Skip to main content
Fig. 10 | Journal of Nanobiotechnology

Fig. 10

From: Nanosensors based on polymer vesicles and planar membranes: a short review

Fig. 10

Design of Photosystem I (PSI) block copolymer integrated membrane. A block copolymer (BCP) bilayer membrane based interface with conjugated electrolytes (COEs) provides efficient electron transfer to Photosystem I (PSI) proteins incorporated at high density in another block copolymer membrane. COEs and the photosynthetic membrane protein, PSI, were stabilized in poly(butadiene)12-poly(ethylene oxide)8 (PB12-PEO8) BCP membranes. Short-chain amphiphilic BCP membranes can have similar thickness as lipid bilayers (~ 4 nm). Hydrophobic regions (pink) represent the PB block of the BCP and stabilize the hydrophobic region of COEs and the protein surface. COEs intercalated into a BCP bilayer form two-dimensional membranes on electrodes and enable efficient electron transfer to the proteins, which allows large photocurrent generation. This hydrated film provides a biocompatible environment to the protein components protruding from the BCP membrane, in the absence of which could lead to protein denaturation on un-functionalized metal electrodes. The hydrophilic blocks (blue regions) of the BCP are PEO blocks and are hydrated with water, making them compatible with amino acids located near the membrane interface. The hydrophobic interactions between membrane proteins, such as PSI, and BCPs lead to large, self-assembled planar membrane structures in water. The photosynthetic protein functionalized membranes can then be integrated into a bioelectronic device using electrostatic interactions to immobilize PSI membranes on the COE intercalated BCP bilayer. Light energy collected by the PSI protein pumps electrons from the electrode to the solution phase [52]

Back to article page