Skip to main content

Table 2 Photoresponsive nanotechnology designs

From: The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces

Response system

Response point

Light

Mechanism

Condition

Preparations process

Results

Bacterial strains

TiO2/MoSe2/CHI (Chai2021 [21])

TiO2

NIR, 808 nm, 0.6 W/cm2

PDT, PTT

15 min

1. Preparation of TiO2 by MAO

2. Preparation of TiO2/MoSe2 coating

3. Preparation of TiO2/MoSe2/CHI

The coating shows antibacterial and osteogenic capability

S. mutans

Ti/Phthalocyanines/liposome, nanoemulsion (Faria2014 [22])

Phthalocyanines

Infrared light: 830 nm, 1.5 J, 60 mW

Visible light: 633 nm, 3 J, 58 mW

PDT

Infrared light 2 min

Visible light 3 min 45 s

1. Liposome preparation

2. Preparation of Oil in Water nanoemulsion for controlled release of chlorine and aluminium phthalocyanine

3. Animal surgery: (a) create defects. (b) Install the implant. (c) Liposome/bone graft/BC/nanoeulsion fill

4. Treatment with visible and infrared light

The use of photosensitivity phthalocyanines activated by LED demonstrated a tendency to stimulate bone formation

–

Bi2S3@Ag3PO4/Ti (Hong2019 [24])

Bi2S3

NIR, 808 nm

PTT, PDT

15 min

1. Preparation of 4-MBA-treated Ti plate by alkali heat

2. Preparation of Bi2S3/Ti

3. Preparation of Bi2S3@Ag3PO4/Ti

PTT and PDT effects break the biofilm

S. aureus, E. coli

Au/Pt/TiO2 (Moon2021 [25])

TNT

Visible light: 470 nm, 660 nm, 5.5 mW/cm2

 

15 min

1. Preparation of TiO2 by EA

2. Preparation by Au/Pt-TiO2 nanotubes and Pt/Au TiO2 nanotubes

Au/Pt can extend the limited UV antibacterial effect and improve the osteogenic perfoormance

S. aureus

N-doped TNT (Oh2013 [26])

N-TNT

Visible light: 470 nm, 1000 mW/cm2

  

1. Fabrocation of TNT through EA

2. Fabrocation of N-doped TNT

  

PDA-NP-Ti (Ren2020 [28])

PDA

NIR/808 nm, 1 W/cm2

PTT

10 min

1. Preparation of PDA-NPs

2. PDA-NPs loaded on Ti

The photothermal PDA-NPs coating shows killing of bacteria and challenging the protective tissue depends on the immersion and acting time

S. aureus

RP-IR780-RGDC (Tan2018 [29])

RP, IR780

NIR/808 nm

PTT/PDT

50 °C/10 min

RP film was prepared on Ti surface by CVD

PDA modified RP coating

RGDG and PDA are loaded on RP membrane by Michael addition reaction

PPT/PDT effects remove the biofilm

RGDG improve cell adhesion, proliferation and osteogenic differentiation

S. aureus

Ag/CHI@MnO2–Ti (Wang2019 [30])

MnO2

NIR/808 nm

PTT

20 min

1. MnO2-nanosheets were hydrothermally prepared on Ti plates

2. Preparation of CHI/Ag composites with different contents of AgNPs

3. Ag/CHI@MnO2–Ti obtaining through electrostatic adsorption

The coating exhibit potential in deep site disinfection of Ti implant through the synergy of pre-releases Ag ions and photothermal effect within a short time

S. aureus, E. coli

GO-Ag-collagen (Xie2017 [31])

GO, Ag

Visible light/660 nm

PDT

20 min

1. Preparation of GO/AgNPs composites

2. Preparation of GO/AgNPs/collagen hybrid coating on Ti

ROS production and Ag+ release shows antibacterial effect

S. aureus, E. coli

Au-SPR/TiO2 (Xu2015 [32])

Au-SPR

Xenon light λ > 420 nm, 50 mWcm−2

The hydrophobic and alkyl chains

10 min

1. TNT was prepared through EA

AuNPs loaded in TNT

ODPA was attached to the tube walls

AMP loaded in bottom of TNT

Visible light acts as a touch switch which release drug in TNT to kill bacteria

E. coli

β-FeOOH/TiO2 coatings (Xue2021 [66])

FeOOH/Fe2O3

NIR/808 nm, 0.5 Wcm−2

PTT

7 min

β-FeOOH/TiO2 coatings preparation by micro-arc oxidation

PPT effects remove the biofilm

S. aureus

Au nanorods coating (Yang2019 [144])

Au

NIR/808 nm, 0.5 W/cm2

PTT

20 min

Preparation of Au nanorods coating on Ti according to electrostatic surface self-assembly technique

The coating shows repeated photothermal antibacterial ability

E. coli, P. aeruginosa, S. aureus, S. epidermidis

MoS2/PDA-RGD (Yuan2019 [80])

MoS2

NIR/808 nm, 0.5 Wcm−2

PTT

8 min

MoS2 + PDA + RGD coating on Ti

1. Improved the osteogenic ability of BMSCs

2. Effective antibacterial ability under NIR radiation

S. aureus, E. coli

Ti-M-I-RGD (Yuan2019 [193])

MPDA NPs

NIR/808 nm, 0.5–1.0 Wcm−2

PDT/PTT

50 °C/0–10 min

Preparation of MPDA NPs via a one-potsynthesis method

Obtaing amino-modified titanium named as Ti–NH2

MPDA loaded on Ti–NH2 named as Ti-M

Covalently fixed RGD on Ti-M named as Ti-M/RGD

ICG loaded on Ti-M/RGD by π–π staking reaction named as Ti-M-I-RGD

PTT/PDT effects kill the bacteria

S. aureus

FYH/Cur/HAd/BMP-2 NRs (Zhang2021 [62])

NRs

NIR/1060 nm

PTT

45℃/15 min

Preparation of TiO2 NRs

Preparation of TiO2: FYH NRs by load Ho and Yb

Preparation of TiO2: FYH/Cur/BMP-2 NRs by functionalize TiO2: FYH NRs with Cur, HA, BMP-2

Eliminate biofilms on Ti

Cur mitigates the immune response. BMP-2 improves osteogenic differentiation, accelerating new bone formation

S. aureus

CuS-NP-rGO/TNT coatings (Zhang2021 [176])

CuS, rGO

NIR/808 nm, 2 Wcm−2

PTT

10 min

1. TNT preparation by electrochemical anodic oxidation on pure Ti

2. CuS@BSA coatings preparation on TNT by LBL

3. CuS@BSA/rGO-PDA coatings preparation

PPT effects remove the bioflim

S. aureus, E. coli

CS/Ag/MoS2 Ti (Zhu2020 [81])

Ag/MoS2

Visible light: 660 nm, 0.898 W/cm2

PDT

20 min

1. MoS2 were hydrothermally prepared on Ti plates

2. Ag loaded on MoS2–Ti

3. CS loaded on Ag/MoS2–Ti

1. Ag+ reduced the recombination ratio of electron–hole pairs, which enhance the photocatalytic activity of the system

2. CS reduced the cytotoxicity to cells and improve the antibacterial ability

S. aureus, E. coli

  1. Table 2 is used to show the photoresponsive nanotechnology designs which should be placed in 2.2 photoresponsive strategy part