Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044.
Article
CAS
PubMed
Google Scholar
Mitchison T, Kirschner M. Cytoskeletal dynamics and nerve growth. Neuron. 1988;1(9):761–72. https://doi.org/10.1016/0896-6273(88)90124-9.
Article
CAS
PubMed
Google Scholar
Bennett M, Cantini M, Reboud J, Cooper JM, Roca-Cusachs P, Salmeron-Sanchez M. Molecular clutch drives cell response to surface viscosity. Proc Natl Acad Sci. 2018;115(6):1192–7. https://doi.org/10.1073/pnas.1710653115.
Article
CAS
PubMed
Google Scholar
Guck J. Some thoughts on the future of cell mechanics. Biophys Rev. 2019;11(5):667–70. https://doi.org/10.1007/s12551-019-00597-0.
Article
PubMed
PubMed Central
Google Scholar
Kawauchi K, Fujita H, Miyoshi D, Yim EKF, Hirata H. Cell and Molecular Mechanics in Health and Disease. BioMed Res Int. 2017;2017:1–2. https://doi.org/10.1155/2017/2860241.
Article
Google Scholar
Phillip JM, Aifuwa I, Walston J, Wirtz D. The mechanobiology of aging. Annu Rev Biomed Eng. 2015;17(1):113–41. https://doi.org/10.1146/annurev-bioeng-071114-040829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfeifer CR, Alvey CM, Irianto J, Discher DE. Genome variation across cancers scales with tissue stiffness—an invasion-mutation mechanism and implications for immune cell infiltration. Curr Opin Syst Biol. 2017;2:103–14. https://doi.org/10.1016/j.coisb.2017.04.005.
Article
PubMed
PubMed Central
Google Scholar
Wullkopf L, West A-KV, Leijnse N, Cox TR, Madsen CD, Oddershede LB, Erler JT. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol Biol Cell. 2018;29(20):2378–85. https://doi.org/10.1091/mbc.E18-05-0319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sitarska E, Diz-Muñoz A. Pay attention to membrane tension: mechanobiology of the cell surface. Curr Opin Cell Biol. 2020;66:11–8. https://doi.org/10.1016/j.ceb.2020.04.001.
Article
CAS
PubMed
Google Scholar
Chugh P, Paluch EK. The actin cortex at a glance. J Cell Sci. 2018;131(14):186254. https://doi.org/10.1242/jcs.186254.
Article
CAS
Google Scholar
Chugh P, Clark AG, Smith MB, Cassani DADD, Dierkes K, Ragab A, Roux PP, Charras G, Salbreux G, Paluch EK. Actin cortex architecture regulates cell surface tension. Nat Cell Biol. 2017;19(6):689–97. https://doi.org/10.1038/ncb3525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shawky JH, Balakrishnan UL, Stuckenholz C, Davidson LA. Multiscale analysis of architecture, cell size and the cell cortex reveals cortical F-actin density and composition are major contributors to mechanical properties during convergent extension. Development. 2018;145(19):161281. https://doi.org/10.1242/dev.161281.
Article
CAS
Google Scholar
Ridone P, Vassalli M, Martinac B. Piezo1 mechanosensitive channels: what are they and why are they important. Biophys Rev. 2019;11(5):795–805. https://doi.org/10.1007/s12551-019-00584-5.
Article
PubMed
PubMed Central
Google Scholar
Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng C-A, Sachs F, Gottlieb PA, Martinac B. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun. 2016;7(1):10366. https://doi.org/10.1038/ncomms10366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erdogmus S, Storch U, Danner L, Becker J, Winter M, Ziegler N, Wirth A, Offermanns S, Hoffmann C, Gudermann T, Mederos Y, Schnitzler M. Helix 8 is the essential structural motif of mechanosensitive GPCRs. Nat Commun. 2019;10(1):5784. https://doi.org/10.1038/s41467-019-13722-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langenhan T. Adhesion G protein-coupled receptors—candidate metabotropic mechanosensors and novel drug targets. Basic Clin Pharmacol Toxicol. 2020;126(S6):5–16. https://doi.org/10.1111/bcpt.13223.
