 nm. Normally in the 
body, this space is used to store about 4500 iron ions. 
In this structure, there are 14 channels for the exchange 
of materials between the cage and the external environ-
ment. These nano cages have been used to carry various 
molecules and ions [199]. Lutetium-177 (Lutetium-177) 
is a radioactive material that is highly regarded for imag-
ing and radiotherapy applications in nuclear medicine 
due to its good half-life (6–7 days) and beta and gamma 
radiation. Numerous cancers, such as neuroendocrine, 
pancreatic, prostate, lung, bone marrow, and leuke-
mia tumors, have been shown to be able to load large 
amounts of this radioactive substance into the body 

and increase its stability in the body. The higher dose of 
radiation to the tumor tissue will be during radiotherapy 
(Fig. 19).

Disadvantages and limitations of protein 
nanoparticles
Despite the various advantages mentioned regarding the 
use of protein nanoparticles in drug delivery and tissue 
engineering, there are some limitations to these natural 
polymers in their use in the pharmaceutical and medi-
cal industries, some of the most important of which are 
[200–202]:

Fig. 18  By genetic engineering methods, thiol (SH) cysteine roots are added to recombinant heat shock protein (HspG41C) nanocages. The 
resulting nano cages are able to bind to a significant number of doxorubicin drugs [195–198]

Fig. 19  Loading of luteum phosphate into ferritin nano cages by diffusion mechanism [199]
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1.	 Proteins are natural polymers and most of them are 
heterogeneous mixtures of different sizes with differ-
ent molecular weights. This feature reduces the pos-
sibility of reproducibility and the possibility of dif-
ferences in product characteristics at different times 
(batch to batch variation) during mass production 
and industrial pharmaceutical uses. To overcome this 
problem, researchers are looking to produce recom-
binant proteins using genetic engineering techniques 
[203, 204]. The proteins produced by these meth-
ods are single in size and have a fixed and specific 
molecular weight. By designing their structure, it is 
possible to connect different groups to their surface, 
such as targeting factors, and also to adjust the rate 
of decomposition and release of the drug by them. 
In this regard, various types of proteins have been 
produced for use in drug delivery, including elastin 
proteins such as ELPs, recombinant human serum 
albumin (rHSA) and recombinant gelatin. It should 
be noted that the production of proteins by genetic 
engineering methods leads to an increase in the cost 
of products.

2.	 Immunogenicity: the human body has shown an 
immune response to foreign proteins and different 
degrees of immunogenicity are among the limita-
tions of protein nanoparticles. However, when intra-
venous injection of albumin, gelatin, casein and zein 
nanoparticles [205–208], little immune response was 
observed [209].

3.	 Achieving a proper release pattern: since proteins 
are often hydrophilic molecules, most of them are 
not able to release the drug for a long time and their 
nanoparticles swell when they enter the body by 
absorbing water and the drug spreads rapidly outside. 
Therefore, chemical linker molecules such as formal-
dehyde and glutar aldehyde are usually used to sta-
bilize their structure when preparing protein nano-
particles [210–214]. These interface molecules are 
often toxic, so one of the areas of active research in 
the field of protein nanoparticles is the achievement 
of suitable and non-toxic linkers. Also, plant pro-
teins with hydrophobic nature have shown promis-
ing results in the production of protein nano carriers 
[215–219] with long-term release capacity.

4.	 The possibility of transmitting animal diseases such 
as bovine insanity to humans when using animal pro-
tein sources to produce nanoparticles [220–223].

Advantages of albumin nanoparticles as a drug 
delivery system
Formulations based on albumin nanoparticles have sev-
eral advantages, some of which are due to the use of 
albumin as a structural unit of nanoparticles and oth-
ers related to the properties of these nanoparticles, and 
Mathematical modeling plays an important role in facili-
tating the design of drug delivery systems by identifying 
key factors and molecular mechanisms of release [224–
227]. Which are mentioned below [228, 229].

1.	 Albumin is one of the most important proteins in 
blood plasma and has many important physiologi-
cal roles. The presence of high levels of albumin in 
the body makes the injection of significant amounts 
of it into the body without side effects or with low 
side effects. A history of albumin sensitivity is rare in 
individuals. One of the major advantages of albumin 
in mass production is its relatively easy access to the 
source and its price [230, 231].

