Maruo S, Nakamura O, Kawata S. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett. 1997;22:132–4. https://doi.org/10.1364/OL.22.000132.
Article
CAS
PubMed
Google Scholar
Kumi G, Yanez CO, Belfield KD, Fourkas JT. High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab Chip. 2010;10:1057–60. https://doi.org/10.1039/B923377F.
Article
CAS
PubMed
Google Scholar
Lemma ED, Spagnolo B, de Vittorio M, Pisanello F. Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach. Trends Biotechnol. 2019;37:358–72. https://doi.org/10.1016/j.tibtech.2018.09.008.
Article
CAS
PubMed
Google Scholar
Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, et al. Gold helix photonic metamaterial as broadband circular polarizer. Science. 2009;325:1513–5. https://doi.org/10.1126/science.1177031.
Article
CAS
PubMed
Google Scholar
Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photon. 2008;2:219–25. https://doi.org/10.1038/nphoton.2008.47.
Article
CAS
Google Scholar
Tanaka T, Ishikawa A, Kawata S. Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl Phys Lett. 2006;88:81107. https://doi.org/10.1063/1.2177636.
Article
CAS
Google Scholar
Kawata S, Sun HB, Tanaka T, Takada K. Finer features for functional microdevices. Nature. 2001;412:697–8. https://doi.org/10.1038/35089130.
Article
CAS
PubMed
Google Scholar
Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]. Opt Mater Express. 2011;1:614. https://doi.org/10.1364/OME.1.000614.
Article
CAS
Google Scholar
Wollhofen R, Katzmann J, Hrelescu C, Jacak J, Klar TA. 120 nm resolution and 55 nm structure size in STED-lithography. Opt Express. 2013;21:10831–40. https://doi.org/10.1364/OE.21.010831.
Article
CAS
PubMed
Google Scholar
Li L, Gattass RR, Gershgoren E, Hwang H, Fourkas JT. Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science. 2009;324:910–3. https://doi.org/10.1126/science.1168996.
Article
CAS
PubMed
Google Scholar
Scott TF, Kowalski BA, Sullivan AC, Bowman CN, McLeod RR. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science. 2009;324:913–7. https://doi.org/10.1126/science.1167610.
Article
CAS
PubMed
Google Scholar
Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater. 2010;22:3578–82. https://doi.org/10.1002/adma.201000892.
Article
CAS
PubMed
Google Scholar
He X, Li T, Zhang J, Wang Z. STED Direct Laser Writing of 45 nm Width Nanowire. Micromachines (Basel). 2019. https://doi.org/10.3390/mi10110726.
Article
PubMed Central
Google Scholar
Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 2013;7:22–44. https://doi.org/10.1002/lpor.201100046.
Article
CAS
Google Scholar
Klar TA, Wollhofen R, Jacak J. Sub-Abbe resolution: from STED microscopy to STED lithography. Phys Scr. 2014;T162:14049. https://doi.org/10.1088/0031-8949/2014/T162/014049.
Article
CAS
Google Scholar
Shaw LA, Chizari S, Shusteff M, Naghsh-Nilchi H, Di Carlo D, Hopkins JB. Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles. Opt Express. 2018;26:13543–8. https://doi.org/10.1364/OE.26.013543.
Article
CAS
PubMed
Google Scholar
Laza SC, Polo M, Neves AAR, Cingolani R, Camposeo A, Pisignano D. Two-photon continuous flow lithography. Adv Mater. 2012;24:1304–8. https://doi.org/10.1002/adma.201103357.
Article
CAS
PubMed
Google Scholar
Kane RS. Fabricating complex polymeric micro- and nanostructures: lithography in microfluidic devices. Angew Chem Int Ed Engl. 2008;47:1368–70. https://doi.org/10.1002/anie.200704426.
Article
CAS
PubMed
Google Scholar
Jiménez-Díaz E, Cano-Jorge M, Zamarrón-Hernández D, Cabriales L, Páez-Larios F, Cruz-Ramírez A, et al. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication. Micromachines (Basel). 2019. https://doi.org/10.3390/mi10090576.
