Huczko A, Lange H, Bystrzejewski M, Baranowski P, Grubek‒Jaworska H, Nejman P, Przybyłowski T, Czumińska K, Glapiński J, Walton DRM, Kroto HW: Pulmonary Toxicity of 1‒D Nanocarbon Materials. Fullerenes, Nanotubes and Carbon Nanostructures. 2005, 13: 141-145. 10.1081/FST-200050691.
Article
CAS
Google Scholar
Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L: Cellular Toxicity of Carbon-Based Nanomaterials. Nano Lett. 2006, 6: 1121-1125. 10.1021/nl060162e.
Article
CAS
Google Scholar
Smart SK, Cassady AI, Lu GQ, Martin DJ: The biocompatibility of carbon nanotubes. Carbon. 2006, 44: 1034-1047. 10.1016/j.carbon.2005.10.011.
Article
CAS
Google Scholar
Cui D, Tian F, Ozkan CS, Wang M, Gao H: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005, 155: 73-85. 10.1016/j.toxlet.2004.08.015.
Article
CAS
Google Scholar
Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D: Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 2005, 207: 221-231. 10.1016/j.taap.2005.01.008.
Article
CAS
Google Scholar
Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, Maynard A, Baron P: Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells. J Toxicol Environ Health A. 2003, 66: 1909-1926. 10.1080/713853956.
Article
CAS
Google Scholar
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X: Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environ Sci Technol. 2005, 39: 1378-1383. 10.1021/es048729l.
Article
CAS
Google Scholar
Oberdörster G, Oberdörster E, Oberdörster J: Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ Health Perspect. 2005, 113: 823-839. 10.1289/ehp.7339.
Article
Google Scholar
Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML: Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Del Rev. 2009, 61: 457-466. 10.1016/j.addr.2009.03.010.
Article
CAS
Google Scholar
Li X, Gao H, Uo M, Sato Y, Akasaka T, Feng Q, Cui F, Liu X, Watari F: Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res A. 2009, 91A: 132-139. 10.1002/jbm.a.32203.
Article
CAS
Google Scholar
Li X, Fan Y, Watari F: Current investigations into carbon nanotubes for biomedical application. Biomed Mater. 2010, 5: 022001-10.1088/1748-6041/5/2/022001.
Article
Google Scholar
Audette GF, Hazes B:Development of Protein Nanotubes from a Multi-Purpose Biological Structure.J Nanoci Nanotechnol. 2007, 7: 2222-2229. 10.1166/jnn.2007.650.
Article
CAS
Google Scholar
Petrov A, Audette GF: Peptide and protein-based nanotubes for nanobiotechnology. WIREs Nanomed Nanobiotechnol. 2012, 4: 575-585. 10.1002/wnan.1180.
Article
CAS
Google Scholar
Nishiyama N: Nanomedicine: Nanocarriers shape up for long life. Nat Nano. 2007, 2: 203-204.
Article
CAS
Google Scholar
Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE: Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano. 2007, 2: 249-255. 10.1038/nnano.2007.70.
Article
CAS
Google Scholar
Champion J, Walker A, Mitragotri S: Role of Particle Size in Phagocytosis of Polymeric Microspheres. Pharm Res. 2008, 25: 1815-1821. 10.1007/s11095-008-9562-y.
Article
CAS
Google Scholar
Valéry C, Pouget E, Pandit A, Verbavatz J-M, Bordes L, Boisdé I, Cherif-Cheikh R, Artzner F, Paternostre M: Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach. Biophys J. 2008, 94: 1782-1795. 10.1529/biophysj.107.108175.
Article
Google Scholar
Xu H, Das AK, Horie M, Shaik MS, Smith AM, Luo Y, Lu X, Collins R, Liem SY, Song A: An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. Nanoscale. 2010, 2: 960-966. 10.1039/b9nr00233b.
Article
CAS
Google Scholar
Ashkenasy N, Horne WS, Ghadiri MR: Design of Self-Assembling Peptide Nanotubes with Delocalized Electronic States. Small. 2006, 2: 99-102. 10.1002/smll.200500252.
Article
CAS
Google Scholar
Reches M, Gazit E: Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes. Science. 2003, 300: 625-627. 10.1126/science.1082387.
