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The basic characteristics of extracellular 
vesicles and their potential application in bone 
sarcomas
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Abstract 

Bone sarcomas are rare cancers accompanied by metastatic disease, mainly including osteosarcoma, Ewing sarcoma 
and chondrosarcoma. Extracellular vesicles (EVs) are membrane vesicles released by cells in the extracellular matrix, 
which carry important signal molecules, can stably and widely present in various body fluids, such as plasma, saliva 
and scalp fluid, spinal cord, breast milk, and urine liquid. EVs can transport almost all types of biologically active mol-
ecules (DNA, mRNA, microRNA (miRNA), proteins, metabolites, and even pharmacological compounds). In this review, 
we summarized the basic biological characteristics of EVs and focused on their application in bone sarcomas. EVs can 
be use as biomarker vehicles for diagnosis and prognosis in bone sarcomas. The role of EVs in bone sarcoma has been 
analyzed point-by-point. In the microenvironment of bone sarcoma, bone sarcoma cells, mesenchymal stem cells, 
immune cells, fibroblasts, osteoclasts, osteoblasts, and endothelial cells coexist and interact with each other. EVs play 
an important role in the communication between cells. Based on multiple functions in bone sarcoma, this review 
provides new ideas for the discovery of new therapeutic targets and new diagnostic analysis.

Highlights 

New role of EVs in cell–cell communication in bone sarcoma.

New clinical practicality and future application prospects of EVs.

EVs can be use as biomarker vehicles for diagnosis and prognosis in bone sarcomas.

Bone sarcomas cells derived EVs may influence angiogenesis, osteoclastogenesis, immunomodulation, drug resist-
ance, invasion, and migration processes.
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Introduction
Bone sarcomas are malignant tumors that originates 
from mesenchymal tissue [1]. Osteosarcoma (OS) and 
chondrosarcoma are the most common malignant bone 

tumors, followed by Ewing sarcoma [1]. OS and Ewing 
sarcoma mainly occur in children and adolescents, while 
the incidence of chondrosarcoma increases with age [2, 
3]. Osteosarcoma is the most common primary malig-
nant bone tumor [4]. It mainly occurs in adolescents 
and children and reaches the second peak of incidence 
after old age [3]. Although neoadjuvant chemotherapy 
combined with surgical treatment can achieve a 5-year 
survival rate of 60–70%, for patients with relapsed and 
metastatic osteosarcoma, the original treatment method 
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cannot produce effective therapeutic effects [5]. Chon-
drosarcoma is a malignant tumor derived from hyaline 
cartilage [6]. It can occur in any bone, but is common 
in the pelvis, humerus, femur, shoulder and ribs, and 
can occur at any age [6]. Patients with severe chondro-
sarcoma have a high mortality rate [7]. The treatment 
of chondrosarcoma includes aggressive surgical resec-
tion, systemic chemotherapy and targeted radiotherapy, 
but unfortunately, patients with chondrosarcoma often 
relapse and have a poor prognosis [7]. Ewing sarcoma 
mainly occurs in adolescents, and its malignant degree is 
high [8]. Recurrence and distant metastasis are the main 
causes of death [8]. Therefore, it is necessary to explore 
new treatment directions based on the development and 
metastasis mechanism of bone sarcomas.

Extracellular vesicles (EVs) are lipid bilayer nanovesi-
cles secreted by cells, containing nucleic acids, proteins, 
lipids and other factors that maintain normal cell physi-
ological functions and mediate cell-to-cell communi-
cation [9]. EVs are associated with multiple biological 
phenomena and are crucial for intracellular communica-
tion by transporting intracellular substances [10]. EVs are 
highly heterogeneous, and EVs secreted by different cells 
have different composition characteristics and functions. 
EVs have been regarded as wastes of cellular metabolism 
from the beginning to the current biological functions 
[11]. In addition to their important role in signal com-
munication between cells, EVs are also widely involved 
in cell apoptosis, tumor development, angiogenesis, and 
immune response [12, 13]. Almost all cells secrete EVs 
under physiological and pathological conditions, and EVs 
can be found in blood, urine, saliva, and other body fluids 
[14]. EVs are widely observed in the tumor microenviron-
ment [14]. They not only participate in the occurrence 
and development of tumors. Theoretically, tumor derived 
EVs are a dangerous "message in a bottle" for bone [15, 
16]. EV plays a role in the regulation of bone remodeling 
activity and bone metastasis occurrence. They can mod-
ify the bone microenvironment, allowing the formation 
of osteolytic, osteosclerotic, and mixed metastasis [17]. 
However, the potential roles of EVs in the pathological 
exchange of bone cells between tumors and the bone 
microenvironment remain an emerging area [18]. The 
emerging evidence on EV functions in bone metastasis 
will facilitate the discovery of novel treatments [19].

