Kostyukov AI, Hellström F, Korchak OE, Radovanovic S, Ljubisavljevic M, Windhorst U, Johansson H. Fatigue effects in the cat gastrocnemius during frequency-modulated efferent stimulation. Neuroscience. 2000;92:789–99.
Article
Google Scholar
Kostyukov AI, Kalezic I, Serenko SG, Ljubisavljevic M, Windhorst U, Johansson H. Spreading of fatigue-related effects from active to inactive parts in the medial gastrocnemius muscle of the cat. Eur J Appl Physiol. 2002;86:295–307.
Article
CAS
Google Scholar
Ervilha UF, Farina D, Arendt-Nielsen L, Graven-Nielsen T. Experimental muscle pain changes motor control strategies in dynamic contractions. Exp Brain Res. 2005;164:215–24.
Article
Google Scholar
Kadetoff D, Kosek E. The effects of static muscular contraction on blood pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia. Eur J Pain. 2007;11:39–47.
Article
Google Scholar
Schomburg ED, Steffens H, Pilyavskii AI, Maisky VA, Brück W, Dibaj P, Sears TA. Long lasting activity of nociceptive muscular afferents facilitates bilateral flexion reflex pattern in the feline spinal cord. Neurosci Res. 2015;95:51–8.
Article
CAS
Google Scholar
Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287–332.
Article
CAS
Google Scholar
Aruoma OI. Free radicals, oxidants and antioxidants: trend towards the year 2000 and beyond. In: Aruoma O, Halliwell B, editors. Molecular biology of free radicals in human disease. London: OICA International; 1998. p. 1–28.
Google Scholar
Martarelli D, Pompei P. Oxidative stress and antioxidant changes during a 24-hours mountain bike endurance exercise in master athletes. J Sports Med Phys Fit. 2009;49:122–7.
CAS
Google Scholar
Richter C. Biophysical consequence of lipid peroxidation in membranes. Chem Phys Lipids. 1987;44:175–89.
Article
CAS
Google Scholar
Mach J, Midgley AW, Dank S, Grant R, Bentley DJ. The effect of antioxidant supplementation on fatigue during exercise: potential role for NAD + (H). Nutrients. 2010;2:319–29.
Article
CAS
Google Scholar
Reid MB, Stokić DS, Koch SM, Khawli FA, Leis AA. N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest. 1994;94:2468–74.
Article
CAS
Google Scholar
Harris RC, Sale C. Beta-alanine supplementation in high-intensity exercise. Med Sport Sci. 2012;59:1–17.
Article
CAS
Google Scholar
Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. C60 fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005;5:2578–85.
Article
CAS
Google Scholar
Sun T, Xu Z. Radical scavenging activities of alpha-alanine C60 adduct. Bioorg Med Chem Lett. 2006;16:3731–4.
Article
CAS
Google Scholar
Prylutska SV, Grynyuk II, Matyshevska OP, Prylutskyy YuI, Ritter U, Scharff P. Anti-oxidant properties of C60 fullerenes in vitro. Fuller Nanotub Carbon Nanostruct. 2008;16:698–705.
Article
CAS
Google Scholar
Prylutska SV, Grynyuk II, Grebinyk SM, Matyshevska OP, Prylutskyy YI, Ritter U, Siegmund C, Scharff P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Mat Wiss Werkst. 2009;40:238–41.
Article
CAS
Google Scholar
Nozdrenko DM, Prylutskyy YuI, Ritter U, Scharff P. Protective effect of water-soluble pristine C60 fullerene in ischemia-reperfusion injury of skeletal muscle. Int J Phys Pathophys. 2014. doi:10.1615/IntJPhysPathophys.v5.i2.10.
Google Scholar
Prylutska S, Bilyy R, Overchuk M, Bychko A, Andreichenko K, Stoika R, Rybalchenko V, Prylutskyy Y, Tsierkezos NG. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J Biomed Nanotechnol. 2012;8:522–7.
Article
CAS
Google Scholar
Panchuk RR, Prylutska SV, Chumak VV, Skorokhyd NR, Lehka LV, Evstigneev MP, Prylutskyy YuI, Berger W, Heffeter P, Scharff P, et al. Application of C60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. J Biomed Nanotechnol. 2015;11:1139–52.