2.	 Albumin nanoparticles are biocompatible, non- 
Taxol, immunogenic and biodegradable, and the resi-
dues from their degradation are amino acids that are 
used as a structural unit to make body proteins by 
the surrounding tissues.

3.	 Albumin has many different functional groups 
and therefore has the capacity to bind to signifi-
cant amounts of the drug. Full understanding of 
the amino acid sequence and structure of albumin 
and multiple charged groups allows the binding of 
various drugs to albumin nanoparticles by various 
mechanisms including electrostatic attraction with 
negatively charged drugs (such as ganciclovir), posi-
tively charged ones (such as oligonucleotides), and 
dual compounds. Gives friend (like doxorubicin) 
and hydrophobic (like paclitaxel). Also, the presence 
of multiple functional groups on the surface of the 
resulting albumin nanoparticles, such as thiol, amine 
and carboxyl groups, makes it possible to easily 
change the surface and attach different ligand mol-
ecules to its surface to make nanoparticles with dif-
ferent activities and purposes [228, 229].

4.	 Various albumin-based drug delivery systems are 
commercially available and available in the market, 
including levmir and victoza in the treatment of 
diabetes, ozoralizumab in the treatment of rheuma-
toid arthritis, albuferon in the treatment of hepatitis 
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C and the product. Albures 99mTc and Tc-Nano-
coll 99  m can be mentioned in nuclear medicine 
(Figs. 20, 21), and albumin is also used as a carrier in 
the treatment of cancer and viral diseases. The four 
major methods that use albumin as a drug carrier 
are shown in Fig. 22. Drug precursors, and proteins 
and peptides can bind directly to this protein by non-
covalent and covalent bonds or indirectly through 
an intermediate ligand having an albumin-binding 
group (top right and left). Alternatively, nano bodies 
are attached to albumin, or albumin replaces part of 
the immunoglobulin G antibody chain (fragment (Fc 
(bottom right)). Using albumin nanoparticles another 
important strategy has been to use albumin as a drug 
carrier (bottom left).

5.	 There are different methods for making albumin nan-
oparticles under mild environmental conditions.

6.	 Albumin as a structural unit of nanoparticles [232–
234], an acidic protein, is very soluble and stable. 
Albumin is a flexible molecule and easily deforms 
depending on the environmental conditions in 
which it is located and also by changing the binding 
of ligands and returns to its original state at the first 
opportunity with the help of disulfide bonds, and this 
property is an advantage. It is important for it in the 
physiological environment and outside the body. This 
protein is able to regenerate its structure even though 
its numerous disulfide bridges are broken. Albumin 
does not have the conventional properties of most 
proteins, as it is a very stable and potent protein that, 
unlike many proteins, is in a wide range (pH = 4–6) 
and for a long time at high temperatures (more than 
10  h at room temperature Above 60  °C) and also 
remains active in organic solvents. Its denaturation 
occurs only in non-physiological environments with 
severe changes in temperature, pH and ionic concen-
tration of the environment. Introduces all the men-
tioned properties of albumin as a suitable subunit for 
making nanocarriers in drug delivery [199, 200, 228, 
229].

7.	 As an anti-cancer drug formulation, albumin nano-
particles [235–237] accumulate in tumor tissue both 
through passive targeting and through active activa-
tion targeting, and therefore albumin nanoparticles 
have a high therapeutic ability. They have malignant 
solid tumors.

8.	 In general, albumin nanoparticles allow better con-
trol of drug release than liposomal formulations, 
which is effective in improving patient satisfaction 
and acceptance.

Albumin
Over the past few decades, albumin has emerged as a 
powerful macromolecular carrier in medical therapeutic 
and diagnostic applications. This protein with a half-life 
of about 19 days in the bloodstream can play an impor-
tant role in improving the pharmacokinetic properties as 
well as targeting drugs [238]. Abraxane Albumin Formu-
lation Paclitaxel Anti-Cancer Drug Benefits the benefits 
of albumin in its antitumor function (Fig. 23).

Types of albumin
For commercial use, albumin is made from a variety of 
sources, such as egg white called ovalbumin, bovine 
serum albumin (BSA), and human serum albumin (HSA). 
Milk, soy and legumes are other sources of albumin [239].