In this review, we summarize the recent progress of the 
interaction between bone sarcoma and other cells in the 
tumor microenvironment through EVs, as well as the role 
of EVs as biomarker vehicles for diagnosis/prognosis and 
carriers for treatment in bone sarcomas. In particular, we 
discuss the role of these EVs in OS, Ewing sarcoma and 
chondrosarcoma, respectively. Compared with previous 
literature, we highlight the newly revealed role of EVs 

in cell–cell communication in bone sarcoma microen-
vironment, clinical practicality, and future application 
prospects.

Biogenesis of EVs
EVs were first reported in 1946 as a platelet-derived pro-
coagulant particles [20]. In 1983, a more detailed ultra-
structural study found that during the differentiation of 
immature red blood cells, the fusion of multivesicular 
bodies (MVBs) with the cell membrane can also release 
similar vesicles and they are called exosomes [21].

EVs can be roughly divided into three categories: 
Microvesicles produced by budding and division from 
the plasma membrane. The intraluminal vesicles released 
when MVBs fuse with the plasma membrane, namely 
exosome [22]. Apoptotic bodies released in the form of 
cell vesicles during cell apoptosis [23]. The size of EVs 
is usually used as the classification criteria: small vesi-
cles < 150 nm are classified as exosomes, and those with 
100 ~ 1000  nm or more are classified as micro-vesicles 
[24] (Fig.  1). There is still a lack of consensus on the 
nomenclature of extracellular vesicles. The International 
Society of Extracellular Vesicles (ISEV) encourages the 
use of "extracellular vesicles" as a general term and key 
word for all secreted vesicles [25].

The formation and secretion of EVs depends on the 
participation of endosomal sorting complex required 
for transport (ESCRT) [26]. As a consequence of their 
origin, exosomes from different cell types contain endo-
some-associated proteins (e.g., Rab GTPase, SNAREs, 
Annexins, and flotillin), some of which are involved in 
MVB biogenesis (e.g., Alix and Tsg101) [27]. The way in 
which virus-like microvesicles sprout on the surface or 
bind to the plasma membrane through MVBs to release 
ILVs plays an important role in the release of EVs [26]. At 
the same time, ESCRT ubiquitin-binding proteins HRS, 
STAM and Tsg101 are also involved in the sorting pro-
cess of EVs [28]. Research on HRS protein has shown that 
the expression of dendritic cells defective in its expres-
sion, HGS gene (encoding HRS protein) knocked out 
HEK293 cell line and tumor cells, the release of exosomes 
is reduced, while silencing two genes that regulate HRS 
protein (HGS, STAM1) and the gene that regulates 
ESCRT-1 protein (TSG101) will reduce the release of 
EVs, which proves the important role of ESCRT protein 
in the biosynthesis and secretion of EVs [29].

EVs contain a variety of contents as follow.
Protein: Most of the proteins contained in EVs are 

shared by different types of EVs, such as tetrameric 
proteins (CD9, CD63, CD81 and CD82), 14–3-3 pro-
teins, Major histocompatibility complex (MHC) mole-
cules and specific stress proteins (heat shock proteins) 
and other cytoplasmic proteins; Endosome sorting 
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complex 3 (ESCRT-3) binding protein required for 
transport. In general, EVs are very rich in cytoskeleton 
proteins, cytoplasmic proteins, heat shock proteins, 
cell membrane proteins, and proteins involved in vesi-
cle transport, while there are fewer organelle proteins 
in the cell [30].

