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Intranasal immunization 
with O‑2′‑Hydroxypropyl trimethyl ammonium 
chloride chitosan nanoparticles loaded 
with Newcastle disease virus DNA vaccine 
enhances mucosal immune response 
in chickens
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Abstract 

Background:  There has been a great interest in developing strategies for enhancing antigen delivery to the mucosal 
immune system as well as identifying mucosal active immunostimulating agents. To elevate the potential of O-2ʹ-
Hydroxypropyl trimethyl ammonium chloride chitosan (O-2ʹ-HACC) as an adjuvant and mucosal immune delivery 
carrier for DNA vaccine, we prepared the O-2ʹ-HACC loaded with Newcastle disease virus (NDV) F gene plasmid DNA 
and C3d6 molecular adjuvant (O-2ʹ-HACC/pFDNA microparticles).

Results:  The O-2ʹ-HACC/pFDNA exhibited a regular spherical morphology with a particle size of 202.3 ± 0.52 nm, a 
zeta potential of 50.8 ± 8.21 mV, encapsulation efficiency of 90.74 ± 1.10%, and a loading capacity of 49.84 ± 1.20%. 
The plasmid DNA could be sustainably released from the O-2ʹ-HACC/pFDNA after an initial burst release. Intranasal 
vaccination of chickens immunized with O-2ʹ-HACC/pFDNA not only induced higher anti-NDV IgG and sIgA antibody 
titers but also significantly promoted lymphocyte proliferation and produced higher levels of IL-2, IL-4, IFN-γ, CD4+, 
and CD8 + T lymphocytes compared with the NDV commercial live attenuated vaccine. Intranasal delivery of the 
O-2ʹ-HACC/pFDNA enhanced humoral, cellular, and mucosal immune responses and protected chickens from the 
infection of highly virulent NDV compared with the intramuscular delivery.

Conclusions:  Collectively, our findings indicated that the O-2ʹ-HACC could be used as a vaccine adjuvant and deliv-
ery system for mucosal immunity and have an immense application promise.

Keywords:  Newcastle disease virus, DNA vaccine, O-2ʹ-Hydroxypropyl trimethyl ammonium chloride chitosan 
microparticles, Intranasal delivery, Mucosal immunity
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Background
As an important part of the body’s entire immune net-
work, the mucosal immune system plays an active and 
important role in fighting infections [1]. The mucosal 
immune response can be improved by selecting the opti-
mal immunization route, vaccine adjuvant, and delivery 
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system [2]. Mucosal vaccination not only induces a corre-
sponding immune response at the site of inoculation but 
also produces a corresponding immune response in other 
distant mucosal tissues. The nasal mucosa is the first part 
to contact the inhaled antigen, nasal mucosal immu-
nity can induce a stronger mucosal immune response 
and higher systemic immune responses in the distant 
mucosal tissues [3, 4], and thus intranasal vaccination is 
considered a more favorable mucosal immune route.

Newcastle disease (ND) is an acute and highly con-
tagious disease caused by the Newcastle disease virus 
(NDV) [4, 5]. Vaccination is currently the most economi-
cal and effective way to prevent ND [6]. Compared with 
the traditional vaccine, the DNA vaccine has great advan-
tages and potentials, such as higher safety, better genetic 
stability and immune effect, simple production, conveni-
ent storage, and transportation. However, the administra-
tion of DNA vaccine is given through an intramuscular 
injection (i.m.), and several studies have shown that DNA 
vaccines don’t effectively deliver antigen to antigen-pre-
senting cells (APCs) after i.m. Therefore, this leads to a 
strong immune response that can’t be induced [7, 8]. 
Additionally, DNA vaccine has also been limited in clini-
cal applications due to i.m., high dose, low bioavailabil-
ity, and immunogenicity [9]. Various strategies have been 
considered to enhance the mucosal immune response by 
using the suitable vaccine adjuvant, specific targeting of 
ligands, delivery system, and so on. Suitable vaccine adju-
vant and delivery system in DNA vaccines can improve 
the immunogenicity, induce stronger immune responses, 
and reduce the dosage and production cost of vaccine in 
populations responding poorly to vaccination [10, 11].

Viral vectors and non-viral vectors have been used as 
carriers to deliver genes safely and effectively. Although 
viral vector has many advantages for the delivery of plas-
mid DNA, one of the most important issues is to ensure 
that the plasmid DNA is not degraded by lysosomes dur-
ing transport to the host cell. Moreover, the viral vector 
must be non-pathogenic to the human body and will not 
cause proliferation and spread in the environment [12]. 
Compared with the viral vector, the non-viral vector has 
some advantages, including no infectivity, low immuno-
genic response, safety, high gene capacity, stability, and 
no carrier capacity limitation, and it is easy to prepare in 
large quantities [13, 14]. Non-viral gene delivery system 
generally consists of naked DNA delivery, lipid-based 
delivery, and polymer-based delivery. Cationic polymer, 
which electrostatically interacts with plasmid DNA to 
neutralize its negative charge and condense the plasmid 
DNA into nanosized particles, generally serves as a gene 
delivery system. Cationic polymer nanoparticles can pro-
tect the plasmid DNA from enzymatic degradation and 
facilitate cellular uptake. Intramuscularly administered 

polyvinyl alcohol/plasmid DNA formulation results in a 
significant increase in the number and distribution of the 
reporter-gene expressing cells in rats compared with the 
naked plasmid DNA [15]. Biodegradable, non-antigenic 
polymer-based microspheres/nanoparticles have many 
advantages as a vaccine adjuvant and delivery system. 
Our previous studies have shown that cellular, humoral, 
and mucosal immune responses can be elicited to anti-
gens encapsulated in, or conjugated onto polymer-based 
microspheres/nanoparticles [16, 17].