Article
CAS
PubMed
Google Scholar
Xu J, Mathur J, Vessières E, Hammack S, Nonomura K, Favre J, Grimaud L, Petrus M, Francisco A, Li J, Lee V, Xiang F-L, Mainquist JK, Cahalan SM, Orth AP, Walker JR, Ma S, Lukacs V, Bordone L, Bandell M, Laffitte B, Xu Y, Chien S, Henrion D, Patapoutian A. GPR68 senses flow and is essential for vascular physiology. Cell. 2018;173(3):762–77516. https://doi.org/10.1016/j.cell.2018.03.076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Han S, Lei A, Miyano M, Bloom J, Srivastava V, Stampfer MR, Gartner ZJ, LaBarge MA, Sohn LL. Characterizing cellular mechanical phenotypes with mechano-node-pore sensing. Microsyst Nanoeng. 2018;4(1):17091. https://doi.org/10.1038/micronano.2017.91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee KCM, Wang M, Cheah KSE, Chan GCF, So HKH, Wong KKY, Tsia KK. Quantitative phase imaging flow cytometry for ultra-large-scale single-cell biophysical phenotyping. Cytometry Part A. 2019;95(5):510–20. https://doi.org/10.1002/cyto.a.23765.
Article
Google Scholar
Bartolozzi A, Viti F, De Stefano S, Sbrana F, Petecchia L, Gavazzo P, Vassalli M. Development of label-free biophysical markers in osteogenic maturation. J Mech Behav Biomed Mater. 2020;103:103581. https://doi.org/10.1016/j.jmbbm.2019.103581.
Article
CAS
PubMed
Google Scholar
Luo W, Yu C-H, Lieu ZZ, Allard J, Mogilner A, Sheetz MP, Bershadsky AD. Analysis of the local organization and dynamics of cellular actin networks. J Cell Biol. 2013;202(7):1057–73. https://doi.org/10.1083/jcb.201210123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia S, Lim YB, Zhang Z, Wang Y, Zhang S, Lim CT, Yim EKF, Kanchanawong P. Nanoscale architecture of the cortical actin cytoskeleton in embryonic stem cells. Cell Rep. 2019;28(5):1251–12677. https://doi.org/10.1016/j.celrep.2019.06.089.
Article
CAS
PubMed
Google Scholar
Clark AG, Dierkes K, Paluch EK. Monitoring actin cortex thickness in live cells. Biophys J. 2013;105(3):570–80. https://doi.org/10.1016/j.bpj.2013.05.057.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salbreux G, Charras G, Paluch E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 2012;22(10):536–45. https://doi.org/10.1016/j.tcb.2012.07.001.
Article
CAS
PubMed
Google Scholar
Mokbel M, Hosseini K, Aland S, Fischer-Friedrich E. The Poisson ratio of the cellular actin cortex is frequency dependent. Biophys J. 2020;118(8):1968–76. https://doi.org/10.1016/j.bpj.2020.03.002.
Article
CAS
PubMed
Google Scholar
Smeets B, Cuvelier M, Pešek J, Ramon H. The effect of cortical elasticity and active tension on cell adhesion mechanics. Biophys J. 2019;116(5):930–7. https://doi.org/10.1016/j.bpj.2019.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichl EM, Ren Y, Morphew MK, Delannoy M, Effler JC, Girard KD, Divi S, Iglesias PA, Kuo SC, Robinson DN. Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Curr Biol. 2008;18(7):471–80. https://doi.org/10.1016/j.cub.2008.02.056.
Article
CAS
PubMed
PubMed Central
Google Scholar
González-Bermúdez B, Guinea GV, Plaza GR. Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys J. 2019;116(4):587–94. https://doi.org/10.1016/j.bpj.2019.01.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris AR, Charras GT. Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology. 2011;22(34):345102. https://doi.org/10.1088/0957-4484/22/34/345102.
Article
CAS
PubMed
Google Scholar
Chavan D, van de Watering TC, Gruca G, Rector JH, Heeck K, Slaman M, Iannuzzi D. Ferrule-top Nanoindenter: an optomechanical fiber sensor for nanoindentation. Rev Sci Instrum. 2012;83(11):115110. https://doi.org/10.1063/1.4766959.
Article
CAS
PubMed
Google Scholar
Baldini F, Bartolozzi A, Ardito M, Voci A, Portincasa P, Vassalli M, Vergani L. Biomechanics of cultured hepatic cells during different steatogenic hits. J Mech Behav Biomed Mater. 2019;97:296–305. https://doi.org/10.1016/j.jmbbm.2019.05.036.