Lipids: EVs are different from their secreting cells in 
terms of lipid composition, and there may be a mecha-
nism that can classify these specific lipid types into the 
vesicle [31].

Nucleic acid: EVs contain complete mRNA, mRNA 
fragments, long non-coding RNA (lncRNA), miRNA, 
ribosomal RNA (rRNA), different EVs may have differ-
ent types and levels of these Nucleic acids [13]. EVs are 
loaded with content molecules of different types and 
contents to reflect the different states of parent cells. 
These substances also affect the properties and func-
tions of EVs. For example, the content mRNA loaded 
by them is transferred horizontally through EVs and 
enters the recipient cells. It is translated into protein to 
change the biological state and function of the recipi-
ent cell [32], while miRNA can be stored in EVs in the 
blood circulation to avoid the degradation of RNAse, 
and then combine with immune cells to play an immu-
nomodulatory effect. The system is an indispensable 
and important part in the occurrence and develop-
ment of tumors [33].

The detection methods of EVs
After the operation of separating and purifying extracel-
lular vesicles, the morphology and purity of the extra-
cellular vesicles need to be detected before sequencing 
or protein profiling of their contents (Table 1). This is a 
necessary condition to ensure the reliability of the later 
analysis data.

Electron microscope inspection
Electron microscopy is the gold standard for morphologi-
cal detection of extracellular vesicles [34, 35]. The resolu-
tion of the transmission electron microscope is 1 ~ 3 nm, 
and the resolution of the scanning electron microscope 
is 5  nm. When observing an electron microscope sam-
ple, the diameter of extracellular vesicles can be meas-
ured. The immunogold labeling method can be used to 
label proteins on the surface of extracellular vesicles. 
Cryo-electron microscopy can observe the double-layer 
membrane structure of extracellular vesicles in order to 
distinguish between extracellular vesicles and other non-
vesicular structures. Electron microscopy can reveal the 
structure of purified single extracellular vesicles or apop-
totic bodies in tissues [36].

Flow cytometry
Flow cytometry is an important method to analyze extra-
cellular vesicles [34, 35]. Flow cytometric analysis sorts 

Fig. 1  Types and biological roles of extracellular vesicle (EV). Multiple types of EVs are produced and range in size from nanometer through 
micrometer range. EVs can be roughly divided into three categories: microvesicles, exosomes and apoptotic bodies. EVs promote cell-to-cell 
communication and processes both locally and at a distance from their origination. EVs have the ability to serve as biomarkers. Additionally, their 
ability to target cells with specificity and incorporate therapeutics enables them to serve as therapeutic delivery vehicles. MVB multivesicular body
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of particles according to the size of extracellular vesicles 
or the fluorescent signals carried. The size of extracellu-
lar vesicles is mainly analyzed by its scattered light, and 
the fluorescence carried by extracellular vesicles is mainly 
analyzed by the emission light of extracellular vesicles 
under laser excitation. The intensity of light scattered 
by extracellular vesicles is weak, sometimes lower than 
background noise. Extracellular vesicles can be labeled 
with fluorescent antibodies to be detected in flow cytom-
etry. However, due to the small size of single extracellular 
vesicles, the abundance of labeled proteins on the surface 
is low, so the fluorescence intensity is lower than that of 
most streams. The resolution of the cytometer. Therefore, 
flow cytometry needs to distinguish the signal of extra-
cellular vesicles under a lot of background noise.

Nanoparticle tracking analysis technology
One of the most common methods for identifying EVs 
based on particle size is Nanoparticle Tracking Analysis 
Technology (NTA) [35]. This technology is to install a 
high-definition camera on an optical microscope, using 
the properties of light scattering and Brownian motion, 
through the Stokes-Instein equation (the movement 
speed of nanoparticles in their suspension per unit time 
and their own particle size There is a quantitative rela-
tionship between the viscosity of the solution and the 
temperature), the specific exosomes and microvesicles in 
the diameter range of 50 ~ 1000  nm are directly imaged 
and observed one by one, and the high-resolution parti-
cle size distribution data and concentration are obtained.