Since the particle size of microspheres/nanoparticles 
is comparable to that of the pathogen, suitable micro-
spheres/nanoparticles can pass through the interstitial 
space and capillaries to reach a site that is difficult to 
administer, and have many advantages, such as control-
ling drug release, protecting the drug from degrada-
tion or leakage, and targeting administration. Therefore, 
microspheres/nanoparticles can significantly improve 
the delivery efficiency of plasmid DNA. At present, bio-
degradable nanomaterials for preparing polymer-based 
nanoparticles mainly include chitosan and its deriva-
tives, hyaluronic acid and sodium alginate. Among them, 
chitosan, the main derivative of chitin, is a linear poly-
mer consisting of repeating units of β-(1 → 4)-2-amino-
2-deoxy-D-glucopyranose units and has been proved 
to be a safe and non-toxic delivery carrier, and chitosan 
and its microspheres/nanoparticles have been broadly 
used as drug/vaccine delivery vectors due to their safety, 
non-toxicity, biocompatibility, biodegradability and sus-
tained release in industrial and technological applica-
tions [18, 19]. However, the poor solubility of chitosan 
greatly restricts the application scopes and fields of chi-
tosan. One of the strategies to improve the solubility of 
chitosan is to modify the structure of chitosan by the 
addition of hydrophilic functional groups [20]. Therefore, 
water-soluble chitosan derivative-based nanoparticles 
as a vaccine adjuvant and delivery vector have become 
novel vaccine/drug delivery systems. In our previous 
study, N-2-Hydroxypropyl trimethyl ammonium chlo-
ride chitosan (N-2-HACC) with good water solubility 
has been prepared, and the N-2-HACC is used to deliver 
DNA vaccine, achieving good results [21]. We have syn-
thesized O-2’-Hydroxypropyl trimethyl ammonium 
chloride chitosan (O-2′-HACC) with good water solu-
bility [22], which overcomes the reduction of crosslink-
ing points during the formation of N-2-HACC resulting 
in the use of polyelectrolyte complex method to prepare 
nanoparticles. In the present study, we successfully pre-
pared the O-2ʹ-HACC loaded with Newcastle disease 
virus (NDV) F gene plasmid DNA with C3d6 molecu-
lar adjuvant (O-2′-HACC/pFDNA microparticles), the 
positively charged O-2′-HACC and negatively charged 
pFDNA were attracted together by the charge, and the 
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excess O-2′-HACC was coated outside to form particles. 
Because of a higher proportion of positively charged 
components, the O-2′-HACC/pFDNA microparticles 
had a zeta potential of 50.8 ± 8.21  mV. Moreover, we 
investigated the intranasal administration of the micro-
particle vaccine, and the results showed that the micro-
particle vaccine had good mucosal adhesion and huge 
potential for mucosal immunity. The prepared micropar-
ticle vaccines were termed O-2’-HACC/pFDNA in our 
current work. Safety is especially important for a deliv-
ery carrier, and some studies have indicated that the cel-
lular damage caused by nanoparticles should be of great 
concern [23–26]. In our and others’ previous work, it 
has been proved by both in vitro and in vivo cytotoxicity 
tests that chitosan-based nanoparticles are safe and can 
be well degraded within a certain concentration range 
[16, 21, 27–29]. In the present study, we focused on the 
side effect of the O-2’-HACC/pFDNA, and the results 
of in vitro and in vivo cytotoxicity showed that the O-2’-
HACC/pFDNA was safe within a certain concentration 
range.

Results
Characterization of the O‑2’‑HACC/pFDNA
O-2’-HACC/pFDNA showed a regular spherical shape, 
smooth surface, and good dispersion (Fig. 1A). The scan-
ning electron microscopy (SEM) (Fig.  1B) reveals that 
we got a conclusion similar to the transmission elec-
tron microscopy (TEM) (Fig.  1A). The FT-IR spectros-
copy of O-2 ’-HACC/pFDNA (Fig. 1C) and O-2’ -HACC 
was similar [22]. the amino peak had a slight blue shift, 
indicating that the electrostatic force eliminated parts 
of the internal hydrogen bonding. Figure 1D shows that 
a small amount of plasmid DNA was adsorbed around 
the microparticles, and the aggregation of plasmid DNA 
around the microparticles was conducive to the carrier 
particles to be the plasmid DNA wrapped into the micro-
particles, thus, the exogenous genes could be transported 
to the cell interior through cell phagocytosis. The average 
particle size of the microparticles was 202.3 ± 0.52  nm 
(Fig. 1E), the zeta potential was 50.8 ± 8.21 mV (Fig. 1F), 
the encapsulation efficiency (EE) was 92.27 ± 1.48%, and 
the loading capacity (LC) was 50.75 ± 1.35%.

DNase I protection assay
Figure  2A shows that the integrity of plasmid DNA in 
O-2′-HACC/pFDNA was maintained even if the micro-
particles were treated with DNase I for 3  h (Lane 6, 
Fig.  2A), while the naked plasmid DNA was completely 
degraded by DNase I after 30 min (Lane 2, Fig. 2A). The 
results demonstrated that the plasmid DNA in O-2’-
HACC/pFDNA could be protected from degradation.