Article
PubMed
Google Scholar
Li M, Xi N, Wang Y, Liu L. Advances in atomic force microscopy for single-cell analysis. Nano Res. 2019;12(4):703–18. https://doi.org/10.1007/s12274-018-2260-0.
Article
CAS
Google Scholar
Proa-Coronado S, Séverac C, Martinez-Rivas A, Dague E. Beyond the paradigm of nanomechanical measurements on cells using AFM: an automated methodology to rapidly analyse thousands of cells. Nanoscale Horizons. 2020;5(1):131–8. https://doi.org/10.1039/C9NH00438F.
Article
CAS
Google Scholar
Cao L, Yonis A, Vaghela M, Barriga EH, Chugh P, Smith MB, Maufront J, Lavoie G, Méant A, Ferber E, Bovellan M, Alberts A, Bertin A, Mayor R, Paluch EK, Roux PP, Jégou A, Romet-Lemonne G, Charras G. SPIN90 associates with mDia1 and the Arp2/3 complex to regulate cortical actin organization. Nat Cell Biol. 2020;. https://doi.org/10.1038/s41556-020-0531-y.
Article
PubMed
Google Scholar
Lamparter L, Galic M. Cellular membranes, a versatile adaptive composite material. Front Cell Dev Biol. 2020;. https://doi.org/10.3389/fcell.2020.00684.
Article
PubMed
PubMed Central
Google Scholar
Shi Z, Graber ZT, Baumgart T, Stone HA, Cohen AE. Cell membranes resist flow. Cell. 2018;175(7):1769–177913. https://doi.org/10.1016/j.cell.2018.09.054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen AE, Shi Z. Do cell membranes flow like honey or jiggle like jello? BioEssays. 2019;42(1):1900142. https://doi.org/10.1002/bies.201900142.
Article
Google Scholar
Chen J. Nanobiomechanics of living cells: a review. Interface Focus. 2014;4(2):20130055. https://doi.org/10.1098/rsfs.2013.0055.
Article
PubMed
PubMed Central
Google Scholar
Guz N, Dokukin M, Kalaparthi V, Sokolov I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J. 2014;107(3):564–75. https://doi.org/10.1016/j.bpj.2014.06.033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crick SL, Yin FC-P. Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech Model Mechanobiol. 2007;6(3):199–210. https://doi.org/10.1007/s10237-006-0046-x.
Article
CAS
PubMed
Google Scholar
Hermanowicz P, Sarna M, Burda K, Gabryś H. AtomicJ: an open source software for analysis of force curves. Rev Sci Instrum. 2014;85(6):063703. https://doi.org/10.1063/1.4881683.
Article
CAS
PubMed
Google Scholar
Lin DC, Dimitriadis EK, Horkay F. Robust strategies for automated AFM force curve analysis–I. Non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng. 2007;129(3):430–40. https://doi.org/10.1115/1.2720924.
Article
PubMed
Google Scholar
Gavara N. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Sci Rep. 2016;6(1):21267. https://doi.org/10.1038/srep21267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci. 1965;3(1):47–57. https://doi.org/10.1016/0020-7225(65)90019-4.
Article
Google Scholar
Cárdenas-Pérez S, Chanona-Pérez JJ, Méndez-Méndez JV, Arzate-Vázquez I, Hernández-Varela JD, Vera NG. Recent advances in atomic force microscopy for assessing the nanomechanical properties of food materials. Trends Food Sci Technol. 2019;87:59–72. https://doi.org/10.1016/j.tifs.2018.04.011.
Article
CAS
Google Scholar
Pharr GM, Oliver WC, Brotzen FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res. 1992;7(3):613–7. https://doi.org/10.1557/JMR.1992.0613.
Article
CAS
Google Scholar
Kontomaris SV, Malamou A. Hertz model or Oliver & Pharr analysis? Tutorial regarding AFM nanoindentation experiments on biological samples. Mater Res Exp. 2020;7(3):033001. https://doi.org/10.1088/2053-1591/ab79ce.
Article
CAS
Google Scholar
Briscoe BJ, Sebastian KS, Adams MJ. The effect of indenter geometry on the elastic response to indentation. J Phys D Appl Phys. 1994;27(6):1156–62. https://doi.org/10.1088/0022-3727/27/6/013.
Article
CAS
Google Scholar
Rico F, Roca-Cusachs P, Gavara N, Farré R, Rotger M, Navajas D. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E. 2005;72(2):021914. https://doi.org/10.1103/PhysRevE.72.021914.