Antibody‑based identification method
Given that EV is produced in the cell membrane pathway, 
antibody targeting markers related to this pathway can be 
identified [35, 37]. These include the four transmembrane 
protein superfamily (CD9, CD63 and CD81), AIP1/Alix, 
TSG101 and CD326/EPCAM [38]. The method of identi-
fication can be western blotting.

Fluorescence and Confocal Microscopy
EV can be labeled with lipophilic membrane-bound dyes 
(such as PKH67, DiD, etc.), or the sulfhydryl group on its 
surface can be used to label EVs [39, 40]. This technol-
ogy cannot really visualize each EV, but it can be used to 
study whether the labeled EV can be taken up by cells.

The role of EVs in bone sarcoma
As a medium, EVs play a vital role in the communica-
tion between tumor cells and other cells in the tumor 
microenvironment (Fig.  2). Bone sarcomas cells can 
interact with surrounding cells through input/output of 
EVs. EV-mediated crosstalk occurs through the traffick-
ing of vesicle-associated components to endothelial cells, 

osteoclasts, T cells, CTCs, CAFs, MSCs, and bone sar-
comas cells. CAFs may transfer the ability of migration/
invasion through EVs to bone sarcomas cells. Neigh-
boring stem cells may transfer factors contributive to 
growth and metastasis. Bone sarcomas cells derived EVs 
may influence angiogenesis, osteoclastogenesis, immu-
nomodulation, drug resistance, invasion, and migration 
processes. The roles of EVs in different types of bone sar-
coma are as follow.

The role of EVs in osteosarcoma
OS is the most common primary bone tumor, which 
occurs in 0.3 cases per 100,000 people [41]. Although 
diagnosis and treatment have improved in the past few 
decades, the survival rate for a considerable number of 
patients is still very low [3]. Therefore, one of the focuses 
of OS research is to better understand the metastatic 
process and how different factors regulate MTCT to pro-
mote metastatic spread. This will help determine treat-
ment strategies for metastatic and refractory diseases, 
thereby improving survival.

Since EVs play a role in the tumorigenesis of many can-
cers and the role of these small extracellular vesicles in 
metastasis, it is not surprising that researchers in the OS 
field are studying the role of EVs in OS (Table 2).

Studies have shown that EVs derived from other cells 
can affect the function of osteosarcoma cells. Exosomes 
derived from bone marrow mesenchymal stem cells 
(BMSCs) could transport miRNA 206 (miR-206) to oste-
osarcoma cells. Mechanically, exosomal-miR-206 may 
inhibit the proliferation, migration and invasion of oste-
osarcoma cells by targeting TRA2B, and it may induce 
OS cell apoptosis [42]. Zhao et  al. proved that BMSCs-
derived exosomes encapsulated long non-coding PVT1 
RNA and transported it to osteosarcoma cells, and the 
transported PVT1 promoted tumor growth by inhibit-
ing ubiquitination and promoting ERG expression in 
osteosarcoma cells [43]. In addition, Qin et al. had shown 
that BMSC-derived exosomes miR-208a can improve 
the progression of osteosarcoma by targeting PDCD4 
[44]. Wang et  al. found that adipose-derived mesenchy-
mal stem cells (AD-MSCs) exosomes can promote the 
progression of osteosarcoma by increasing the expres-
sion of COLGALT2 in osteosarcoma cells [45]. Human 
exosomes derived from BMSCs might promote the 
growth and metastasis of OS by promoting oncogenic 
autophagy [46]. Ge et  al. demonstrated that BMSCs-
derived exosomes LCP1 could promote bone prolifera-
tion and metastasis through JAK2/STAT3 pathway [47]. 
The targeting of miR-135a-5p/LCP1 axis might have 
potential in the treatment of OS [47]. The macrophage-
derived exosomes lnc-LIFR-AS1 could promote the pro-
liferation, invasion, and apoptosis of osteosarcoma cells 
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through the miR-29a/NFIA regulatory axis [48]. Can-
cer-associated fibroblasts (CAFs) could spread exoso-
mal miR-1228 by targeting SCAI, thereby promoting the 

invasion and migration of OS [49]. AD-MSCs could tar-
get BCL-6 to obtain miR-101-rich exosomes in OS cells, 
thereby inhibiting tumor growth and metastasis [50].