In vitro release of O‑2’‑HACC/pFDNA
Figure  2B shows that between 0 and 36  h, the release 
amount of plasmid DNA in O-2’-HACC/pFDNA 
reached 44.00 ± 1.80%, which was a process of burst 
release; between 36 and 120  h, the release amount 
reached 78.22 ± 1.60%; and after 120  h, the release 
of the plasmid DNA was gentle, which reached 
82.97 ± 2.30%. In vitro release indicated that the O-2’-
HACC could serve as a delivery vector for the sustained 
and slow release of DNA vaccine.

Safety of the O‑2’‑HACC/pFDNA
The survival rate of chicken embryo fibroblasts in O-2’-
HACC/pFDNA was 90.48 ± 2.14%, and no significant 
change in cell morphology was observed compared 
with the control cells (P > 0.05). In  vivo cytotoxicity 
analysis showed that the chickens immunized with the 
O-2’-HACC/pFDNA by intramuscular injection (i.m.) 
or intranasal administration (i.n.) were normal in terms 
of feeding, drinking, mental state, body weight, and 
inoculation sites, and there was no morbidity and mor-
tality, indicating that the O-2’-HACC/pFDNA was safe. 
Histopathological analysis showed that glandular stom-
ach, duodenum, quadriceps femoris, and nasal mucosa 
were intact and had no lesions (Fig. 3A). These findings 
indicated that the O-2’-HACC had little cytotoxicity as 
a delivery vector, and the O-2’-HACC/pFDNA had a 
higher safety level.

Stability of the O‑2’‑HACC/pFDNA
The O-2’-HACC/pFDNA was a milky white powder, 
loose and spongy. The morphology of the microparti-
cles was not changed after stored at room tempera-
ture, 4t, and −20℃ for 3 weeks, while there was a slight 
shrinkage after stored at 37℃ for 3  weeks, indicating 
that the O-2’-HACC/pFDNA had good storage stability 
and could be stored at the room temperature for a long 
period. Figure  3B shows that after the O-2’-HACC/
pFDNA was stored at room temperature for 2 and 
3 months, serum IgG antibody titers in chickens of the 
O-2’-HACC/pFDNA i.m. group were not significantly 
different from the newly prepared O-2’-HACC/pFDNA 
i.m. (P > 0.05).

In vitro expression of the O‑2’‑HACC/pFDNA
Fluorescence was detected in the O-2’-HACC/pFDNA 
and pVAXI-F(o)-C3d6 groups (Fig. 3C). No fluorescence 
was detected in the O-2’-HACC and 293  T cell groups. 
These results indicated that the plasmid DNA could be 
efficiently encapsulated by the O-2’-HACC and expressed 
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in vitro, indicating that the O-2’-HACC could be used for 
the delivery of plasmid DNA.

Intranasal immune response
Serum IgG antibody titers
Figure  4A shows that at the 5th week post-immuni-
zation, the serum antibody titers were significantly 
increased in the pVAXI-F(o)-C3d6 i.m., O-2’-HACC/
pFDNA i.m., and O-2’-HACC/pFDNA i.n. groups, and 
the antibody levels were higher in the O-2’-HACC/

pFDNA i.m. and O-2’-HACC/pFDNA i.n. groups. 
Serum IgG antibody titers in the O-2’-HACC/pFDNA 
i.n. group peaked at the 6th week, and such higher 
IgG antibody levels were kept until the 10th week 
post-immunization. The differences between the O-2’-
HACC/pFDNA i.n. and i.m. groups were not significant 
(P > 0.05), while there was a significant difference com-
pared with the live attenuated NDV vaccine i.m. group 
(P < 0.05).

Fig. 1  Characterization of the O-2ʹ-HACC/pFDNA. A TEM image of the O-2ʹ-HACC/pFDNA; B SEM image of the O-2ʹ-HACC/pFDNA; C FT-IR 
spectroscopy of the O-2ʹ-HACC/pFDNA; D AFM image of the O-2′-HACC/pFDNA; E Particle size of O-2′-HACC/pFDNA; F Zeta potential of 
O-2′-HACC/pFDNA
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Fig. 2  Stability and in vitro release analysis of the plasmid pVAX I-F(o)-C3d6 after encapsulation in the O-2’-HACC. A DNase I protection of the 
pVAX I -F(o)-C3d6, M: DL 15,000 Marker, Lane 1: pVAX I -F(o)-C3d6, Lane 2: DNase I acts on the naked DNA for 30 min, Lane 3–6: DNase I acts on the 
O-2′-HACC/pFDNA for 30, 60, 120 and 180 min; B In vitro release profiles of the O-2′-HACC/pFDNA in PBS solution (pH = 7.4). Data were presented 
as the mean ± SD deviation (n = 3)

Fig. 3  Safety analysis, in vitro fluorescence expression, and storage stability of the O-2’-HACC/pFDNA. A Histopathological analyses of glandular 
stomach, duodenum, quadriceps femoris and nasal mucosa; B In vitro expression of the O-2’-HACC/pFDNA in 293 T cells assayed by indirect 
immunofluorescence (× 40); C After storage stability of the O-2’-HACC/pFDNA for 2 and 3 months at room temperature, IgG titers in serum 
post-immunization
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IgA antibody titers
IgA antibody titers in chickens immunized with the O-2’-
HACC/pFDNA i.n. were significantly increased in the 
serum (Fig.  4B), tracheal fluid (Fig.  4C), bile (Fig.  4D), 
and Harderian gland (Fig. 4E) (P < 0.01), and the time of 
IgA antibody secretion was also longer than the other 
groups (P < 0.01). These results indicated that the O-2’-
HACC/pFDNA i.n. induced higher IgA antibody secre-
tion compared with the O-2’-HACC/pFDNA i.m, pVAX 
I -F(o)-C3d6 i.m. and live attenuated NDV vaccine i.m. 
(P < 0.01).

