Skip to main content

Table 1 Chitosan-based nanomaterials for oral delivery

From: Marine biomaterials in biomedical nano/micro-systems

Type of nanomaterials

Properties of chitosan

Payload

Assembly mechanism or preparation method

Characterization

Mechanism

Animal model

Oral bioavailability

Refs.

mPEG-chitosan-oleic acid micelles

Mw: 112 kDa, DD: 15%

CPT

Self-assembly

Size: 178 nm;

PDI: 0.28;

Surface charge: + 42.8 mV;

EE: 55.5%, LC: 8.3%

Chitosan-mediated mucoadhesive effects

Chemically induced colorectal cancer model

10% (24 h)

[30]

Gemcitabine-loaded CSKSSDYQC (CSK)-TMC NPs

Mw: 400 kDa

DD: > 90%

Gemcitabine

Self-assembly

Size: 173.6 nm;

PDI: 0.2;

Surface charge: + 18.5 mV;

EE: 66.4%, LC:19.4%

CSK-mediated goblet cells active targeting

4T1 breast tumor mice model

60.1%

[139, 236]

Caseinate/triphenylphosphonium -chitosan/alginate NPs

DD: 95%, Viscosity: 100–200 mPa·s

Caseinate

Polyelectrolyte complexation

Size: 430 nm;

EE: 75.3%, LC: 5.2%

Alginate mediated pH responsiveness; triphenylphosphonium-mediated mitochondrial targeting

DSS-induced colon colitis mice model

[16]

Chitosan/ 4-(hydroxymethyl) phenylboronic acid pinacol ester (PAPE)-modified fucoidan NPs

Small molecule drugs: Phein

Polyelectrolyte complexation

Size: 233.1 nm;

PDI: 0.15;

EE: 93.6%

(1) pH-responsiveness

(2) Enzymatic degradation of chitosan in colon; (3) PAPE-mediated ROS-responsiveness

DSS-induced colon colitis mice model

[237]

Chitosan/poly-L-glutamic acid NPs

Mw: 150 kDa, DD: 95%

Metformin

Ionotropic gelation

Size: 150 nm;

PDI: 0.24;

Surface charge: + 27.3 mV

pH-responsiveness

Polycystic kidney disease mice model

[33]

Chitosan-binding peptide (CP)/PEG-DSPE/PLGA NPs

Itraconazole

Surface coating

Size: 136 nm;

PDI: 0.24;

Surface charge: + 21.5 mV

(1) 12-mer peptide (ADGVGDAESRTR)-mediated targeting

(2) mucus adhesion and pH-responsiveness

C. neoformans-infected mouse models

[29]

CUR-loaded PVA/ guar gum NPs coated with alginate/chitosan microgels

Mw: 1000 kDa

DD: 95%

CUR

Polyelectrolyte interactions

Size: 400 μm;

EE: 43.8%;

LC: 16.1

(1) Colon enzymatic degradation

(2) pH-responsive swelling of the inner layer

DSS-induced colon colitis mice model

[238]

Vancomycin-loaded chitosan-polyaniline microgels

Mw: 190–310 kDa

Vancomycin

Emulsion method

Size: 243.1 nm;

PDI: 0.15;

EE: 91.3%

lysozyme-cleavable 1,4-β-glycosidic bonds of chitosan for drug release

[239]

Resveratrol-loaded Antheraea pernyi silk fibroin NPs embed in chitosan-alginate hydrogels

Resveratrol

Iron crosslinking

EE: 68.2%, LC: 6.2%

(1) pH/ROS/GSH- responsiveness

(2) Integrin receptors-targeting in colon

DSS-induced colon colitis mice model

[53]

AC-BSA coated with glycol-chitosan and EGAC (organic–inorganic hybrid nanocomposite)

BSA

Sequentially surface coated

size: 325 nm;

PDI: 0.35;

surface charge:

− 33.2 mV;

EE: 100%;

Layer-by-layer deposition enhanced stability and intestinal permeation

Normal rat model

[240]

Chitosan/insulin-loaded zein-carboxymethylated short-chain amylose nanocomposites

Mw: 140 kDa, DD: 90%

Insulin

Surface coated with chitosan

Size: 311 nm;

PDI: 0.22;

Surface charge: + 43.7 mV;

EE: 89.0%, LC: 6.8%

Chitosan as a permeation enhancer

Diabetic rat model

15.1%

[241]

Insulin/HTCC-chitosan complex coated with thiolated hyaluronic acid

(core–shell NPs)

Mw: 50 kDa, DD: 95%

Insulin

Polyelectrolyte complexation (based FNC)

Size: 102 nm;

PDI:  0.11;

Surface charge:

− 26.2 mV

EE: 91.0%, LC:38.0%

(1) HTCC-chitosan with enhanced solubility

(2) HA-SH enhanced mucus-penetration

Type 1 diabetic rats

11.3%

[54]

Alginate/chitosan microparticles

AvrA protein

Iron crosslinking (Ca2+)

Size: 281 nm;

PDI: 0.32;

Surface charge:

− 11.6 mV;

EE: 89.0%, LC: 6.8%

pH-responsiveness for inflammatory colon-targeting

DSS-induced colitis mice model

1%

[51]

Insulin-loaded deoxycholic acid modified chitosan NPs

Mw: 100 kDa, DD: 90%

Insulin

Polyelectrolyte complexation

Size: 226.1 nm;

PDI: 0.18;

Surface charge: + 14.3 mV;