Fig. 2  Role of extracellular vesicles in the communication between bone sarcomas cells and the tumor microenvironment. Bone sarcomas 
can interact with the surrounding cells through secretion and up-take of EVs. EVs participate in multiple pathways involved in tumor growth, 
progression, and metastatic process. EV-mediated crosstalk occurs through the trafficking of vesicle-associated components to endothelial cells, 
osteoclasts, T cells, CAFs, MSCs, and bone sarcomas cells. The loaded ingredients include some key miRs (e.g., miR-1228, miR-208a, and miR-501) 
and proteins (e.g., TGF-β, COL6A1, and COLGAL). Bone sarcomas derived EVs influence angiogenesis, osteoclastogenesis, immunomodulation, 
drug resistance, invasion, and migration processes. CTCs cancer stem cells, CAFs cancer-associated fibroblasts, MSCs mesenchymal stem cells, EVs 
extracellular vesicles
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In addition, bone sarcomas can also secrete EVs to 
regulate their own tumor growth and metastasis. The 
results of Gong et al. study showed that metastatic OS 
cells could transfer exosomal miR-675 to non-meta-
static cells and promoted cell migration and invasion by 
targeting CALN1 [51]. The inactivation of Hic-5 could 
inactivate Wnt/β-catenin signal through exosomal 
pathway, thereby inhibiting proliferation and induc-
ing apoptosis of osteosarcoma cells [52]. The exosomal 
miR-1307 from OS cells promoted the proliferation, 
migration and invasion of OS cells by targeting AGAP1, 
and the miR-1307-AGAP1 axis might play an impor-
tant role in the future treatment of OS [53]. In addition, 
the exosomal linc00852 associated with AXL up-reg-
ulated the proliferation, migration and invasion of OS 
cells, which was considered a novel tumor biomarker 
and a special therapeutic target for OS [54]. Towards 
endothelial cells, OS-derived exosomes promote osteo-
clasts differentiation and bone resorption activity, and 
these exosomes potentiated tube formation of endothe-
lial cells and increased angiogenic markers expression. 
The molecular mechanisms underlying this process 
may include miR-148a and miR-21-5p [55, 56].

Studies have also shown that OS derived EVs might 
also participate in bone development by affecting the 
function of surrounding cells. Compared with nor-
mal osteoblasts, exosomes from osteosarcoma contain 
immunomodulatory substances, which could reduce the 
proliferation rate of T cells and promote the regulatory 
phenotype T [57]. Osteoblast exosomes could also reduce 
T cell activity, but to a lesser degree than canine osteosar-
coma (OSA) exosomes and do not promote the T regula-
tory phenotype [57]. OS-derived exosomes might induce 
M2 polarization of macrophages and promote the inva-
sion and metastasis of tumors by Tim-3 [58]. Bone sarco-
mas derived exosomal miR-501-3p promoted osteoclast 
production and aggravate bone loss through the PTEN/
PI3K/Akt signaling pathway [59]. The Rab22a-NeoF1 
fusion protein is secreted into exosomes through its 
KFERQ-like motif binding to HSP90. Macrophages and 
cancer cells negative for the fusion gene absorb the pro-
tein, while the exosomal fusion protein Rab22a-NeoF1 
could promote its receptor-negative cancer cells metasta-
size in mouse lungs through the activation of RhoA acti-
vation by the binding partner PYK2 of their donor cells 
[60]. OS-derived EVs could recapitulate the infiltration 

Table 2  Summary of EVs studies in OS

Cargos Parent cell Target cell Biological function Reference

miR-206 BMSCs OS cells Cell proliferation, migration, invasion and 
apoptosis

[42]

Lnc-PVT1 BMSCs OS cells Tumor growth [43]

miR-208a/PDCD4 BMSCs OS cells Promote OS progression [44]