In addition, IgA antibody titers in the O-2’-HACC/
pFDNA i.n. group were higher compared with the O-2’-
HACC/pFDNA i.m, pVAXI-F(o)-C3d6 i.m., and live 
attenuated NDV vaccine i.m. groups (P < 0.01). The 
period of immunization protection in the O-2’-HACC/
pFDNA i.n. group was longer because the O-2’-HACC 
increased the contact time of antigen with the mucosal 
surface, which effectively improved the antigen-associ-
ated lymphoid tissue and induced higher secretion levels 
of IgG and IgA in the body. These findings indicated that 
the O-2’-HACC/pFDNA produced stronger humoral 
immune and mucosal immune responses.

Lymphocyte proliferation
SI values in the PBS and O-2’-HACC groups were sig-
nificantly lower compared with the pVAX I-F(o)-C3d6 

i.m., O-2’-HACC/pFDNA i.m., live attenuated NDV vac-
cine i.m., and O-2’-HACC/pFDNA i.n. groups (P > 0.05). 
The difference between live attenuated NDV vaccine 
i.m. and O-2’-HACC/pFDNA i.n groups was not signifi-
cant (P > 0.05), and after the 3rd week, the SI value in the 
two groups was significantly higher compared with the 
O-2’-HACC/pFDNA i.m. group (P < 0.05), showing that 
the O-2’-HACC/pFDNA i.n. significantly stimulated the 
proliferation of spleen lymphocytes  (Table 1). Addition-
ally, O-2’-HACC/pFDNA i.n. and live attenuated NDV 
vaccine i.m. kept strong stimulus–response to ConA 
until the 10th week post-immunization and produced a 
long-lasting immune-stimulating effect, which promoted 
the proliferation of lymphocytes and triggered a stronger 
specific immune response.

Cytokine levels in the blood
Figure 5 shows that the levels of IL-2, IFN-γ, and IL-4 in 
the blood of chickens immunized with the O-2’-HACC/
pFDNA i.n. and i.m. were significantly increased com-
pared with the pVAXI-F(o)-C3d6 i.m. and live attenu-
ated NDV vaccine i.m. groups (P < 0.05), and the levels 
of IL-2 (Fig.  5A), IFN-γ (Fig.  5B), and IL-4 (Fig.  5C) in 
chickens from the O-2’-HACC/pFDNA i.n. group were 
higher (P < 0.05), indicating that the O-2’-HACC/pFDNA 
i.n. induced more cytokine secretion to trigger a cellular 
immune response.

Fig. 4  IgG and IgA antibody titers in serum (A, B), trachea mucus (C), bile (D), and Harderian gland (E) following administration of PBS i.m., 
O-2’-HACC i.m., pVAX I -F(o)-C3d6 i.m., live attenuated NDV vaccine i.n., O-2’-HACC/pFDNA i.m., O-2’-HACC/pFDNA i.n. Data were representative of 
three independent experiments and presented as the mean ± SD (n = 3). *P < 0.05; **P < 0.01
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Levels of CD4 + and CD8 + T lymphocytes in peripheral blood
At 15  days post-immunization, the levels of CD4 + and 
CD8 + T lymphocytes in the live attenuated NDV vaccine 

i.m. group were significantly higher compared with the 
PBS, O-2’-HACC/pFDNA i.n., and O-2’-HACC/pFDNA 
i.m. groups (P < 0.05) (Fig.  6). However, at 30  days 

Fig. 5  IL-2 (A), IL-4 (B), and IFN-γ (C) levels in the supernatant of splenocytes harvested from the SPF chickens immunized with the PBS i.m., 
O-2’-HACC i.m., pVAX I-F(o)-C3d6 i.m., live attenuated NDV vaccine i.n., O-2’-HACC/pFDNA i.m., and O-2’-HACC/pFDNA i.n. IFN-γ, IL-2, and IL-4 
levels in the supernatant were analyzed using chicken IFN-γ, IL-2, and IL-4 ELISA kits. Results were represented as mean ± SD of three separate 
experiments. *P < 0.05; **P < 0.01

Fig. 6  Levels of CD4 + and CD8 + T lymphocytes in peripheral blood post 15 days and 30 days post the immunization
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post-immunization, the levels of CD4 + and CD8 + T 
lymphocytes in the O-2’-HACC/pFDNA i.n. group were 
significantly higher compared with the PBS, O-2’-HACC/
pFDNA i.m., and live attenuated NDV vaccine i.m. 
groups (P < 0.05) (Fig. 6).

Immune protective efficacy
Serum HI antibody titers
Anti-NDV antibody titers in chickens immunized with 
the O-2’-HACC/pFDNA i.n., O-2’-HACC/pFDNA i.m., 
and pVAX I -F(o)-C3d6 i.m. reached a peak in the 3rd 
week post-immunization, and the level of IgG antibody 
in the O-2’-HACC/pFDNA i.n. group was slightly higher 
compared with the O-2’-HACC/pFDNA i.m. group, 
while the difference between the two groups was not sig-
nificant (P > 0.05). IgG antibody titers in the O-2’-HACC/
pFDNA i.n. and i.m. groups were higher compared with 
the pVAX I -F(o)-C3d6 i.m. and live attenuated NDV 
vaccine i.m. groups (P < 0.05). Serum IgG antibody lev-
els in the O-2’-HACC/pFDNA i.n. group were slowly 
decreased in the 3–5 weeks after the challenge and main-
tained a higher level (Fig. 7A).