Article
Google Scholar
Maruo S, Inoue H. Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett. 2006;89:144101. https://doi.org/10.1063/1.2358820.
Article
CAS
Google Scholar
Liu Y-J, Yang J-Y, Nie Y-M, Lu C-H, Huang ED, Shin C-S, et al. A simple and direct reading flow meter fabricated by two-photon polymerization for microfluidic channel. Microfluid Nanofluid. 2015;18:427–31. https://doi.org/10.1007/s10404-014-1440-9.
Article
CAS
Google Scholar
Amato L, Gu Y, Bellini N, Eaton SM, Cerullo G, Osellame R. Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. Lab Chip. 2012;12:1135–42. https://doi.org/10.1039/c2lc21116e.
Article
CAS
PubMed
Google Scholar
Bragheri F, Martínez Vázquez R, Osellame R. Microfluidics. In: Three-Dimensional Microfabrication Using Two-Photon Polymerization. New York: Elsevier; 2020. p. 493–526.
Chapter
Google Scholar
Catarino SO, Rodrigues RO, Pinho D, Miranda JM, Minas G, Lima R. Blood cells separation and sorting techniques of passive microfluidic devices: from fabrication to applications. Micromachines (Basel). 2019. https://doi.org/10.3390/mi10090593.
Article
Google Scholar
Sima F, Sugioka K, Vázquez RM, Osellame R, Kelemen L, Ormos P. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics. 2018;7:613–34. https://doi.org/10.1515/nanoph-2017-0097.
Article
CAS
Google Scholar
Maruo S, Ikuta K, Korogi H. Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography. J Microelectromech Syst. 2003;12:533–9. https://doi.org/10.1109/JMEMS.2003.817894.
Article
Google Scholar
Maruo S, Ikuta K, Korogi H. Submicron manipulation tools driven by light in a liquid. Appl Phys Lett. 2003;82:133–5. https://doi.org/10.1063/1.1533853.
Article
CAS
Google Scholar
Barata D, Provaggi E, van Blitterswijk C, Habibovic P. Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell-material interactions. Lab Chip. 2017;17:4134–47. https://doi.org/10.1039/C7LC00802C.
Article
CAS
PubMed
Google Scholar
Chung BG, Choo J. Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis. 2010;31:3014–27. https://doi.org/10.1002/elps.201000137.
Article
CAS
PubMed
Google Scholar
Ben-Yakar A, Chronis N, Lu H. Microfluidics for the analysis of behavior, nerve regeneration, and neural cell biology in C. elegans. Curr Opin Neurobiol. 2009;19:561–7. https://doi.org/10.1016/j.conb.2009.10.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Y, Leong KW. Microfluidic platforms with nanoscale features. In: Microfluidic cell culture systems. New York: Elsevier; 2019. p. 65–90.
Chapter
Google Scholar
Sakurai Y, Hardy ET, Ahn B, Tran R, Fay ME, Ciciliano JC, et al. A microengineered vascularized bleeding model that integrates the principal components of hemostasis. Nat Commun. 2018;9:509. https://doi.org/10.1038/s41467-018-02990-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, et al. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci U S A. 2014;111:14430–5. https://doi.org/10.1073/pnas.1322917111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marino A, Tricinci O, Battaglini M, Filippeschi C, Mattoli V, Sinibaldi E, Ciofani G. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. Small. 2018. https://doi.org/10.1002/smll.201702959.
Article
PubMed
Google Scholar
Richter B, Pauloehrl T, Kaschke J, Fichtner D, Fischer J, Greiner AM, et al. Three-dimensional microscaffolds exhibiting spatially resolved surface chemistry. Adv Mater. 2013;25:6117–22. https://doi.org/10.1002/adma.201302678.
Article
CAS
PubMed
Google Scholar
Farrer RA, LaFratta CN, Li L, Praino J, Naughton MJ, Saleh BEA, et al. Selective functionalization of 3-D polymer microstructures. J Am Chem Soc. 2006;128:1796–7. https://doi.org/10.1021/ja0583620.