COLGALT2 AD-MSCs OS cells Promote OS progression [45]

/ BMSCs OS cells Promote OS growth and metastasis [46]

miR-135a-5p/LCP1 BMSCs OS cells Promote OS proliferation and metastasis [47]

lnc-LIFR-AS1/miR-29a/NFIA macrophage OS cells Cell proliferation, migration, invasion and 
apoptosis

[48]

miR-1228/SCAI CAFs OS cells
Cell migration and invasion [49]

miR-151-3p/ CHL1/integrin 1β CAFs OS cells Cell proliferation, migration, invasion [50]

miR-101/BCL-6 AD-MSCs OS cells Tumor growth and metastasis [51]

miR-675/CANN1 metastatic OS cells Non-metastatic OS cells Cell migration and invasion [52]

Hic-5/Wnt /β-catenin OS cells OS cells Cell proliferation and apoptosis [53]

miR-1307/AGAP1 OS cells OS cells Cell proliferation, migration, and invasion [54]

/ AXL up-regulated OS cells AXL down-regulated OS Cells Cell migration and invasion [55]

immunomodulatory substances OS cells T cells Reduce T cell activity [56]

Tim-3 OS cells Macrophage Induce M2 polarization
Tumor invasion and metastasis

[57]

miR-501-3p OS cells Osteoclast Promote osteoclast production and aggra-
vate bone loss

[58]

/ OS cells CAFs Cell differentiation [61]

LINE-1 OS cells MSCs Epigenetic transformation [63]

TGFB2 Metastatic OS cells Macrophage Regulate the cell signaling of tumor-associ-
ated macrophages

[64]

COL6A1 OS cells CAFs Activate CAF to promote OS transfer [65]
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of myeloid cells into the lungs of naive mice, but it is 
not enough to promote OS metastasis [61]. Mazumdar 
et  al. also proved that EVs derived from OS cells could 
cause cancer-related fibroblast/fibroblast differentia-
tion [62]. The OS cell line was able to produce EVs fused 
with recipient cells, and under the conditions of starva-
tion, high-level activation of survival pathways, migra-
tion, adhesion, and 3D enhancement of ball formation, 
enhance its ability to grow in anchors, thereby enhancing 
proliferation and survivability [63]. OS-exosome-medi-
ated LINE-1 methylation was insufficient in MSCs, while 
the opposite effect was observed in osteoblasts, indicat-
ing that MSCs are sensitive to epigenetic transformation 
but not to osteoblasts [64]. The exosomes of metastatic 
osteosarcoma cells could regulate the cell signaling of 
tumor-associated macrophages, thereby promoting the 
M2 phenotype by producing TGFB2 and creating an 
immunosuppressive microenvironment that promotes 
tumors [65]. Zhang et  al. proved that COL6A1 can be 
packaged in OS derived exosomes and activate CAFs to 
promote OS transfer [66].

The role of EVs in Ewing sarcoma
Ewing sarcoma (EWS) is a malignant tumor commonly 
seen in children and adolescents [67]. The only prog-
nostic factor for patients with recurrence is the recovery 
time. Those who relapse 2 years after the initial diagnosis 
have a relatively good prognosis [68]. The 5-year survival 
rate of patients with local recurrence is 13%-30%, but the 
prognosis of patients with systemic or other tumor recur-
rence is better [68]. Recent studies have shown that EVs 
also play an important role in the development of Ewing 
sarcoma.

Feo et  al. had shown that the elimination of CD99 in 
EWS tumor cells leads to the production and release of 
exosomes. These exosomes could transfer their anti-
tumor effects to neighboring tumor cells. This indicated 
that these exosomes are in the reversal of malignant 
tumors rather than initiation in the soil. An atypical 
new role was played in the process transfer seeding [69]. 
Ventura et  al. confirmed that the delivery of exosomes 
through CD99-silenced cells was sufficient to inhibit 
Notch-NF-kB signaling via miR-34a to induce neural 
differentiation of recipient EWS cells [70]. Miller et  al. 
proved that EWS-derived exosomes might be used as 
biomarkers to minimize the diagnosis of residual diseases 
in peripheral blood, and prompt people to further study 
their potential biological effects in modifying the micro-
environment related to EWS [71]. Hypoxic exosomes 
promoted stems in EWS cells by providing enriched miR-
210 that could down-regulate the apoptotic pathway, 
leading to cell survival and increasing sphere formation 
[72].