Article
CAS
Google Scholar
Kumara MT, Srividya N, Muralidharan S, Tripp BC: Bioengineered Flagella Protein Nanotubes with Cysteine Loops: Self-Assembly and Manipulation in an Optical Trap. Nano Lett. 2006, 6: 2121-2129. 10.1021/nl060598u.
Article
CAS
Google Scholar
Kumara MT, Tripp BC, Muralidharan S: Layer-by-Layer Assembly of Bioengineered Flagella Protein Nanotubes. Biomacromolecules. 2007, 8: 3718-3722. 10.1021/bm7005449.
Article
CAS
Google Scholar
Audette GF, VanSchaik EJ, Hazes B, Irvin RT: DNA-Binding Protein Nanotubes: Learning from Nature's Nanotech Examples. Nano Lett. 2004, 4: 1897-1902. 10.1021/nl048942f.
Article
CAS
Google Scholar
Lombardo S, Jasbi SZ, Jeung S-K, Morin S, Audette GF: Initial Studies of Protein Nanotube Oligomerization from a Modified Gold Surface. J Bionanosci. 2009, 3: 61-65. 10.1166/jbns.2009.1006.
Article
CAS
Google Scholar
Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD: In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA. 2008, 105: 3733-3738. 10.1073/pnas.0712247105.
Article
CAS
Google Scholar
Miranda FF, Iwasaki K, Akashi S, Sumitomo K, Kobayashi M, Yamashita I, Tame JRH, Heddle JG: A Self-Assembled Protein Nanotube with High Aspect Ratio. Small. 2009, 5: 2077-2084. 10.1002/smll.200900667.
Article
CAS
Google Scholar
Tao C, Yang S, Zhang J: Template-synthesized Protein Nanotubes with Controlled Size Based on Layer-by-layer Method. Chin J Chem. 2010, 28: 325-328. 10.1002/cjoc.201090075.
Article
CAS
Google Scholar
Komatsu T, Terada H, Kobayashi N: Protein Nanotubes with an Enzyme Interior Surface. Chemistry – A European Journal. 2011, 17: 1849-1854. 10.1002/chem.201001937.
Article
CAS
Google Scholar
Tian Y, He Q, Cui Y, Li J: Fabrication of Protein Nanotubes Based on Layer-by-Layer Assembly. Biomacromolecules. 2006, 7: 2539-2542. 10.1021/bm060412l.
Article
CAS
Google Scholar
Mukherjee S, Pfeifer CM, Johnson JM, Liu J, Zlotnick A: Redirecting the Coat Protein of a Spherical Virus to Assemble into Tubular Nanostructures. J Am Chem Soc. 2006, 128: 2538-2539. 10.1021/ja056656f.
Article
CAS
Google Scholar
Miller RA, Presley AD, Francis MB: Self-Assembling Light-Harvesting Systems from Synthetically Modified Tobacco Mosaic Virus Coat Proteins. J Am Chem Soc. 2007, 129: 3104-3109. 10.1021/ja063887t.
Article
CAS
Google Scholar
Balci S, Bittner AM, Hahn K, Scheu C, Knez M, Kadri A, Wege C, Jeske H, Kern K: Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochim Acta. 2006, 51: 6251-6257. 10.1016/j.electacta.2006.04.007.
Article
CAS
Google Scholar
Balci S, Bittner AM, Schirra M, Thonke K, Sauer R, Hahn K, Kadri A, Wege C, Jeske H, Kern K: Catalytic coating of virus particles with zinc oxide. Electrochim Acta. 2009, 54: 5149-5154. 10.1016/j.electacta.2009.03.036.
Article
CAS
Google Scholar
Huang Y, Chiang C-Y, Lee SK, Gao Y, Hu EL, Yoreo JD, Belcher AM: Programmable Assembly of Nanoarchitectures Using Genetically Engineered Viruses. Nano Lett. 2005, 5: 1429-1434. 10.1021/nl050795d.
Article
CAS
Google Scholar
Nam KT, Kim D-W, Yoo PJ, Chiang C-Y, Meethong N, Hammond PT, Chiang Y-M, Belcher AM: Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes. Science. 2006, 312: 885-888. 10.1126/science.1122716.