Fig. 20  Structure of the drug Levemir used to treat diabetes [199, 
200, 228, 229]

Fig. 21  Alboferon is a genetic engineering product derived from the 
binding of the human albumin gene sequence to interferon alpha 
[199, 200, 228, 229]
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Ovalbumin
Ovalbumin is one of the most widely used food proteins, 
which is widely used in the food industry. This molecule 
is a glycoprotein with a molecular weight of 47  kDa, 

contains 385 amino acid roots and has only one disulfide 
bond. The main reason for choosing and using this pro-
tein as a drug carrier is benefits such as easy access to its 
source and its cheap price. Other properties include the 

Fig. 22  Types of pharmaceutical formulations made using albumin as a carrier [199, 200, 228, 229]

Fig. 23  Structure of Abraxane (nabTM-paclitaxel)
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ability to form gels, suspensions and foams. Due to its 
pH-sensitive and temperature-sensitive properties, oval-
bumin has the potential to be used as a drug release con-
trol agent [228].

Bovine serum albumin
This protein with a molecular weight of 69 kDa is widely 
used in drug delivery. The popularity of this protein is due 
to various advantages such as abundance of its source, 
cheap price, easy separation and purification from bovine 
serum, its high capacity to bind to ligands and also its 
wide acceptance in the pharmaceutical industry [240].

Human serum albumin

a.	 Albumin structure

	 Human serum albumin is a spherical soluble pro-
tein with a molecular weight of 66.5 kDa consisting 
of 585 Amino Acid consisting of a single polypeptide 
strand. This chain is a set of alpha-helix chains that 
form three separate second structures (Fig. 24). Albu-
min contains 35 cysteine roots, which play a funda-
mental role in the formation of the structure of this 
protein by forming 17 disulfide bonds. Also, the pres-
ence of a large number of charged amino acids such 
as lysine, arginine, glutamic acid and aspartic acid in 
its structure plays an important role in the various 
biological roles of albumin and also in the production 
of nanoparticles and the binding of various factors to 

it. The three-dimensional structure of human albu-
min is determined by X-ray Crystallography, accord-
ing to which the albumin has a heart-like structure 
with dimensions of 80 by 30 angstroms [199, 241]. Of 
course, this structure is somewhat different in solu-
tion and all three of them are elliptical (Fig. 25).

b.	 Physiological functions of albumin
	 Albumin is one of the most important plasma pro-

teins and has many important physiological roles. 
This protein makes up more than 60% of the mass 
of plasma proteins and its amount is about 35–50 g 
per liter of blood serum. Albumin alone is responsi-
ble for more than 80% of the plasma osmolality pres-
sure, and also plays an important role in stabilizing 
blood pH by its buffering action. This protein, like 
many plasma proteins, is made in the liver and has 
a daily production rate of 10–15  g in the body, and 
its average half-life in human blood serum is 19 days. 
Albumin acts as a carrier of many molecules includ-
ing fatty acids, eicosanoids, bile acids, steroid hor-
mones, vitamins C, D, folate, copper, zinc, calcium, 

Fig. 24  Albumin structure. Albumin is a polypeptide strand 
containing several alpha chains [199, 241]

Fig. 25  Shows the schematic structure of albumin in solution [199, 
241]

Fig. 26  Albumin has multiple binding sites for a variety of 
biomolecules and drugs [200]
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magnesium, as well as many drugs in the blood such 
as penicillin’s, sulfonamides, benzodiazepines And 
end lytic compounds are involved (Fig.  26). In its 
protective role, albumin binds to the toxic metabolite 
bilirubin and transports it to the liver for excretion. 
Albumin exerts its protective role by binding to toxic 
substances of external origin such as benzene and 
the carcinogenic compound Afflation and various 
other compounds. It is used as a therapeutic agent 
in human serum albumin in the treatment of various 
diseases such as shock, burns, albumin deficiency, 
trauma and cardiopulmonary surgery, acute respira-
tory problems and blood dialysis. Another important 
feature is its preferential absorption by inflamed tis-
sues as well as tumor tissues, which is an important 
advantage for use as a drug carrier [200].