Changes of cytokine levels after challenge
At the 2nd week after challenge, the IL-2 content in 
serum in the live attenuated NDV vaccine i.m. group 
reached the highest value (Fig.  7B), while there was 
no significant difference between the live attenuated 
NDV vaccine i.m. and O-2’-HACC/pFDNA i.n. groups 
(P < 0.05). At the 3rd week after the challenge, the IL-2 
content in the O-2’-HACC/pFDNA i.n. group reached 
the highest value, and it was significantly higher com-
pared with the other groups until the 5th week (P < 0.05) 
(Fig. 7B).

At the 1–5 weeks after the challenge, the IL-4 level was 
significantly higher in the live attenuated NDV vaccine 
i.m. and O-2’-HACC/pFDNA i.n. groups compared with 
the pVAX I -F(o)-C3d6 i.m. and O-2’-HACC/pFDNA i.m. 
groups (P < 0.05) (Fig. 7C).

In the live attenuated NDV vaccine i.m. and O-2’-
HACC/pFDNA i.n. groups, the IFN-γ content was 
extremely significantly higher compared with the pVAX 
I -F(o)-C3d6 i.m. and O-2’-HACC/pFDNA i.m. groups at 
the 3rd week after the challenge (P < 0.01), and the IFN-γ 
level in the O-2’-HACC/pFDNA i.n. group continued to 

Fig. 7  Serum IgG antibody titers (A) and IL-2 (B), IL-4 (C), IFN-γ (D) levels in the supernatant of splenocytes harvested from the immunized SPF 
chickens after the challenge with the highly virulent NDV strain F48E9. IFN-γ, IL-2, and IL-4 levels in the supernatant were analyzed using chicken 
IFN-γ, IL-2, and IL-4 ELISA kits. Results were represented as mean ± SD of three separate experiments. *P < 0.05
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maintain a high level until the 5th week after the chal-
lenge. From the 3rd week after the challenge, the serum 
IFN-γ level in the O-2’-HACC/pFDNA i.n. group was 
significantly higher compared with the pVAX I -F(o)-
C3d6 i.m., O-2’-HACC/pFDNA i.m., and live attenuated 
NDV vaccine i.m. groups (P < 0.05) (Fig. 7D).

Protective effect
Chickens in the PBS and O-2′-HACC groups died within 
4–7  days after the challenge. After the challenge, two 
chickens immunized with the pVAX I -F(o)-C3d6 i.m. 
died, while chickens in the live attenuated NDV vaccine 
i.m., O-2’-HACC/pFDNA i.m., and O-2’-HACC/pFDNA 
i.n. groups didn’t die (Table  2). All the dead chickens 
showed the typical pathological changes of ND, such as 
the severe congestion of the intestinal wall and intestinal 
mucosa, and small bleeding spots on the surface of the 
glandular stomach. However, these lesions didn’t appear 
in chickens immunized with the O-2’-HACC/pFDNA 
i.m., i.n. and live attenuated ND vaccine i.m. (Fig. 8).

Discussion
ND causes significant economic losses in the poultry 
industry every year. Traditional vaccines against ND have 
certain limitations, leading to the development of a new 
generation of vaccines. DNA vaccines are a new type of 
vaccine, which have been intensively studied in recent 
years. However, compared with the traditional vaccine, 
the DNA vaccine has some disadvantages, such as poten-
tial pathogen mutation risk and lower protection [30]. 
Therefore, recent vaccine studies have mainly focused 
on methods to improve the immune efficacy of DNA 
vaccines.

Biodegradable polymer-based microparticles/nanopar-
ticles have many advantages as a vaccine adjuvant and 
delivery system [31]. Although plasmid DNA is quite sta-
ble in vitro, it is subject to degradation by nucleases once 
injected in vivo. Encapsulation of plasmid DNA in biode-
gradable polymer to form nanoparticles potentially offers 
a way to protect plasmid DNA from degradation and 
control plasmid DNA release [32]. Biodegradable poly-
mers used to encapsulate plasmid DNA mainly include 

poly (D, L-lactic-co-glycolic) acid (PLGA), gelatin, and 
chitosan.  Chitosan microparticles/nanoparticles have 
been developed for the delivery of plasmid DNA due to 
their cationic charge, biodegradability, biocompatibil-
ity, low toxicity, mucoadhesivity, and ability to enhance 
the penetration of large molecules across the mucosal 
surface. When DNA vaccine is encapsulated into chi-
tosan microparticles/nanoparticles, the integrity of plas-
mid DNA on the mucosal surface can be protected, and 
the mucoadhesivity is enhanced, thereby improving its 
immune induction to pathogens on the mucosa [33, 34]. 
At present, chitosan microparticle/nanoparticle adjuvant 
has been applied to a variety of DNA vaccines, including 
human and  animal infectious diseases, such as reddish 
body iridovirus, nodavirus, foot and mouth disease virus, 
and influenza virus [35, 36]. To overcome the poor water-
solubility of chitosan, chitosan derivative nanoparticles 
used in the study, O-2ʹ-HACC, have better water solubil-
ity, biodegradability, biocompatibility, loading capacity, 
and mucosal adsorption compared with chitosan. Due 
to the presence of negatively charged regions between 
the cells, O-2’-HACC with positive charge can open the 
cell junctions in these regions and change the shape of 
cytoskeleton protein, allowing the O-2’-HACC to pass 