Article
CAS
Google Scholar
Nam KT, Wartena R, Yoo PJ, Liau FW, Lee YJ, Chiang Y-M, Hammond PT, Belcher AM: Stamped microbattery electrodes based on self-assembled M13 viruses. Proc Natl Acad Sci. 2008, 105: 17227-17231. 10.1073/pnas.0711620105.
Article
CAS
Google Scholar
Nam YS, Park H, Magyar AP, Yun DS, Pollom TS, Belcher AM: Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application. Nanoscale. 2012, 4: 3405-3409. 10.1039/c2nr30115f.
Article
CAS
Google Scholar
Lee YJ, Yi H, Kim W-J, Kang K, Yun DS, Strano MS, Ceder G, Belcher AM: Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science. 2009, 324: 1051-1055.
CAS
Google Scholar
Kumara MT, Tripp BC, Muralidharan S: Self-Assembly of Metal Nanoparticles and Nanotubes on Bioengineered Flagella Scaffolds. Chem Mater. 2007, 19: 2056-2064. 10.1021/cm062178b.
Article
CAS
Google Scholar
D’Avignon LC, Hogan BK, Murray CK, Loo FL, Hospenthal DR, Cancio LC, Kim SH, Renz EM, Barillo D, Holcomb JB: Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: An autopsy series. Burns. 2010, 36: 773-779. 10.1016/j.burns.2009.11.007.
Article
Google Scholar
Marchetti F, Giglio L, Candusso M, Faraguna D, Assael B: Early antibiotic treatment of pseudomonas aeruginosa colonisation in cystic fibrosis: a critical review of the literature. Eur J Clin Pharmacol. 2004, 60: 67-74. 10.1007/s00228-004-0735-2.
Article
CAS
Google Scholar
Lee KK, Sheth HB, Wong WY, Sherburne R, Paranchych W, Hodges RS, Lingwood CA, Krivan H, Irvin RT: The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol. 1994, 11: 705-713. 10.1111/j.1365-2958.1994.tb00348.x.
Article
CAS
Google Scholar
Sheth HB, Lee KK, Wong WY, Srivastava G, Hindsgaul O, Hodges RS, Paranchych W, Irvin RT: The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence βGalNAc(1–4)βGal found in glycosphingolipids asialo-GM1 and asialo-GM2. Mol Microbiol. 1994, 11: 715-723. 10.1111/j.1365-2958.1994.tb00349.x.
Article
CAS
Google Scholar
Craig L, Pique ME, Tainer JA: Type IV pilus structure and bacterial pathogenicity. Nat Rev Micro. 2004, 2: 363-378. 10.1038/nrmicro885.
Article
CAS
Google Scholar
Lyczak JB, Cannon CL, Pier GB: Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microb Infect. 2000, 2: 1051-1060. 10.1016/S1286-4579(00)01259-4.
Article
CAS
Google Scholar
Burrows LL: Weapons of mass retraction. Mol Microbiol. 2005, 57: 878-888. 10.1111/j.1365-2958.2005.04703.x.
Article
CAS
Google Scholar
Burrows LL: Pseudomonas aeruginosa Twitching Motility: Type IV Pili in Action. Annu Rev Microbiol. 2012, 66: 493-520. 10.1146/annurev-micro-092611-150055.
Article
CAS
Google Scholar
Giltner CL, van Schaik EJ, Audette GF, Kao D, Hodges RS, Hassett DJ, Irvin RT: The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Mol Microbiol. 2006, 60: 813-813. 10.1111/j.1365-2958.2006.05085.x.
Article
CAS
Google Scholar
Yu B, Giltner CL, Van Schaik EJ, Bautista DL, Hodges RS, Audette GF, Li DY, Irvin RT: A Novel Biometallic Interface: High Affinity Tip-AssociatedBinding by Pilin-Derived Protein Nanotubes. J Bionanosci. 2007, 1: 73-83. 10.1166/jbns.2007.012.
Article
Google Scholar
Mattick JS: Type IV Pili and Twitching Motility. Annu Rev Microbiol. 2002, 56: 289-314. 10.1146/annurev.micro.56.012302.160938.