The role of EVs in chondrosarcoma
Chondrosarcoma is a malignant tumor that originates 
from cartilage or cartilage-forming connective tissue [3]. 
The incidence of malignant bone tumors ranks second, 
second only to osteosarcoma. The clinical manifestations 
of most lesions (especially secondary) are slow develop-
ment, long duration, mild symptoms, and good prog-
nosis; a few lesions (especially primary) progress fast, 
short duration, severe symptoms, and poor prognosis 
[3]. Cheng et al. found that chondrosarcoma cell-derived 
exosomes carry lncRNA RAMP2-AS1 and regulate the 
angiogenic ability of HUVECs via acting as a ceRNA of 
miR-2355-5p to regulate VEGFR2 expression [73].

EVs as biomarker vehicles for diagnosis 
and prognosis in bone sarcomas
EVs are widely present in almost all body fluids, con-
taining nucleic acids, proteins, lipids, metabolites, etc. 
Under different cell sources and different physiological 
or pathological conditions, the composition and content 
of EVs content will change significantly, and the level of 
specific content will change. The detection can reflect the 
physiological and pathological state of cells, and has the 
potential of liquid biopsy markers. At present, a variety 
of research strategies have been used in the screening of 
EVs markers, each with its advantages and limitations, 
and seeking the best clinical research strategy is still the 
key to screening for markers with high application value.

Detection of PD-L1 and exosomal N-cadherin in the 
serum of OS patients could predict the progression 
of lung metastasis in OS patients [74]. Cambier et  al. 
verified that a consistent excess of DNA sequences of 
repetitive elements associated with EVs indicates their 
potential use as biomarkers for OS [75]. Li et  al. found 
that SENP1 derived from plasma exosomes could be used 
as a new independent prognostic indicator in the clinical 
application of OS [76]. Zhang et al. introduced the latest 
progress of EWS and the opportunities and challenges 
brought by the development of circulating exosomes as 
a diagnosis and monitoring of children and young adults 
in the EWS family (ESFT) source of development of bio-
markers for treatment response in adult patients [77]. 
Samuel and colleagues had also shown that circulating 
EVs could be used as a source of minimally invasive and 
potential prognostic diagnostic biomarkers in pediatric 
patients with tumors [78]. In addition, compared with 
the control, CASC15 upregulation was observed in OS 
plasma exosomes, and the same expression was observed 
in OS tissues and cell lines [79]. Besides, 30 gene fusions 
related to cancer patients have been identified as events 
in EVs RNA and are more common in metastatic EVs 
[80]. Analysis strategies for serum exosomal miRNAs 
and mRNAs have been developed for OS patients with 
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different chemotherapeutic responses [81]. Compared 
with OS patients with good chemotherapy response, 
12 miRNAs in OS patients with poor chemotherapy 
response were up-regulated, while 18 miRNAs were sig-
nificantly down-regulated [81].

The application of EVs in bone sarcoma treatment
The use of EVs to treat human diseases has become a 
core issue in clinical medicine because of their ability 
to deliver biologically active substances to target cells. 
Therefore, EVs are regarded as natural nanocarriers with 
high therapeutic potential [42, 82–86].

Pan et  al. showed that exosomes from cisplatin-
resistant cells (CDDP) reduced the sensitivity of MG63 
and U2OS cells to CDDP, inhibited cell apoptosis, and 
increased the levels of multidrug resistance-related pro-
tein 1 and P-glycoprotein expression [87]. In addition, 
exosomal hsa_circ_103801 could enhance the promoter 
function of exosomes and promote the chemoresistance 
of MG63 and U2OS cells to CDDP [87]. Wei et al. found 
that the prepared doxorubicin-loaded exosomes could 
be used as an excellent chemotherapeutic drug for the 
treatment of osteosarcoma in vitro [88]. Considering the 
tumor localization function of BM-MSCs, doxorubicin-
loaded exosomes might be a novel candidate for targeted 
therapy of OS in future studies. In addition, multidrug-
resistant OS cells could expand their ability to resist the 
effects of adriamycin on sensitive cells by transferring 
exosomes carrying MDR-1 mRNA and its P-glycoprotein 
product [89].