Article
CAS
Google Scholar
Prylutskyy YI, Petrenko VI, Ivankov OI, Kyzyma OA, Bulavin LA, Litsis OO, Evstigneev MP, Cherepanov VV, Naumovets AG, Ritter U. On the origin of C60 fullerene solubility in aqueous solution. Langmuir. 2014;30(14):3967–70.
Article
CAS
Google Scholar
Ritter U, Prylutskyy YuI, Evstigneev MP, Davidenko NA, Cherepanov VV, Senenko AI, Marchenko OA, Naumovets AG. Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fuller Nanotubes Carbon Nanostruct. 2015;23:530–4.
Article
CAS
Google Scholar
Kuklin AI, Islamov AKh, Gordeliy VI. Two-detector system for small-angle neutron scattering instrument. Neutron News. 2005;16:16–8.
Article
Google Scholar
Soloviev AG, Solovieva TM, Stadnik AV, Islamov AH, Kuklin AI. The upgrade of package for preliminary treatment of small-angle scattering spectra. JINR Commun. 2003;10:2003–86.
Google Scholar
Mori T, Takada H, Ito S. Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology. 2006;225:48–54.
Article
CAS
Google Scholar
Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192–205.
Article
CAS
Google Scholar
Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–10.
Article
CAS
Google Scholar
Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994;233:182–9.
Article
CAS
Google Scholar
Catalase Aebi H. In: Bergmeyer HU, editor. Methods of enzymatic analysis. New York: Academic Press; 1983. p. 276–86.
Google Scholar
Prylutska SV, Matyshevska OP, Golub AA, Prylutskyy YuI, Potebnya GP, Ritter U, Scharff P. Study of C60 fullerenes and C60-containing composites cytotoxicity in vitro. Mater Sci Eng. 2007;27:1121–4.
Article
CAS
Google Scholar
Cataldo F. Solubility of fullerenes in fatty acids esters: a new way to deliver in vivo fullerenes Theoretical calculations and experimental results. In: Cataldo F, Da Ros T, editors. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes, series: carbon materials: chemistry and physics, vol. 1. Netherlands: Springer; 2008. doi:10.1007/978-1-4020-6845-4.
Google Scholar
Prylutskyy YI, Durov SS, Bulavin LA, Adamenko II, Moroz KO, Geru II, Dihor IN, Scharff P, Eklund PC, Grigorian L. Structure and thermophysical properties of fullerene C60 aqueous solutions. Int J Thermophys. 2001;22(3):943–56.
Article
CAS
Google Scholar
Prylutskyy YI, Buchelnikov AS, Voronin DP, Kostjukov VV, Ritter U, Parkinson JA, Evstigneev MP. C 60 fullerene aggregation in aqueous solution. Phys Chem Chem Phys. 2013;15(23):9351–60.
Article
CAS
Google Scholar
Glatter O. A new method for the evaluation of small-angle scattering data. J Appl Cryst. 1977;10:415–21. doi:10.1107/S0021889877013879.
Article
Google Scholar
Avdeev MV, Khokhryakov AA, Tropin TV, Andrievsky GV, Klochkov VK, Derevyanchenko LI, Rosta L, Garamus VM, Priezzhev VB, Korobov MV, et al. Structural features of molecular-colloidal solutions of C60 fullerenes in water by small-angle neutron scattering. Langmuir. 2004;20:4363–8.
Article
CAS
Google Scholar
Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci. 2010;114:162–82.
Article
CAS
Google Scholar
Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SA, Tran CL, Christensen FM. Review of fullerene toxicity and exposure appraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol. 2010;58:455–73.
Article
CAS
Google Scholar
De Luca CJ, Contessa P. Hierarchical control of motor units in voluntary contractions. J Neurophysiol. 2012;107:178–95.
Article
Google Scholar
Casey DP, Joyner MJ. Local control of skeletal muscle blood flow during exercise: influence of available oxygen. J Appl Physiol. 2011;111:1527–38.
Article
CAS
Google Scholar
Barclay J, Hansel M. Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol. 1991;69:279–84.