Mechanism of targeting by albumin nanoparticles
Passive targeting
Tumors have the ability to trap plasma proteins and use 
their amino acids as a source of energy and food during 
their proliferation. Tumor vascular endothelial wall is 
defective and has greater permeability than healthy vas-
culature, so the entry of some macromolecules into the 
interstitial fluid space that does not occur in small tissue 
vessels or occurs in small amounts increases in tumor tis-
sue. On the other hand, lymphatic resection of interstitial 
fluid in tumor tissue is not performed well and the com-
bination of the two leads to the accumulation of macro-
molecules in tumor tissue. This phenomenon is called 

Enhanced permeation and retention. Studies have also 
shown that the duration Long circulation time is one of 
the prerequisites for increasing tumor resection of pro-
teins. Albumin with effective hydrodynamic diameter of 
7.2  nm and long circulation is a suitable candidate for 
drug delivery to tumor tissues and EPR mechanism is one 
of the mechanisms to increase harvesting. It is a tumor 
(Fig. 27) [199, 200, 228, 229, 238–241].

Targeted active
Albumin has a receptor called albobandine or glycopro-
tein 60 (with a molecular weight of 60 kDa) on the surface 
of endothelial luminal cells, the drug-albumin complex 
binds to these receptors. The affinity of the paclitaxel 
albumin complex for glycoprotein 60 is very high and in 
the nanomolar concentration range. This binding stimu-
lates the accumulation of glycoprotein 60 molecules and 
then the accumulation of proteins called kaolin in place. 
These proteins are involved in the process of endocytosis. 
Thus, the drug-albumin complex enters from the lumi-
nal surface of endothelial cells and on the other hand it 
is released and enters the interstitial fluid space. In the 
interstitial space, this complex binds to an extracellular 
matrix protein called SPARK, increasing the shelf life of 
drug-containing albumin in the extracellular space and 
releasing paclitaxel over a long period of time in the vicin-
ity of cancer cells. SPARK protein expression is increased 
in several cancers, and as a result, this property of albu-
min nanoparticles leads to active targeted drug delivery to 
tumor tissue (Fig. 28) [199, 200, 228, 229, 238–241].

Fig. 27  Accumulation of albumin-advance blue complex in a tumor formed in the left leg of a growing rat during (A) 24 h (B) 48 h, and (C) 72 h 
[199, 200, 228, 229, 238–241]
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Abraxane commercial formulation of albumin 
nanoparticles containing paclitaxel
Taxol are a family of compounds with strong anti-cancer 
properties, and Paclitaxel is a member of this family. The 
most important limitation of these compounds for thera-
peutic use is their low solubility in physiological body flu-
ids. For this reason, Taxol is used as a formulation with 
higher solubility of Paclitaxel for the treatment of cancer. 
Abraxane was developed to overcome the limitations of 
Taxol and has several advantages over Taxol in the treat-
ment of various cancers, which are mentioned below 
(Fig. 29) [199, 200, 228, 229, 238–241].

1.	 In terms of CrEL-paclitaxel formulation with the 
brand name Taxol, it contains 50% ethanol and 50% 
chromophore to improve the solubility of Paclitaxel. 
Chromophore is a toxic compound that limits the 
use of Taxol, while nab-Paclitaxel under the brand 
name Abraxane (ABI 007) contains a formulation of 
Paclitaxel containing 3 to 4% albumin [199].

2.	 In terms of injection time, Taxol requires a long 
injection time of 3 to 24  h, while the duration of 
Abraxane injection is only 30 min.

3.	 Before injecting Taxol, it is necessary to prepare 
the patient by injecting various drugs such as corti-
costeroids and antihistamines to reduce the risk of 
hypersensitivity reactions. Including dexametha-
sone (12 and 6 h before injection), diphenhydramine 
(1 h before injection) and cimetidine (30 and 60 min 
before injection) while Abraxane does not require 
preparation. Also, unlike Abraxane, Taxol injection 
requires a special injection set that increases the cost 
of treatment [228, 229].

4.	 Due to the protection of paclitaxel in albumin nano-
particles in Abraxane, the maximum allowable dose 
of paclitaxel in this formulation is 260 mg / m2, which 
is significantly higher than Taxol (175  mg / m2). It 
should be noted that despite the possibility of using a 
higher dose of paclitaxel to treat cancer in Abraxane, 
the side effects of the drug, including neutropenia, 
are less than Taxol. Pharmacokinetically, due to lin-

Fig. 28  A Structure of albumin nanoparticles in Abraham. B Two mechanisms that increase the accumulation of abraxas in tumor tissue. C Details 
of the mechanism by which albumin passes through endothelial cells into interstitial fluid space [199, 200, 228, 229, 238–241]
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ear release, Abraxane is superior to Taxol with non-
linear release [228, 229].