Table 2  Protection efficiency of the immunized SPF chickens after challenged with the highly virulent NDV strain F48E9

Groups Number of dead chickens/total number of 
chickens

Mortality (%) Protection (%)

O-2’-HACC/pFDNA i.n 0/7 0 100

O-2’-HACC/pFDNA i.m 0/7 0 100

Live attenuated NDV vaccine i.m 0/7 0 100

pVAX I -F(o)-C3d6 i.m 2/7 28.6 71.4

O-2′-HACC i.m 7/7 100 0

PBS i.m 7/7 100 0

Fig. 8  Histopathological analyses of glandular stomach, duodenum, 
and myocardium obtained from healthy chickens and those 
challenged with the highly virulent NDV strain F48E9. Tissues of 
the glandular stomach, duodenum, and myocardium from the PBS 
i.m., blank O-2’-HACC i.n., live attenuated NDV vaccine i.m., and 
O-2’-HACC/pFDNA i.m. and i.n. groups
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the mucosal epithelial cell barrier and be absorbed by M 
cells. Therefore, O-2’-HACC can serve as a vaccine adju-
vant and delivery vector to improve the immune effect, 
and its nanoparticles have many advantages.

The particle size of microparticles/nanoparticles is also 
an important quality indicator that affects transfection 
and the expression efficiency of the target gene [37]. It is 
generally believed that microparticle vaccines between 
150 and 300 nm are most suitable for transfection. If the 
nanoparticles are too large, it is difficult to enter the tar-
get cells [38, 39]. The particle size of O-2’-HACC/pFDNA 
prepared in our study was about 202.3 nm, which might 
help the O-2’-HACC/pFDNA to enter host cells. More-
over, the level of antibodies induced by O-2’-HACC/
pFDNA was significantly higher compared with com-
mercial vaccines, indicating that O-2’-HACC/pFDNA 
induced a relatively strong immune response.

Many DNA vaccines against human and animal infec-
tious diseases have been developed [40–42]. These vac-
cines provide a stable and sufficient supply of antigen 
in transfected host cells and induce cellular immunity, 
mucosal immunity, and long-lasting immunity [35, 43, 
44], while most DNA vaccines are injected intramuscu-
larly or subcutaneously in clinical practice. Therefore, 
the mucosal immune response cannot be induced. The 
mucosal vaccine has many advantages over the inject-
able vaccine, such as simple administration, less risk of 
transmitting infections and ease to manufacture [45, 46]. 
In addition, mucosal vaccination can induce humoral 
and cell-mediated antigen-specific immune responses, 
including B cell and T cell memory responses [47].

Nasal-associated lymphoid tissue (NALT), which 
serves as a mucosal inductive site for immune responses 
against antigen stimulation in the upper respiratory 
tract, plays an important role in the induction of mucosal 
immune response, such as inducing the production of 
antigen-specific Th1 and Th2 cells and sIgA antibody 
[48–52]. Moreover, intranasal immunization can lead 
to the induction of antigen-specific protective immu-
nity in both the mucosal and systemic immune com-
partments [50]. Therefore, intranasal immunization is 
expected as a vaccine against pathogens causing upper 
respiratory tract infections, such as NDV and influenza 
virus [53, 54]. In the present study, to evaluate the abil-
ity of mucosal immune response of O-2’-HACC/pFDNA, 
chickens were administered intranasally, and the con-
tent of sIgA antibody in tracheal fluid, bile, and Harde-
rian gland was measured. The results demonstrated that 
the levels of sIgA antibody produced in the O-2’-HACC/
pFDNA i.n. group were higher compared with the O-2’-
HACC/pFDNA i.m. group, and the O-2’-HACC/pFDNA 
i.n. group exhibited a longer immune protection period, 
indicating that mucosal immune response was induced 

in mucosal inductive site for immune responses against 
antigen stimulation. O-2’-HACC increased the con-
tact time of antigen with the mucosal inductive site, 
which effectively enhanced the uptake rate of antigen-
associated lymphoid tissue. Therefore, the levels of sIgA 
antibody were improved, resulting in a better-induced 
mucosal immunity in the O-2’-HACC/pFDNA i.n. group.

T helper cells are key cells regulating humoral and cel-
lular immunity. The functionally active region of T helper 
cells is divided into two cell subpopulations, Th1 and Th2 
cells. Cellular immunity involves CD4 + and CD8 + T 
lymphocytes. CD4 + T lymphocytes can differentiate into 
Th1 cells or Th2 cells. Th1 cells support cellular-medi-
ated immune responses, while Th2 cells drive humoral 
immune responses [55]. IL-2 mainly enhances cellular 
immunity, IL-4 mainly regulates humoral immunity, and 
IFN-γ mainly regulates immune response by participat-
ing in the differentiation of Th-type cells into Th1 type 
[56]. Therefore, IL-2 and IFN-γ enhance the Th1 type 
immune response, and IL-4 can enhance the Th2 type 
immune response [57]. The levels of IL-2, IL-4, and IFN-γ 
in the serum of chickens immunized with the O-2’-
HACC/pFDNA i.n. were significantly higher, and the 
cytokine levels induced by the mucosal immune pathway 
were higher compared with the non-mucosal immune 
pathway, in which the O-2’-HACC/pFDNA i.n. promoted 
the lymphocyte proliferation and cellular response and 
better-induced Th1 and Th2 type responses. These find-
ings indicated that the O-2’-HACC/pFDNA stimulated 
the body to produce strong cellular, humoral, and local 
mucosal immunity via the mucosal route.

