Skip to main content
Fig. 4 | Journal of Nanobiotechnology

Fig. 4

From: Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts

Fig. 4

Impact of PLA-NP on intracellular proteins levels and miRNA related to cell toxicity, stress and inflammation. a Percentage of polypeptides from proteins into biological functions regulated in response to 20 µg/mL PLA-NP treatment for 24 h. GO (Gene Ontology) functions are ‘Miscellaneous’ includes proteins with more than 2 biological functions. ‘None’ means none information found. ‘Unclassified’ comprises proteins without described biological process but only molecular function. Functions with under 1% percentage were grouped in ‘Others’ category which includes: autophagy; bicellular tight junction; blood coagulation and hemostasis; camera-type eye development/in utero embryonic development; cell cycle and mitosis; cell redox homeostasis; differentiation; neurogenesis; ectoderm development; mineral balance; N-glycan processing; nucleotide metabolism; pyridoxal 5′-phosphate salvage. b miRNA analysis of A549 cells exposed to 20 µg/mL PLA-NP after 72 h incubation. Each experimental group corresponds to three independent experiments. Student t-test compared to Control group (**p < 0.01). c Apoptosis susceptibility of A549 cells exposed to 20 µg/mL PLA-NP during 72 h followed by 24 h treatment with 100 nM STS. Each experimental group corresponds to the analysis of three independent experiments performed in duplicates. Student t test compared to STS group (***p < 0.001). Results are expressed as mean (±SEM)

Back to article page