Article
CAS
Google Scholar
Diaz PT, She ZW, Davis WB, Clanton TL. Hydroxylation of salicylate by the in vitro diaphragm: evidence for hydroxyl radical production during fatigue. J Appl Physiol. 1993;75:540–5.
CAS
Google Scholar
Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med. 1999;222:283–92.
Article
CAS
Google Scholar
Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radical and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107:1198–205.
Article
CAS
Google Scholar
Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, Dudley G. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol. 1994;266:R375–80.
CAS
Google Scholar
Ji LL. Exercise and oxidative stress: role of the cellular antioxidant systems. Exerc Sport Sci Rev. 1995;23:135–66.
Article
CAS
Google Scholar
Clanton TL, Zuo L, Klawitter P. Oxidants and skeletal muscle function: physiologic and pathophysiologic implications. Proc Soc Exp Biol Med. 1999;222:253–62.
Article
CAS
Google Scholar
Didenko G, Prylutska S, Kichmarenko Y, Potebnya G, Prylutskyy Y, Slobodyanik N, Ritter U, Scharff P. Evaluation of the antitumor immune response to C60 fullerene. Mat Wiss Werkst. 2013;44:124–8.
Article
CAS
Google Scholar
Leeuwenburgh C, Hollander J, Leichtweis S, Griffiths M, Gore M, Ji LL. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol. 1997;272:R363–9.
CAS
Google Scholar
Ramires PR, Hollander J, Fiebig R, Ji LL. Effects of training and dietary glutathione on liver and muscle glutathione status in rats. Med Sci Sports Exerc. 1999;31:S52.
Article
Google Scholar
Sen CK, Marin E, Kretzschmar M, Hanninen O. Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol. 1992;73:1265–72.
CAS
Google Scholar
Leichtweis S, Leeuwenburgh C, Fiebig R, Parmelee D, Yu XX, Ji LL. Rigorous swim training deteriorates mitochondrial function in rat heart. Med Sci Sports Exerc. 1994;26:S69.
Article
Google Scholar
Lew H, Pyke S, Quintanilha A. Changes in the glutathione status of plasma, liver, and muscle following exhaustive exercise in rats. FEBS Lett. 1985;185:262–6.
Article
CAS
Google Scholar
Ji LL, Fu RG. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J Appl Physiol. 1992;72:549–54.
CAS
Google Scholar
Sen CK. Oxidants and antioxidants in exercise. J Appl Physiol. 1995;79:675–86.
CAS
Google Scholar
Jenkins RR. Free radical chemistry: relationship to exercise. Sports Med. 1988;5:156–70.
Article
CAS
Google Scholar
Meydani M, Evans WJ. Free radicals, exercise, and aging. In: Yu B, editor. Free radicals in aging. Boca Raton: CRC Press; 1993. p. 183–204.
Google Scholar
Laughlin MN, Simpson T, Sexton WL, Brown OR, Smith JK, Korthuis RJ. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol. 1990;68:2337–43.
CAS
Google Scholar
Leeuwenburgh C, Frebig R, Chandwancey R, Ji LL. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol. 1994;267:R439–43.
CAS
Google Scholar
Lee KP, Shin YJ, Cho SC, Lee SM, Bahn YJ, Kim JY, Kwon ES, Jeong DY, Park SC, Rhee SG, et al. Peroxiredoxin 3 has a crucial role in the contractile function of skeletal muscle by regulating mitochondrial homeostasis. Free Radical Biol Med. 2014;77:298–306.
Article
CAS
Google Scholar
Clarkson PM, Thompson HS. Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr. 2000;72:637–46.
Google Scholar
Grassi B, Rossiter HB, Zoladz JA. Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exerc Sport Sci Rev. 2015;43:75–83.
Article
Google Scholar
Ferreira LF, Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol. 2008;104:853–60.
Article
CAS
Google Scholar
Hong SS, Lee JY, Lee JS, Lee HW, Kim HG, Lee SK, Park BK, Son CG. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268–78.
Article
Google Scholar
Krustic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of C60. Science. 1991;254:1183–5.
Article
Google Scholar