After functional modification, chitosan derivatives can 
improve the various properties of chitosan, such as water 
solubility, stability, membrane permeability, mucosal 
adhesion, and controlled release. Our study provided 
a theoretical basis for the application of quaternized 
chitosan microparticles/nanoparticles as adjuvant and 
delivery systems for DNA vaccines in some viral infec-
tious disease vaccines and had great potential in the field 
of mucosal vaccines. Despite these advantages, chitosan 
derivative microparticles/nanoparticles as adjuvant and 
delivery vectors for DNA vaccine are still in their early 
stages, and more clinical trials are required for verifica-
tion, such as irregular distribution and low physical sta-
bility, which hinder the commercialization of chitosan. 
Therefore, it is highly desirable to develop a safe, efficient 
and targeted vaccine delivery system to prevent and con-
trol certain infectious diseases [34]. All problems will be 
solved shortly with the development and application of 
nanotechnology since one of the most attractive fields 
in nanotechnology is the use of nanomaterials as a vac-
cine adjuvant and delivery system. So many nanomateri-
als have been studied for the delivery of drugs, imaging, 
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diagnostic, and vaccines. In conclusion, the use of chi-
tosan derivative microparticles/nanoparticles has a sig-
nificant impact on vaccinology with the perspective to 
obtain novel biological products to fight highly infectious 
diseases.

Materials and methods
Animals
A total of 210 1-day-old healthy SPF chickens were pro-
vided and raised by the Experimental Animal Center of 
Harbin Veterinary Research Institute, Chinese Academy 
of Agricultural Sciences. All animal-related procedures 
were approved by the Animal Ethics Committee as stip-
ulated in the guide to the care and use of experimental 
animals of Harbin Veterinary Research Institute. SPF 
chickens were housed in the negative pressure isolator 
during the test. The chickens were euthanized by intrave-
nous injection of pentobarbital.

Preparation of the O‑2ʹ‑HACC/pFDNA
The O-2′-HACC loaded with NDV F gene plasmid DNA 
(O-2′-HACC/pFDNA microparticles) was prepared 
using the polyelectrolyte complex method. The water-sol-
uble quaternized chitosan, O-2’-HACC, was synthesized 
as a vaccine adjuvant and delivery vector as previously 
described [22]. The structure of the O-2′-HACC (Fig. 9) 
was determined by FT-IR (Spectrum RX-1, Perkin Elmer, 
USA). NDV F gene eukaryotic expression plasmid pVAX-
optiF with C3d6 molecular adjuvant (pVAX I -F(o)-C3d6) 
was constructed by our group [58].

Characterization of the O‑2’‑HACC/pFDNA
To evaluate the morphological characteristics of O-2’-
HACC/pFDNA, the microparticles were observed by 
JEM-200EX TEM (Hitachi Ltd., Tokyo, Japan), SEM 
(S4800, Hitachi Ltd., Tokyo, Japan), and AFM (Micro-
Nano AFM II /III 3000, Shanghai Zhuolun Micronano 

Equipment Co., Ltd., China). The chemical functional 
groups of O-2’-HACC/pFDNA were measured by FT-IR 
(Spectrum RX-1, Perkin Elmer, USA). Zeta poten-
tial, particle size, and distribution of the O-2’-HACC/
pFDNA were determined by a Zeta Sizer Nano ZS90 
(Malvern Instruments Ltd., Southborough, MA, USA). 
EE and LC were determined by the formula as follows, 
EE (%) = (W0-W1)/W0 × 100%, LC (%) = (W0 -W1)/
WN × 100% [22], where W0 is the total amount of the 
pVAX I -F(o)-C3d6 added, W1 is the amount of the 
free pVAX I -F(o)-C3d6, and WN is the weight of the 
O-2’-HACC/pFDNA.

DNase I protection assay
To investigate the protection of O-2’-HACC/pFDNA 
against DNase, the O-2’-HACC/pFDNA was incubated 
with 10 µL of DNase I buffer containing 1 unit of DNase 
I (TaKaRa, Dalian, China) at 37℃ for 30, 60, 120, or 
180 min. After the incubation, 5 μL of 0.5 mol/L EDTA 
solution was added to terminate the reaction at 65℃ 
for 10  min. Finally, the mixture was centrifuged at 4℃, 
12,000 r/min for 20  min, and then the supernatant was 
taken and subjected to 0.8% agarose gel electrophoresis 
at 100 V for 30 min [59].

In vitro release of the O‑2’‑HACC/pFDNA
To test the release of the pVAXI-F(o)-C3d6 from the 
O-2’-HACC/pFDNA, 0.1  g of the freeze-dried O-2’-
HACC/pFDNA was dissolved in 2.0  mL PBS (pH 7.4), 
then fully mixed, and shaken at 37℃, 100 r/min for 0, 
6, 12, 18, 24, 36, 48, 60, 72, 96, 120, 144, 168, 192, and 
216  h. The sample was centrifuged at 4℃, 12,000 r/min 
for 20 min. The content of plasmid DNA in the superna-
tant was determined by UV spectrophotometry (ELX808, 
Bio-Tek, USA) at a wavelength of 260  nm. The release 
profile was plotted using the release time and cumulative 
release amount as the X-axis and Y-axis, respectively.