Article
CAS
Google Scholar
Vargas-Pinto R, Gong H, Vahabikashi A, Johnson M. The effect of the endothelial cell cortex on atomic force microscopy measurements. Biophys J. 2013;105(2):300–9. https://doi.org/10.1016/j.bpj.2013.05.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vahabikashi A, Gelman A, Dong B, Gong L, Cha EDK, Schimmel M, Tamm ER, Perkumas K, Stamer WD, Sun C, Zhang HF, Gong H, Johnson M. Increased stiffness and flow resistance of the inner wall of Schlemm’s canal in glaucomatous human eyes. Proc Natl Acad Sci. 2019;116(52):26555–63. https://doi.org/10.1073/pnas.1911837116.
Article
CAS
Google Scholar
Doss BL, Rahmani Eliato K, Lin K-H, Ros R. Quantitative mechanical analysis of indentations on layered, soft elastic materials. Soft Matter. 2019;15(8):1776–84. https://doi.org/10.1039/C8SM02121J.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhao Y-P, Cheng Z. Determining the layers’ Young’s moduli and thickness from the indentation of a bilayer structure. J Phys D Appl Phys. 2018;51(6):065305. https://doi.org/10.1088/1361-6463/aaa55d.
Article
CAS
Google Scholar
Huajian G, Cheng-Hsin C, Jin L. Elastic contact versus indentation modeling of multi-layered materials. Int J Solids Struct. 1992;29(20):2471–92. https://doi.org/10.1016/0020-7683(92)90004-D.
Article
Google Scholar
Menčík J, Munz D, Quandt E, Weppelmann ER, Swain MV. Determination of elastic modulus of thin layers using nanoindentation. J Mater Res. 1997;12(9):2475–84. https://doi.org/10.1557/JMR.1997.0327.
Article
Google Scholar
Menčik J, Munz D, Quandt E, Ludwig A. Determination of elastic modulus of thin layers. Zeitschrift fuer Metallkunde/Mater Res Adv Techniq. 1999;90(10):766–73.
Google Scholar
Meister A, Gabi M, Behr P, Studer P, Vörös J, Niedermann P, Bitterli J, Polesel-Maris J, Liley M, Heinzelmann H, Zambelli T. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 2009;9(6):2501–7. https://doi.org/10.1021/nl901384x.
Article
CAS
PubMed
Google Scholar
Shimizu Y, Kihara T, Haghparast SMA, Yuba S, Miyake J. Simple display system of mechanical properties of cells and their dispersion. PLoS ONE. 2012;7(3):34305. https://doi.org/10.1371/journal.pone.0034305.
Article
CAS
Google Scholar
Haghparast SMA, Kihara T, Miyake J. Distinct mechanical behavior of HEK293 cells in adherent and suspended states. PeerJ. 2015;3:1131. https://doi.org/10.7717/peerj.1131.
Article
Google Scholar
Tachibana K, Haghparast SMA, Miyake J. Inhibition of cell adhesion by phosphorylated Ezrin/Radixin/Moesin. Cell Adhes Migrat. 2015;9(6):502–12. https://doi.org/10.1080/19336918.2015.1113366.
Article
CAS
Google Scholar
Zhang Z, Dong M, Yang F, Wang Z. Liposome Induced Mechanical Properties Changes in Cell Membrane. In: 2019 IEEE international conference on manipulation, manufacturing and measurement on the nanoscale (3M-NANO). New York: IEEE; p. 202–205. (2019). https://doi.org/10.1109/3M-NANO46308.2019.8947412. https://ieeexplore.ieee.org/document/8947412/.
Wu P-H, Aroush DR-B, Asnacios A, Chen W-C, Dokukin ME, Doss BL, Durand-Smet P, Ekpenyong A, Guck J, Guz NV, Janmey PA, Lee JSH, Moore NM, Ott A, Poh Y-C, Ros R, Sander M, Sokolov I, Staunton JR, Wang N, Whyte G, Wirtz D. A comparison of methods to assess cell mechanical properties. Nat Methods. 2018;15(7):491–8. https://doi.org/10.1038/s41592-018-0015-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar R, Saha S, Sinha B. Cell spread area and traction forces determine myosin-II-based cortex thickness regulation. Biochim et Biophys Acta Mol Cell Res. 2019;1866(12):118516. https://doi.org/10.1016/j.bbamcr.2019.07.011.
