Ackermans L, Temel Y, Visser-Vandewalle V. Deep brain stimulation in Tourette’s syndrome. Neurotherapeutics. 2008;5:339–44.
Article
Google Scholar
Volkmann J, Mueller J, Deuschl G, Kühn AA, Krauss JK, Poewe W, Timmermann L, Falk D, Kupsch A, Kivi A, Schneider GH, Schnitzler A, Südmeyer M, Voges J, Wolters A, Wittstock M, Müller JU, Hering S, Eisner W, Vesper J, Prokop T, Pinsker M, Schrader C, Kloss M, Kiening K, Boetzel K, Mehrkens J, Skogseid IM, Ramm-Pettersen J, Kemmler G, Bhatia KP, Vitek JL, Benecke R. DBS study group for dystonia. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol. 2014;13(9):875–84.
Article
Google Scholar
Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR. Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol. 2015;11(2):98–110.
Article
Google Scholar
Krauss JK, Pohle T, Weber S, Ozdoba C, Burgunder JM. Bilateral stimulation of the globus pallidus internus for treatment of cervical dystonia. Lancet. 1999;354:837–8.
Article
CAS
Google Scholar
Colletti V, Shannon R, Carner M, Veronese S, Colletti L. Outcomes in nontumor adults fitted with the auditory brainstem implant: 10 years’ experience. Otol Neurotol. 2009;30:614–8.
Article
Google Scholar
Schwartz MS, Otto SR, Shannon RV, Hitselberger WE, Brackmann DE. Auditory brainstem implants. Neurotherapeutics. 2008;5:128–36.
Article
Google Scholar
Osorio I, Frei MG, Manly BF, Sunderam S, Bhavaraju NC, Wilkinson SB. An introduction to contingent (closed-loop) brain electrical stimulation for seizure blockage, to ultra-short term clinical trials, and to multidimensional statistical analysis of therapeutic efficacy. J Clin Neurophysiol. 2001;18(6):533–44.
Article
CAS
Google Scholar
Fountas KN, Smith JR, Murro AM, Politsky J, Park YD, Jenkins PD. Implantation of a closed-loop stimulation in the management of medically refractory focal epilepsy. A technical note. Stereotact Funct Neurosurg. 2005;83:153–8.
Article
Google Scholar
Kronenbuerger M, Nolte KW, Coenen VA, Burgunder JM, Krauss JK, Weis J. Brain alterations with deep brain stimulation: new insight from a neuropathological case series. Mov Disord. 2015;30(8):1125–30.
Article
CAS
Google Scholar
Wei XF, Grill WM. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes. J Neural Eng. 2005;2:139–47.
Article
Google Scholar
Lord MS, Foss M, Besenbacher F. Influence of nanoscale surface topography on protein adsorbtion and cellular response. Nano Today. 2010;5:66–78.
Article
CAS
Google Scholar
Kasemo B. Biological surface science. Surf Sci. 2002;500:656–77.
Article
CAS
Google Scholar
Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int. 2004;28:229–36.
Article
CAS
Google Scholar
Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. Trends Biotechnol. 2001;19(3):97–101.
Article
CAS
Google Scholar
Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;24:1573–83.
Article
Google Scholar
Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20(6):573–88.
Article
CAS
Google Scholar
Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F. Enhancement of protein adsorption induced by surface roughness. Langmuir. 2006;22(26):10885–8.
Article
CAS
Google Scholar
Nolte K, Kronenbürger M, Burgunder JM, Coenen V, Krauss JK, Weis J. Brain tissue changes following deep brain stimulation. Acta Neuropathol. 2009;118(3):454–5.
Google Scholar
Butson CR, Maks CB, McIntyre CC. Sources and effects of electrode impedance during deep brain stimulation. Clin Neurophysiol. 2006;117(2):447–54.
Article
Google Scholar
Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TG, Agnew WF. Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng. 1999;7:315–26.
Article
CAS
Google Scholar
Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci. 2003;100:11041–6.
Article
CAS
Google Scholar
Polikov VS, Tresco PA, Reichert WM. Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods. 2005;148(1):1–18.
Article
Google Scholar
Leach JB, Achyuta AK, Murthy SK. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology. Front Neuroeng. 2010;8(2):18.
Google Scholar
Dahl JA, Maddux BL, Hutchison JE. Toward greener nanosynthesis. Chem Rev. 2007;107:2228.
Article
CAS
Google Scholar
Bärsch N, Jakobi J, Weiler S, Barcikowski S. Pure colloidal metal and ceramic nanoparticles from high-power picosecond laser ablation in water and acetone. Nanotechnology. 2009;20:445603.
Article
CAS
Google Scholar
Jakobi J, Menéndez-Manjón A, Chakravadhanula VS, Kienle L, Wagener P, Barcikowski S. Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes. Nanotechnology. 2011;22(14):145601.
Article
CAS
Google Scholar
Heinemann A, Koenen S, Schwabe K, Rehbock C, Barcikowksi S. How electrophoretic deposition with ligand-free platinum nanoparticles affects contact angle. Key Eng Mater. 2015;654:218–23.
Article
Google Scholar
Neumeister A, Bartke D, Bärsch N, Weingärtner T, Guetaz L, Montani A, Compagnini G, Barcikowski S. Interface of nanoparticle-coated electropolished stents. Langmuir. 2012;28(33):12060–6.
Article
CAS
Google Scholar
Abidian MR, Corey JM, Kipke DR, Martin DC. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small. 2010;6(3):421–9.