Article
CAS
Google Scholar
Skerker JM, Berg HC: Direct observation of extension and retraction of type IV pili. PNAS. 2001, 98: 6901-6904. 10.1073/pnas.121171698.
Article
CAS
Google Scholar
Conrad Jacinta C, Gibiansky Maxsim L, Jin F, Gordon Vernita D, Motto Dominick A, Mathewson Margie A, Stopka Wiktor G, Zelasko Daria C, Shrout Joshua D, Wong Gerard CL: Flagella and Pili-Mediated Near-Surface Single-Cell Motility Mechanisms in P. aeruginosa. Biophys J. 2011, 100: 1608-1616. 10.1016/j.bpj.2011.02.020.
Article
CAS
Google Scholar
Jin F, Conrad JC, Gibiansky ML, Wong GCL: Bacteria use type-IV pili to slingshot on surfaces. Proc Natl Acad Sci. 2011, 108: 12617-12622. 10.1073/pnas.1105073108.
Article
CAS
Google Scholar
Ottow JCG: Ecology, Physiology, and Genetics of Fimbriae and Pili. Annu Rev Microbiol. 1975, 29: 79-108. 10.1146/annurev.mi.29.100175.000455.
Article
CAS
Google Scholar
van Schaik EJ, Giltner CL, Audette GF, Keizer DW, Bautista DL, Slupsky CM, Sykes BD, Irvin RT: DNA Binding: a Novel Function of Pseudomonas aeruginosa Type IV Pili. J Bacteriol. 2005, 187: 1455-1464. 10.1128/JB.187.4.1455-1464.2005.
Article
CAS
Google Scholar
Dubnau D: DNA Uptake in Bacteria. Annu Rev Microbiol. 1999, 53: 217-244. 10.1146/annurev.micro.53.1.217.
Article
CAS
Google Scholar
Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 2006, 59: 1114-1128. 10.1111/j.1365-2958.2005.05008.x.
Article
CAS
Google Scholar
Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T: Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2008, 10: 2331-2343. 10.1111/j.1462-2920.2008.01658.x.
Article
CAS
Google Scholar
Mikkelsen H, Sivaneson M, Filloux A: Key two-component regulatory systems that control biofilm formation in Pseudomonas aeruginosa. Environ Microbiol. 2011, 13: 1666-1681. 10.1111/j.1462-2920.2011.02495.x.
Article
CAS
Google Scholar
Pelicic V: Type IV pili: e pluribus unum?. Mol Microbiol. 2008, 68: 827-837. 10.1111/j.1365-2958.2008.06197.x.
Article
CAS
Google Scholar
Maier B, Potter L, So M, Seifert HS, Sheetz MP: Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci. 2002, 99: 16012-16017. 10.1073/pnas.242523299.
Article
CAS
Google Scholar
Craig L, Li J: Type IV pili: paradoxes in form and function. Curr Opin Struct Biol. 2008, 18: 267-277. 10.1016/j.sbi.2007.12.009.
Article
CAS
Google Scholar
Forest KT, Tainer JA: Type-4 pilus-structure: outside to inside and top to bottom – minireview. Gene. 1997, 192: 165-169. 10.1016/S0378-1119(97)00008-5.
Article
CAS
Google Scholar
Hazes B, Frost L: Towards a systems biology approach to study type II/IV secretion systems. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2008, 1778: 1839-1850. 10.1016/j.bbamem.2008.03.011.
Article
CAS
Google Scholar
Ayers M, Howell PL, Burrows LL: Architecture of the type II secretion and type IV pilus machineries. Future Microbiol. 2010, 5: 1203-1218. 10.2217/fmb.10.76.
Article
CAS
Google Scholar
Craig L, Taylor RK, Pique ME, Adair BD, Arvai AS, Singh M, Lloyd SJ, Shin DS, Getzoff ED, Yeager M: Type IV Pilin Structure and Assembly: X-Ray and EM Analyses of Vibrio cholerae Toxin-Coregulated Pilus and Pseudomonas aeruginosa PAK Pilin. Mol Cell. 2003, 11: 1139-1150. 10.1016/S1097-2765(03)00170-9.