5.	 Studies with radioactively labeled paclitaxel show 
that the drug passes more than 4 times the width of 
endothelial cells in the formulation of Abraxane rela-
tive to Taxol (Fig. 30) [199, 200, 228, 229, 238–241].

6.	 Intracorporeal studies show that at an injectable dose 
equal to paclitaxel in the two formulations of Taxol 
and Abraxane, the rate of drug accumulation in the 
tumor when using Abraxane is 33% higher than that 
of Taxol and Abraxane also causes a significant delay 
in tumor growth rate (Fig. 31) and also significantly 
increases the patient’s lifetime (survival)[228, 229].

7.	 It is possible to actively target Abraxane using 
changes in their levels with antibodies and peptides 
[228, 229].

Methods of producing albumin nanoparticles
There are several methods for making albumin nano-
particles [243–245], the most important of which is the 
emulsion-evaporation method used in the manufacture 
of Abraxane (Fig. 32). Some of these methods are [199–
202, 228, 229, 238–241]:

Fig. 29  Abraxane formulation containing 135 nm particles of albumin nanoparticles containing paclitaxel [28, 29, 41–51, 55–67, 73–95, 97–159, 
165–172, 177–180, 184–202, 228, 229, 238–242]

Fig. 30  Comparison of paclitaxel entry into endothelial cells in three 
formulations of Taxol and Abraxane and Abraxane containing methyl 
beta-cyclodextrin: Abraxane increases the cellular uptake of paclitaxel 
by 4.4 times compared to Taxol. When cyclodextrin is used as an 
inhibitor of 60 gp glycoprotein (which, by binding to albumin, causes 
endocytosis and increases its cellular uptake), the rate of drug uptake 
is very similar to that of Taxol, indicating a direct role for albumin in 
increasing paclitaxel cellular uptake [228, 229]
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1.	 Emulsion method—evaporation with the creation of 
cross connections (emulsion evaporation cross link 
method),

2.	 Phase separation method,
3.	 Simple coacervation method,
4.	 Self-assembly method (self-assembly),

Fig. 31  Comparison of the effect of two formulations of Abraxane and Taxol in prolonging the tumor progression process in patients with 
metastatic breast cancer: Abraxane causes a significant delay in tumor progression compared to Taxol in equal time

Fig. 32  Methods of producing albumin nanoparticles [228]
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5.	 Nano spray drying method and thermal method 
(Thermal gelation).

6.	 Production process of Abraxane formulation (nab-
Technology): The basis of nab (nanoparicle albumin 
bound technology) is the use of evaporation emul-
sion method with the creation of crosslinks between 
albumin units for the stability of the resulting nano-
particles. The generalities of its production process 
are given (Fig. 33).

Mathematical modelling of drug release kinetic
Equation (1) [246, 247, 248, 249] was used to quantify the 
normalized drug release from nanocarriers:

The total quantities of drug released at any time (t) and 
the final amounts of drug released, respectively, are Mt 
and Mf.

The stabilized drug release primarily for the early stage 
(0–8  h), which can be represented by Peppa’s model 
[250], a statistical and semi-empirical model:

(1)Release =
Mt

Mf
.

(2)Release = Ktn,

where k is determined by the liposome’s and drugs struc-
tural properties, and n is determined by the drug’s release 
mechanism (Fickian diffusion or non-Fickian diffusion) 
and carrier geometry. (Times) is the dimension of k, and 
n is dimensionless.

In order to align the experimental drug release with 
models [251–254], nonlinear regression analysis was 
conducted using MATLAB software version 7.8 (Math-
works Inc., Natick, MA) [255–259].

The consistency of the fit was determined using root 
mean square error (RMSE) [260–265] and R-square (R2) 
[266–269]. A better fit is shown by higher R2 and lower 
RMSE values [238–239]. Expressions (3) and (4) can be 
used to quantify these:

(3)

RMSE =



1/N

N
�

i=1

�

Release(%)pre,i − Release(%)exp,i
�

2




1
2

(4)

R2
= 1−

∑N
i=1(Release(%)pre,i − Release(%)exp,i)

2

∑N
i=1(Release(%)pre,i − Release(%)exp,i)2

Fig. 33  Albumin nanoparticles by emulsion-evaporation method [199, 200, 228, 229]
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where release (percent)exp,i is the experimental release 
used in every calculation, release (percent)pre,i is the 
expected release for this measurement, N is the num-
ber of observations, Z is the number of model constants 
[270–272], release (percent)exp is the total average data, 
and I is ith data, and N is the number of observations, 
Z is the number of model constants, release (percent)exp 
is the total average data, and release (percent)exp is the 
total It is assumed that there is no barrier to drug deliv-
ery in the buffer solution. Multiple regression methods 
were used to construct drug release model coefficients 
with different parameters such as buffer pH and tempera-
ture in order to generalize the drug release kinetic model 
[273, 274].

