Skip to main content
Fig. 9 | Journal of Nanobiotechnology

Fig. 9

From: Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation

Fig. 9

Proteomic analysis confirms the differentiation and reveals alterations of the mechanotransductive cellular status upon nanostructure/cell interaction. a A shotgun proteomic analysis was carried out on PC12 cells on neuritogenesis-inducing ns-Zr15 or on flat-Zr or PLL in the presence of NGF (after 24 h cell/substrate interaction). An ANOVA test was performed in order to identify the proteins that were differentially expressed. In this report, only the data comparing ns-Zr15 and flat-Zr are presented. The colored data points in the volcano plot that are located above the p value line (t test value cut off is 0.0167) correspond to the proteins that were differentially expressed in these two conditions upon treatment with large magnitude fold changes and high statistical significance. In green are indicated proteins that are up regulated, in red are the down regulated. The proteins having a fold-change less than 1.5 are shown in gray. A complete list of these proteins can be found in Additional file 4: Table S1, Additional file 5: Table S2 in the supplementaries. b The cartoon summarizes and visualizes the sites of action and functions of adhesome- and mechanobiologically-relevant proteins found to be altered in their expression level upon interaction with the neuritogenesis-inducing nanostructured surface (for further details see text). Arrows indicate up- or downregulation compared to the flat zirconia condition

Back to article page