Article
CAS
PubMed
Google Scholar
Richter B, Hahn V, Bertels S, Claus TK, Wegener M, Delaittre G, et al. Guiding cell attachment in 3D microscaffolds selectively functionalized with two distinct adhesion proteins. Adv Mater. 2017. https://doi.org/10.1002/adma.201604342.
Article
PubMed
Google Scholar
Rekštyte S, Kaziulionyte E, Balciunas E, Kaskelyte D, Malinauskas M. Direct Laser Fabrication of Composite Material 3D Microstructured Scaffolds. JLMN. 2014;9:25–30. https://doi.org/10.2961/jlmn.2014.01.0006.
Article
CAS
Google Scholar
Klein F, Richter B, Striebel T, Franz CM, von Freymann G, Wegener M, Bastmeyer M. Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater. 2011;23:1341–5. https://doi.org/10.1002/adma.201004060.
Article
CAS
PubMed
Google Scholar
Rekštytė S, Paipulas D, Malinauskas M, Mizeikis V. Microactuation and sensing using reversible deformations of laser-written polymeric structures. Nanotechnology. 2017;28:124001. https://doi.org/10.1088/1361-6528/aa5d4d.
Article
CAS
PubMed
Google Scholar
Lamont AC, Restaino MA, Kim MJ, Sochol RD. A facile multi-material direct laser writing strategy. Lab Chip. 2019;19:2340–5. https://doi.org/10.1039/C9LC00398C.
Article
CAS
PubMed
Google Scholar
Wiesbauer M, Wollhofen R, Vasic B, Schilcher K, Jacak J, Klar TA. Nano-anchors with single protein capacity produced with STED lithography. Nano Lett. 2013;13:5672–8. https://doi.org/10.1021/nl4033523.
Article
CAS
PubMed
Google Scholar
Buchegger B, Kreutzer J, Axmann M, Mayr S, Wollhofen R, Plochberger B, et al. Proteins on supported lipid bilayers diffusing around proteins fixed on acrylate anchors. Anal Chem. 2018;90:12372–6. https://doi.org/10.1021/acs.analchem.8b02588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollhofen R, Axmann M, Freudenthaler P, Gabriel C, Röhrl C, Stangl H, et al. Multiphoton-Polymerized 3D Protein Assay. ACS Appl Mater Interfaces. 2018;10:1474–9. https://doi.org/10.1021/acsami.7b13183.
Article
CAS
PubMed
Google Scholar
Yun S-H, Sim E-H, Goh R-Y, Park J-I, Han J-Y. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016;2016:9060143. https://doi.org/10.1155/2016/9060143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wollhofen R, Buchegger B, Eder C, Jacak J, Kreutzer J, Klar TA. Functional photoresists for sub-diffraction stimulated emission depletion lithography. Opt Mater Express. 2017;7:2538. https://doi.org/10.1364/OME.7.002538.
Article
CAS
Google Scholar
Wolfesberger C, Wollhofen R, Buchegger B, Jacak J, Klar TA. Streptavidin functionalized polymer nanodots fabricated by visible light lithography. J Nanobiotechnol. 2015;13:27. https://doi.org/10.1186/s12951-015-0084-6.
Article
CAS
Google Scholar
Aponte-Santamaría C, Huck V, Posch S, Bronowska AK, Grässle S, Brehm MA, et al. Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions. Biophys J. 2015;108:2312–21. https://doi.org/10.1016/j.bpj.2015.03.041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt T, Schütz GJ, Gruber HJ, Schindler H. Local stoichiometries determined by counting individual molecules. Anal Chem. 1996;68:4397–401. https://doi.org/10.1021/ac960710g.
Article
CAS
Google Scholar
Brameshuber M, Weghuber J, Ruprecht V, Gombos I, Horváth I, Vigh L, et al. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane. J Biol Chem. 2010;285:41765–71. https://doi.org/10.1074/jbc.M110.182121.
Article
CAS
PubMed
PubMed Central
Google Scholar