Article
CAS
Google Scholar
Ludwig KA, Langhals NB, Joseph MD, Richardson-Burns SM, Hendricks JL, Kipke DR. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes. J Neural Eng. 2011;8(1):014001.
Article
Google Scholar
Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater. 2014;26(12):1846–85.
Article
CAS
Google Scholar
Volkmann J, Herzog J, Kopper F, Deuschl G. Introduction to the programming of deep brain stimulators. Mov Disord. 2002;17(Suppl 3):S181–7.
Article
Google Scholar
Blahak C, Capelle HH, Bäzner H, Kinfe T, Hennerici MG, Krauss JK. Less is more: adaptation of voltage after battery replacement in deep brain stimulation for dystonia. Stereotact Funct Neurosurg. 2010;88(5):311–4.
Article
Google Scholar
Blahak C, Capelle HH, Baezner H, Kinfe TM, Hennerici MG, Krauss JK. Battery lifetime in pallidal deep brain stimulation for dystonia. Eur J Neurol. 2011;18(6):872–5.
Article
CAS
Google Scholar
Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57.
Article
Google Scholar
Kent AR, Grill WM. Analysis of deep brain stimulation electrode characteristics for neural recording. J Neural Eng. 2014;11(4):046010.
Article
Google Scholar
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49:377–91.
Article
CAS
Google Scholar
Szarowski DH, Andersen MD, Retterer S, Spence AJ, Isaacson M, Craighead HG, Turner JN, Shain W. Brain responses to micro-machined silicon devices. Brain Res. 2003;983:23–35.
Article
CAS
Google Scholar
Bignami A, Dahl D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol. 1974;153(1):27–38.
Article
CAS
Google Scholar
Eng LF. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol. 1985;8(4–6):203–14.
Article
CAS
Google Scholar
Barret CP, Guth L, Donati EJ, Krikorian JG. Astroglial reaction in the gray matter of lumbar segments after midthoracic transection of the adult rat spinal cord. Exp Neurol. 1981;73:365–77.
Article
Google Scholar
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5:146–56.
Article
CAS
Google Scholar
Streich C, Koenen S, Lelle M, Peneva K, Barcikowski S. Influence of ligands in metalnanoparticle electrophoresis for the fabrication of biofunctional coatings. Appl Surf Sci. 2015;348:92–9.
Article
CAS
Google Scholar
Silberstein P, Kühn AA, Kupsch A, Trottenberg T, Krauss JK, Wöhrle JC, Mazzone P, Insola A, Di Lazzaro V, Oliviero A, Aziz T, Brown P. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;126(Pt 12):2597–608.
Article
Google Scholar
Litvak V, Eusebio A, Jha A, Oostenveld R, Barnes GR, Penny WD, Zrinzo L, Hariz MI, Limousin P, Friston KJ, Brown P. Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients. Neuroimage. 2010;50(4):1578–88.
Article
Google Scholar
Barow E, Neumann WJ, Brücke C, Huebl J, Horn A, Brown P, Krauss JK, Schneider GH, Kühn AA. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain. 2014;137(Pt 11):3012–24.
Article
Google Scholar
Buzsáki G. Large-scale recording of neuronal ensembles. Nat. Neurosc. 2004;7(5):446–51.
Article
CAS
Google Scholar
Lempka SF, McIntyre CC. Theoretical analysis of the local field potential in deep brain stimulation applications. PLoS One. 2013;8(3):e59839.
Article
CAS
Google Scholar
Barcikowski S, Compagnini G. Advanced nanoparticle generation and excitation by lasers in liquids. Phys Chem Chem Phys. 2013;15(9):3022–6.
Article
CAS
Google Scholar
Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys. 2013;15(9):3027–46.
Article
CAS
Google Scholar
Rehbock C, Jakobi J, Gamrad L, van der Meer S, Tiedemann D, Taylor U, Kues W, Rath D, Barcikowski S. Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays. Beilstein J Nanotechnol. 2014;5:1523–41.
Article
CAS
Google Scholar
Nachev P, van’t Zand DD, Coger V, Wagener P, Reimers K, Vogt PM, Barcikowski S, Pitch A. Synthesis of hybrid microgels by coupling of laser ablation and polymerization in aqueous medium. J Laser Appl. 2012;24(4):042012.
Article
CAS
Google Scholar
Koenen S, Streubel R, Jakobi J, Schwabe K, Krauss JK, Barcikowski S. Continuous electrophoretic deposition and electrophoretic mobility of ligand-free, metal nanoparticles in liquid flow. J Electrochem Soc. 2015;162:D174–9.
Article
CAS
Google Scholar
Corni I, Ryan MP, Boccaccini AR. Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc. 2008;28:1353–67.
Article
CAS
Google Scholar
Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem. 2004;108:16864–9.
Article
CAS
Google Scholar
Merk V, Rehbock C, Becker F, Hagemann U, Nienhaus H, Barcikowski S. In situ non-DLVO stabilization of surfactant-free, plasmonic gold nanoparticles: effect of Hofmeister’s anions. Langmuir. 2014;30(15):4213–22.
Article
CAS
Google Scholar
Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF. A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol. 1995;64(2–3):237–78.
Article
CAS
Google Scholar
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 1998.
Google Scholar
Rothman SM, Nicholson KJ, Winkelstein BA. Time-dependent mechanics and measures of glial activation and behavioral sensitivity in a rodent model of radiculopathy. J Neurotrauma. 2010;27(5):803–14.
Article
Google Scholar