Cytotoxicity and stability assay of the O‑2’‑HACC/pFDNA
To assess the safety of O-2’-HACC as a vaccine adjuvant 
and delivery system for mucosal immunity, in  vitro and 
in vivo cytotoxicity tests were carried out. Any abnormal 
changes in the immunized chickens, such as feed, water 
drinking, mental state, body weight, clinical symptoms, 
morbidity, and mortality, were continuously observed 
for 14 days, and each dead chicken was subjected to nec-
ropsy to examine the histopathological changes by histo-
logical staining.

The animal experiment was carried out to investigate 
the storage stability of the freeze-dried O-2’-HACC/
pFDNA stored at room temperature for 2 and 3 months. 
A total of 60 18-day-old healthy SPF chickens were ran-
domly and equally divided into three groups as follows. Fig. 9  FT-IR spectroscopy of chitosan and O-2′-HACC​
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Chickens in Group 1 were administered with the non-
stored O-2’-HACC/pFDNA as a control group, chick-
ens in Group 2 were administered with the O-2’-HACC/
pFDNA stored at room temperature for 2  months, 
and chickens in Group 3 were administered with the 
O-2’-HACC/pFDNA stored at room temperature for 
3  months. Each chicken received 100 μL doses via the 
intramuscular route. Blood samples were collected via 
heart from two chickens in each group at 1, 2, 3, 4, 5, 6, 
7, 8, 9, and 10 weeks post-immunization, and then serum 
was obtained to determine the anti-NDV IgG antibody 
by hemagglutination inhibition (HI).

In vitro expression of the O‑2’‑HACC/pFDNA
To verify the expression of the plasmid DNA encapsu-
lated in the O-2’-HACC, in vitro transfection was carried 
out using the Lipofectamine™ 2000 reagent kit (Invitro-
gen, USA). Group 1 was the liposome transfection group 
containing 4 μg of the naked pVAX I-F(o)-C3d6, Group 
2 was the O-2’-HACC/pFDNA containing 4  μg of the 
pVAX I-F(o)-C3d6, Group 3 was the blank O-2’-HACC 
as a negative control, and Group 4 was 293 T cell control 
group. NDV-positive serum was obtained from Harbin 
Veterinary Research Institute. Epifluorescence images 
were obtained by a fluorescence microscope (Zeiss, 
Germany).

Nasal immunization
A total of 120 18-day-old healthy SPF chickens were ran-
domly and evenly divided into six groups, and chickens 
in each group were separately housed in a stainless-steel 
isolator in a temperature- and light-controlled environ-
ment with free access to food and water. Each chicken 
was given an immunization dose of 100 μL containing 
200 μg plasmid DNA. Chickens in Group 1 were admin-
istered with 100 μL PBS i.m., chickens in Group 2 were 
administered with 100 μL of O-2’-HACC i.m., chickens 
in Group 3 were administered with 100 μL of the plasmid 
DNA i.m., chickens in Group 4 were administered with 
100 μL of O-2’-HACC/pFDNA containing 200  μg plas-
mid DNA i.m., chickens in Group 5 were administered 
with 100 μL of O-2’-HACC/pFDNA containing 200  μg 
plasmid DNA i.n., and chickens in Group 6 were admin-
istered with 100 μL of live attenuated NDV vaccine i.m. 
The live attenuated NDV vaccine (L/N: 200805) was pro-
vided by Harbin Pharmaceutical Group Bio-vaccine Co., 
Ltd.

Blood samples were collected via heart from two chick-
ens in each group at 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 weeks 
post-immunization. Serum was obtained by centrifuga-
tion at 4, 3,000 r/min for 10 min, followed by measure-
ment of the anti-NDV IgG antibody titers, the levels of 
IFN-γ, IL-2, and IL-4 were determined by corresponding 

ELISA kits (Thermo Fisher Scientific Inc., MA, USA), 
and the distribution of CD4 + and CD8 + T lymphocytes 
was tested by FACSAria flow cytometer (BD Biosciences, 
San Diego, CA, USA). Meanwhile, to assess the mucosal 
immune response, sIgA antibody titers in serum, tracheal 
fluid, bile, and Harderian glands were measured using the 
NDV IgA ELISA Kit (Rapidbio Co., Ltd., Beijing, China). 
Additionally, to detect the cellular-mediated immune 
response, splenocytes were harvested to determine the 
lymphocyte proliferation by MTT colorimetric assay as 
previously described [22].

Protective efficacy against NDV strain F48E9
When the levels of HI antibody in serum of every 
immune group reached 6.0 log2 post-immunization, 
seven chickens were randomly selected from each group 
and challenged with 100 μL of viral suspension con-
taining 104.5 EID50/0.1 mL of F48E9 via nasal drop. Any 
abnormal changes, such as feed, water drinking, men-
tal state, body weight, clinical symptoms, and mortal-
ity, were observed and recorded for 35  days. On the 
7th, 14th, 21th, 28th, and 35th days after the challenge, 
blood samples were collected for the analysis of serum HI 
antibody, as well as for the contents of IFN-γ, IL-2, and 
IL-4. Simultaneously, the infected chickens and chick-
ens in the negative control group were euthanized, and 
their glandular stomach, duodenum, and myocardium 
were collected to examine the histopathological changes 
by histological staining. Chickens were sacrificed by an 
overdose of the isoflurane/O2 mixture.

Statistical analysis
Data were expressed as mean value ± standard deviation 
(SD). All experiments were repeated at least three times 
with at least triplicated samples in each experiment. 
Kruskal–Wallis one-way analysis of variance (ANOVA) 
was employed to evaluate the statistical differences 
among different groups with SPSS 19.0 software. P < 0.05 
was considered statistically significant.
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