EE: 73.5%, LC: 33%

Deoxycholic acid promoted NPs traverse the intestinal epithelium by exploiting the bile acid pathway

Streptozotocin-induced diabetic rats model

15.9%

[242]

Chitosan/TPP/insulin NPs

Mw: 90 kDa, DD: 85%

Insulin

Polyelectrolyte complexation based on FNC

Size: 45 nm;

PDI: 0.14;

Surface charge: + 9.4 mV;

EE: 91.0%, LC:27.5%

The smaller size NPs (45 nm) exhibited better hypoglycemic effects over large size NPs (115 nm)

Streptozotocin-induced diabetic rats model

[35]

Chitosan-g-bPEI/pDNA NPs

Mw: 15 kDa, DD: ~ 85%

Insulin-pDNA

Polyelectrolyte complexation

Size: ~ 160 nm; PDI: 0.32;

Surface charge: + 37 mV

(1) PEI (0.8 kDa) conjugation enhanced transfection efficiency and reduce toxicity

(2) Prolonged the intestinal retention

STZ‐induced diabetic mice model

[243]

H6P/arginylglycylaspartic acid and mannose-modified chitosan NPs

Heat shock protein (H6P)

Polyelectrolyte complexation

Size: ~ 320 nm

M cell targeting (RGD peptide)

DC cell targeting

NOD mice

[244]

Fluorocarbon-modified chitosan/ antibodies capsules

αPDL1 antibody

Polyelectrolyte complexation

Size: ~ 100 nm

Surface charge: + 15 mV

Fluorocarbon chains with hydrophobic and lipophobic behaviors enhance cross-membrane penetration

C57BL/6 mice bearing B16F10 melanoma tumors

4.7%

[245, 246]

siRNA/mannose-modified trimethyl chitosan-cysteine/TPP-based NPs

TMC

Mw: 200 kDa, DD: 85%

siRNA

Polyelectrolyte complexation

Size: ~ 150 nm;

PDI: ~ 0.2;

Surface charge: + 18.7 mV

Mannose-mediated targeting (to macrophage)

caveolae-mediated endocytosis for robust siRNA delivery

LPS/D-gal induced acute liver injury

[247,248,249,250]

Chitosan coated siRNA-loaded lanthanum phosphate nanoparticles (CS/LaP/siRNA NPs)

SiRNA LAP

Polyelectrolyte complexation

Size: 210 nm;

Surface charge: + 27.0 mV

Chitosan was used as the outer shell to control the excessive growth of lanthanum phosphate complexes

Colorectal cancer mouse model

[251]

Glycol chitosan–taurocholic acid (GT) coated AuNP–siRNA nanocomplex

Mw: 82 kDa

Akt2-siRNA

Polyelectrolyte complexation

Size: 100 ~ 130 nm

Surface charge: + 0.4 mV

(1) GT forms a protected layer

(2) Taurocholic acid moiety targeting apical sodium bile acid transporters receptor

Orthotopic colorectal liver metastases mice model

[57]

Oxaliplatin and siRNA/folic acid-conjugated CS NPs embed in chitosan and alginate layer-by-layer (LbL) film

Mw: 100–300 kDa

DD: 75–85%

Oxaliplatin and siRNA

Polyelectrolyte complexation

Size: 238 nm;

Surface charge: + 27.1 mV;

EE: > 90%

Folic acid receptor -mediated tumor targeting delivery

Azoxymethane and DSS-induced colon cancer mice model

[252]

siRNA/mannose-modified TMC/anionic crosslinkers (TPP, ES, and HA) NPs

Mw: 200 kDa, quarternization degree: 30%

siRNA

Ionic gelation

Size: 150–200 nm;

PDI: 0.1–0.17; surface Charge: + 18.9 ~  + 37.0 mV

Mannose-mediated macrophage targeting different anionic crosslinkers mediated different cellular unpacking kinetics

Acute hepatic injury mice model

[253]

OPBP-1 loaded TMC hydrogel

OPBP-1

Swelling degree of the hydrogel reached 94.3% at 1 h

Protected the payloads from the protease degradation

CT26 tumor mice model

52.8%

[47]

Gal-siTNF-PLGA NPs loaded alginate/chitosan hydrogel

Mw: 18 kDa

siTNF

Ionic gelation

Alginate/chitosan specific degradation in inflamed colon for release payloads

DSS-induced colitis mice model

[37, 51]

  1. Mw molecular weight, DD degree of deacetylation, EE encapsulation efficiency, LC drug loading capacity, CUR curcumin, SN387-ethyl-10-hydroxycamptothecin, DSS dextran sodium sulfate, STZ streptozotocin, UC Ulcerative colitis , DOX doxorubicin, CPT camptothecin, PTX paclitaxel, TMC N,N,N-trimethyl chitosan, TPP tripolyphosphate, BrijS20 Polyethylene glycol octadecyl ethe, Pgp P-glycoprotein, TJs tight junctions, FNC flash nanocomplexation, PBCA poly (n-butylcyanoacrylate), BSA bovine serum albumin, AC 3-aminopropyl functionalized magnesium phyllosilicate, EGAC Eudragit®L100–55, siRNA small interfering RNA, HTCC N-(2-hydroxypropyl)-3-trimethyl ammonium chloride modified chitosan, LAP lanthanum phosphate, HA hyaluronic acid, Eudragit® S100, ES methylacrylic acid-methyl methacrylate copolymer, OPBP-1 Oral PD-L1 Binding Peptide 1