Article
CAS
Google Scholar
Kunda P, Pelling AE, Liu T, Baum B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr Biol. 2008;18(2):91–101. https://doi.org/10.1016/j.cub.2007.12.051.
Article
CAS
PubMed
Google Scholar
Casella JF, Flanagan MD, Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature. 1981;293(5830):302–5. https://doi.org/10.1038/293302a0.
Article
CAS
PubMed
Google Scholar
Wakatsuki T, Schwab B, Thompson NC, Elson EL. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci. 2001;114(5):1025–36.
CAS
PubMed
Google Scholar
Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982;92(1):79–91. https://doi.org/10.1083/jcb.92.1.79.
Article
CAS
PubMed
Google Scholar
Holzinger A. Jasplakinolide: an actin-specific reagent that promotes actin polymerization. p. 71–87. 2009.
Sen S, Subramanian S, Discher DE. Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J. 2005;89(5):3203–13. https://doi.org/10.1529/biophysj.105.063826.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brückner BR, Nöding H, Skamrahl M, Janshoff A. Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton. Prog Biophys Mol Biol. 2019;144:77–90. https://doi.org/10.1016/j.pbiomolbio.2018.08.010.
Article
CAS
PubMed
Google Scholar
Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000;78(1):520–35. https://doi.org/10.1016/S0006-3495(00)76614-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manika I, Maniks J. Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing. J Phys D Appl Phys. 2008;41(7):074010. https://doi.org/10.1088/0022-3727/41/7/074010.
Article
CAS
Google Scholar
Almasi D, Sharifi R, Kadir MRA, Krishnamurithy G, Kamarul T. Study on the AFM force curve common errors and their effects on the calculated nanomechanical properties of materials. J Eng. 2016;2016:1–8. https://doi.org/10.1155/2016/2456378.
Article
CAS
Google Scholar
Dörig P, Ossola D, Truong AM, Graf M, Stauffer F, Vörös J, Zambelli T. Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions. Biophys J. 2013;105(2):463–72. https://doi.org/10.1016/j.bpj.2013.06.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, Müller DJ. Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nat Commun. 2017;8(1):1266. https://doi.org/10.1038/s41467-017-01147-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Efremov YM, Kotova SL, Akovantseva AA, Timashev PS. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics. J Nanobiotechnol. 2020;18:134. https://doi.org/10.1186/s12951-020-00696-1.
Article
CAS
Google Scholar
Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev. 2014;94(1):235–63. https://doi.org/10.1152/physrev.00018.2013.
Article
CAS
PubMed
Google Scholar
Gilden J, Krummel MF. Control of cortical rigidity by the cytoskeleton: Emerging roles for septins. Cytoskeleton. 2010;. https://doi.org/10.1002/cm.20461.
Article
PubMed
Google Scholar
Chalut KJ, Paluch EK. The actin cortex: a bridge between cell shape and function. Dev Cell. 2016;38(6):571–3. https://doi.org/10.1016/j.devcel.2016.09.011.
Article
CAS
PubMed
Google Scholar
Ellefsen KL, Holt JR, Chang AC, Nourse JL, Arulmoli J, Mekhdjian AH, Abuwarda H, Tombola F, Flanagan LA, Dunn AR, Parker I, Pathak MM. Myosin-ii mediated traction forces evoke localized piezo1-dependent ca2+ flickers. Commun Biol. 2019;. https://doi.org/10.1038/s42003-019-0514-3.
Article
PubMed
PubMed Central
Google Scholar
Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques. 2019;66(1):40–53. https://doi.org/10.2144/btn-2018-0083.
Article
CAS
PubMed
Google Scholar
Sader JE, Chon JWM, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum. 1999;70(10):3967–9. https://doi.org/10.1063/1.1150021.
Article
CAS
Google Scholar
Ossola D, Dörig P, Vörös J, Zambelli T, Vassalli M. Serial weighting of micro-objects with resonant microchanneled cantilevers. Nanotechnology. 2016;27(41):415502. https://doi.org/10.1088/0957-4484/27/41/415502.
Article
PubMed
Google Scholar
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72. https://doi.org/10.1038/s41592-019-0686-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36(8):1627–39. https://doi.org/10.1021/ac60214a047.
Article
CAS
Google Scholar