Conclusion

1.	 Nanoparticles are among the most promising carri-
ers in modern drug delivery systems. Among these, 
protein nanoparticles due to numerous advantages 
such as easy access to their resources, renewable 
resources, reasonable price, biocompatibility and bio-
degradability, the existence of multiple functional 
groups to carry large amounts of drugs and the pos-
sibility of connecting targeting groups to them. To 
target nanoparticles to a specific target cell or tissue, 
they are considered. Various animal and plant pro-
teins have been used to make nanodrates. Among the 
most important animal proteins used to make nano-
carriers are gelatin, collagen, and elastin, milk pro-
teins such as casein, albumin, and silk fibroids.

2.	 Due to their high hydrophobic nature, some plant 
proteins have the ability to produce nanocarriers 
that, unlike animal proteins, do not require chemi-
cal linkers to produce stable nanoparticles and can 
also retain their drug shipments for long periods of 
time. They have a long-term release of drug delivery 
systems. Abundant resources and easy and cheap 
access are other benefits of plant protein nanocar-
riers. Researchers in the pharmaceutical and medi-
cal industries are always looking for carriers whose 
repeatability is high during mass industrial produc-
tion and it is possible to control their various proper-
ties, such as the connection of targeting agents. The 
properties of protein nanocages promise the produc-
tion of ideal nanocarriers in the future.

3.	 Albumin is one of the most important proteins in 
blood plasma and has had several therapeutic appli-
cations in the past few decades. As a rich protein, 
blood has good biocompatibility and biodegrada-
bility. The existence of multiple functional groups 
makes it possible to carry significant amounts of 
therapeutic and diagnostic factors as well as targeting 

factors. It also has a high structural stability and can 
withstand a wide range of temperature and pH with-
out adversely affecting their structure. The unique 
properties of albumin have led to the development of 
a variety of drug formulations based on this protein 
in the treatment of various diseases. Abraxane nano-
particle formulation the anti-cancer drug paclitaxel 
is currently used as an effective formulation in the 
treatment of several common cancers and is in the 
final stages of clinical trials for other cancers.

4.	 In the field of nanoparticle drug delivery, protein 
polymers and protein composite materials are gain-
ing popularity. Their properties are suitable for drug 
delivery systems, and they have the potential to 
improve controlled release or targeting processes. 
Natural protein polymer is an appealing commod-
ity from an economic standpoint because it is com-
paratively inexpensive, simple to produce, and reus-
able. Biodegradability and biocompatibility are the 
key benefits of protein-based nanoparticles over 
conventional materials. A key factor in deciding the 
effectiveness of a drug delivery operation is minimiz-
ing the host immune response. The aggregation of 
particle byproducts is reduced by the normal break-
down of these protein polymers, which is also safer 
for human wellbeing. The properties of protein mate-
rials such as silk fibroin, keratin, and elastin, as well 
as their use in nanoparticle drug delivery and bio-
medical applications, were the subject of this study. 
Protein-based nanoparticles can be processed in a 
number of ways, allowing their properties to be tai-
lored for particular applications. Although there are 
still obstacles to conquer, there is a growing need in 
the medical sector for biocompatible protein nano-
particles. To address these obstacles, future research 
on protein-based nanoparticles must concentrate 
on the creation of large-scale manufacturing tech-
niques that enable these particles to be produced in 
a commercially viable manner. To reduce off-target 
impact, functionalized particles capable of targeting 
particular areas of the body are likely to be produced. 
The fabrication and characteristics of protein nano-
particles must change as new pharmaceuticals are 
developed in order to provide suitable vehicles for 
drug delivery. The further new experiments are pub-
lished and the functionality of these protein materials 
improves, the more people will be interested in them.
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