Article
CAS
Google Scholar
Craig L, Volkmann N, Arvai AS, Pique ME, Yeager M, Egelman Edward H, Tainer JA: Type IV Pilus Structure by Cryo-Electron Microscopy and Crystallography: Implications for Pilus Assembly and Functions. Mol Cell. 2006, 23: 651-662. 10.1016/j.molcel.2006.07.004.
Article
CAS
Google Scholar
Li J, Egelman EH, Craig L: Structure of the Vibrio cholerae Type IVb Pilus and Stability Comparison with the Neisseria gonorrhoeae Type IVa Pilus. J Mol Biol. 2012, 418: 47-64. 10.1016/j.jmb.2012.02.017.
Article
CAS
Google Scholar
Folkhard W, Marvin DA, Watts TH, Paranchych W: Structure of polar pili from Pseudomonas aeruginosa strains K and O. J Mol Biol. 1981, 149: 79-93. 10.1016/0022-2836(81)90261-8.
Article
CAS
Google Scholar
Parge HE, Forest KT, Hickey MJ, Christensen DA, Getzoff ED, Tainer JA: Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature. 1995, 378: 32-38. 10.1038/378032a0.
Article
CAS
Google Scholar
Audette GF, Irvin RT, Hazes B: Crystallographic Analysis of the Pseudomonas aeruginosa Strain K122-4 Monomeric Pilin Reveals a Conserved Receptor-Binding Architecture. Biochemistry. 2004, 43: 11427-11435. 10.1021/bi048957s.
Article
CAS
Google Scholar
Hazes B, Sastry PA, Hayakawa K, Read RJ, Irvin RT: Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol. 2000, 299: 1005-1017. 10.1006/jmbi.2000.3801.
Article
CAS
Google Scholar
Keizer DW, Slupsky CM, Kalisiak M, Campbell AP, Crump MP, Sastry PA, Hazes B, Irvin RT, Sykes BD: Structure of a Pilin Monomer from Pseudomonas aeruginosa. J Biol Chem. 2001, 276: 24186-24193. 10.1074/jbc.M100659200.
Article
CAS
Google Scholar
Kao DJ, Churchill MEA, Irvin RT, Hodges RS: Animal Protection and Structural Studies of a Consensus Sequence Vaccine Targeting the Receptor Binding Domain of the Type IV Pilus of Pseudomonas aeruginosa. J Mol Biol. 2007, 374: 426-442. 10.1016/j.jmb.2007.09.032.
Article
CAS
Google Scholar
Hartung S, Arvai AS, Wood T, Kolappan S, Shin DS, Craig L, Tainer JA: Ultrahigh Resolution and Full-length Pilin Structures with Insights for Filament Assembly, Pathogenic Functions, and Vaccine Potential. J Biol Chem. 2011, 286: 44254-44265. 10.1074/jbc.M111.297242.
Article
CAS
Google Scholar
Nguyen Y, Jackson SG, Aidoo F, Junop M, Burrows LL: Structural Characterization of Novel Pseudomonas aeruginosa Type IV Pilins. J Mol Biol. 2010, 395: 491-503. 10.1016/j.jmb.2009.10.070.
Article
CAS
Google Scholar
Bong DT, Clark TD, Granja JR, Ghadiri MR: Self-Assembling Organic Nanotubes. Angew Chem Int Ed. 2001, 40: 988-1011. 10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N.
Article
CAS
Google Scholar
Bong DT, Ghadiri MR: Self-Assembling Cyclic Peptide Cylinders as Nuclei for Crystal Engineering. Angew Chem Int Ed. 2001, 40: 2163-2166. 10.1002/1521-3773(20010601)40:11<2163::AID-ANIE2163>3.0.CO;2-U.
Article
CAS
Google Scholar
Djalali R, Chen Y-f, Matsui H: Au Nanocrystal Growth on Nanotubes Controlled by Conformations and Charges of Sequenced Peptide Templates. J Am Chem Soc. 2003, 125: 5873-5879. 10.1021/ja0299598.
Article
CAS
Google Scholar
Zhang S: Fabrication of novel biomaterials through molecular self-assembly. Nat Biotech. 2003, 21: 1171-1178. 10.1038/nbt874.
Article
CAS
Google Scholar
Yemini M, Reches M, Gazit E, Rishpon J: Peptide Nanotube-Modified Electrodes for Enzyme−Biosensor Applications. Anal Chem. 2005, 77: 5155-5159. 10.1021/ac050414g.