Remaining concerns and future perspectives
EVs are widely found in organisms, and their biologi-
cal functions are increasingly recognized [90, 91]. As a 
natural communication medium between cells, EVs are 
expected to be used to treat a variety of clinical diseases 
based on this feature [11]. In addition, due to their high 
bioavailability and low immunogenicity, they can be the 
best candidates for drugs and therapeutic molecular 
carriers [12, 92]. For example, heterologous exosomes 
released by mesenchymal stem cells are considered a reli-
able and safe source of therapeutic exosomes [93, 94]. 
Clinically, the use of autologous methods is not ruled 
out, because in this case, the possibility of exosomes con-
taining potentially dangerous molecules is very small. 
However, the exosomes of the patient’s plasma are dan-
gerous. Because the molecules delivered by the plasma 
exosomes are considered to be some metabolic wastes 
of diseased tissues, they are likely to deliver some drugs 
with high toxic potential. These studies support the use 
of exosomes secreted by primary monocytes in periph-
eral blood as drug carriers. Of course, it is not to say that 
they are completely safe, but they are safer than plasma 

exosomes, which requires clinical research to determine 
the true therapeutic potential of EVs. However, the most 
likely problem to be solved is the processing of EVs con-
tent. To this end, the best results can be achieved by 
establishing “EVs factories” similar to cell therapy cell 
factories. Another issue that needs to be addressed is the 
mechanism by which EVs play a therapeutic role. The 
mechanism of the interaction between EVs and target 
cells may be membrane-membrane fusion or the delivery 
of vesicle contents in target cells. Of course, they them-
selves may trigger effects. For example, EVs secreted by 
different types of cells may preferentially target certain 
cell types depending on the composition of the mem-
brane, thereby having different effects on our body. Nev-
ertheless, the mechanism of how EVs play a therapeutic 
role and affect target cells remains to be elucidated. 
Whether it is direct modification of EVs or selection of 
different cell sources for EVs, the safety issues still exist. 
Therefore, the research in the next few years may focus 
on the research on the impact of EVs on the body. There 
is no doubt that these goals can only be achieved after 
careful and in-depth research on the content and char-
acteristics of EVs that have not been used in clinical 
practice.

In the microenvironment of bone sarcoma, bone sar-
coma cells, mesenchymal stem cells, immune cells, fibro-
blasts, osteoclasts, osteoblasts, and endothelial cells 
coexist and interact with each other [15, 95, 96]. EVs play 
an important role in the communication between cells. 
On the one hand, osteosarcoma cells secrete EVs to reach 
the recipient cells to promote tumor support properties. 
On the other hand, EVs derived from tumor microen-
vironment cells can help tumor growth and migration. 
EVs with specific cell membrane components and spe-
cific wraps of the source cells have great potential as 
diagnostic and prognostic markers. EVs have the above-
mentioned multiple functions in bone sarcoma, provid-
ing new ideas for the discovery of new therapeutic targets 
and new diagnostic analysis.

In the future, technological advances in the purifica-
tion and characterization of EVs are expected to better 
help the detection of EVs and the study of their biologi-
cal characteristics, and its clinical application prospects 
in bone sarcoma will be broader. At least, future research 
can focus on the following aspects. First, the identifica-
tion of the expression profile of EV-specific inclusions is 
helpful for machine learning to identify the occurrence 
and types of OS. Second, the mechanism of transmission 
of drug resistance or metastatic properties by EVs can be 
further explored from multiple dimensions. Third, which 
type of EV is most easily ingested by bone sarcoma is a 
question to be addressed for the development of targeted 
drug carriers.
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