Article
CAS
Google Scholar
Yemini M, Reches M, Rishpon J, Gazit E: Novel Electrochemical Biosensing Platform Using Self-Assembled Peptide Nanotubes. Nano Lett. 2004, 5: 183-186.
Article
Google Scholar
Nam YS, Park H, Magyar AP, Yun DS, Pollom TS, Belcher AM: Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application. Nanoscale. 2012, 4: 3405-3409. 10.1039/c2nr30115f.
Article
CAS
Google Scholar
Doig P, Todd T, Sastry PA, Lee KK, Hodges RS, Paranchych W, Irvin RT: Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun. 1988, 56: 1641-1646.
CAS
Google Scholar
Schweizer F, Jiao H, Hindsgaul O, Wong WY, Irvin RT: Interaction between the pili of Pseudomonas aeruginosa PAK and its carbohydrate receptor β-D-GalNAc(1->4) β-D-Gal analogs. Can J Microbiol. 1998, 44: 307-311.
CAS
Google Scholar
Sheth HB, Glasier LM, Ellert NW, Cachia P, Kohn W, Lee KK, Paranchych W, Hodges RS, Irvin RT: Development of an anti-adhesive vaccine for Pseudomonas aeruginosa targeting the C-terminal region of the pilin structural protein. Biomedical peptides, proteins & nucleic acids: structure, synthesis & biological activity. 1995, 1: 141-148.
CAS
Google Scholar
Lombardo S: The Development of Solution and Surface Associated Protein Nanotubes for Applications in Bionanotechnology. M.Sc. thesis, York University, Chemistry Department, 2010.
Google Scholar
Luft JR, Wolfley JR, Said MI, Nagel RM, Lauricella AM, Smith JL, Thayer MH, Veatch CK, Snell EH, Malkowski MG, DeTitta GT: Efficient optimization of crystallization conditions by manipulation of drop volume ratio and temperature. Protein Sci. 2007, 16: 715-722. 10.1110/ps.062699707.
Article
CAS
Google Scholar
McPherson A: Crystallization of proteins from polyethylene glycol. J Biol Chem. 1976, 251: 6300-6303.
CAS
Google Scholar
Charles P, Stubbs V, Soto C, Martin B, White B, Taitt C: Reduction of Non-Specific Protein Adsorption Using Poly(ethylene) Glycol (PEG) Modified Polyacrylate Hydrogels In Immunoassays for Staphylococcal Enterotoxin B Detection. Sensors. 2009, 9: 645-655. 10.3390/s90100645.
Article
CAS
Google Scholar
Amoozgar Z, Yeo Y: Recent advances in stealth coating of nanoparticle drug delivery systems. WIREs Nanomed Nanobiotechnol. 2012, 4: 219-233. 10.1002/wnan.1157.
Article
CAS
Google Scholar
Tarazona MP, Saiz E: Combination of SEC/MALS experimental procedures and theoretical analysis for studying the solution properties of macromolecules. J Biochem Bioph Methods. 2003, 56: 95-116. 10.1016/S0165-022X(03)00075-7.
Article
CAS
Google Scholar
Wyatt PJ: Light scattering and the absolute characterization of macromolecules. Anal Chim Acta. 1993, 272: 1-40. 10.1016/0003-2670(93)80373-S.
Article
CAS
Google Scholar
Audette GF, Irvin RT, Hazes B: Purification, crystallization and preliminary diffraction studies of the Pseudomonas aeruginosa strain K122-4 monomeric pilin. Acta Crystallogr Sect D. 2003, 59: 1665-1667. 10.1107/S0907444903015452.
Article
Google Scholar
Petrov A: Characterization of K122-4-Derived Protein Nanotube Oligomerization and Crystallization of P1 Pilin. M.Sc. thesis, York University, Chemistry Department, 2012.
Google Scholar
Marvin DA, Nadassay K, Welsh LC, Forest KT: Type-4 bacterial pili: molecular models and their simulated diffraction patterns. Fibre Diffraction Review. 2003, 11: 87-98.
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012, 9: 671-675. 10.1038/nmeth.2089.
Article
CAS
Google Scholar