Feynman RP. There’s plenty of room at the bottom. California Institute of Technology, Engineering and Science magazine. 1960;23(5):22–36.
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules. 2019;25:112. https://doi.org/10.3390/molecules25010112.
Article
CAS
PubMed Central
PubMed
Google Scholar
Murray CB, Kagan AC, Bawendi M. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci. 2000;30:545–610.
Article
CAS
Google Scholar
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108:2064–110.
Article
CAS
PubMed
Google Scholar
Ravanshad R, Karimi Zadeh A, Amani AM, Mousavi SM, Hashemi SA, Savar Dashtaki A, Mirzaei E, Zare B. Application of nanoparticles in cancer detection by Raman scattering based techniques. Nano Rev Exp. 2018;9:1373551. https://doi.org/10.1080/20022727.2017.1373551.
Article
CAS
PubMed
Google Scholar
Algebaly AS, Mohammed AE, Abutaha N, Elobeid MM. Biogenic synthesis of silver nanoparticles: antibacterial and cytotoxic potential. Saudi J Biol Sci. 2020;27:1340–51.
Article
CAS
PubMed
Google Scholar
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev. 2019;151–152:72–93.
Article
PubMed
Google Scholar
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact Mater. 2021;6:1973–87.
Article
CAS
PubMed
Google Scholar
Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ, Khar RK. Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert Opin Drug Deliv. 2010;7:927–42.
Article
CAS
PubMed
Google Scholar
Jat SK, Bhattacharya J, Sharma MK. Nanomaterial based gene delivery: a promising method for plant genome engineering. J Mater Chem B. 2020;8:4165–75.
Article
CAS
PubMed
Google Scholar
Kumar S, Diwan A, Singh P, Gulati S, Choudhary D, Mongia A, Shukla S, Gupta A. Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv. 2019;9:23894–907.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ravindran A, Chandran P, Khan SS. Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf, B. 2013;105:342–52.
Article
CAS
Google Scholar
Sarkar K, Banerjee SL, Kundu PP, Madras G, Chatterjee K. Biofunctionalized surface-modified silver nanoparticles for gene delivery. J Mater Chem B. 2015;3:5266–76.
Article
CAS
PubMed
Google Scholar
Shakil MS, Hasan M, Sarker SR. Iron oxide nanoparticles for breast cancer theranostics. Curr Drug Metab. 2019;20:446–56.
Article
CAS
PubMed
Google Scholar
Yonezawa T. Preparation of metal nanoparticles and their application for materials. In Nanoparticle Technology Handbook. Elsevier; 2018:829–37.
Kozielski KL, Tzeng SY, Green JJ. Bioengineered nanoparticles for siRNA delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5:449–68.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 2003;31:700–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zheng M, Librizzi D, Kilic A, Liu Y, Renz H, Merkel OM, Kissel T. Enhancing in vivo circulation and siRNA delivery with biodegradable polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol) copolymers. Biomaterials. 2012;33:6551–8.
Article
CAS
PubMed
Google Scholar
Merkel OM, Rubinstein I, Kissel T. siRNA delivery to the lung: what’s new? Adv Drug Deliv Rev. 2014;75:112–28.
Article
CAS
PubMed
Google Scholar
Ghosh SS, Gopinath P, Ramesh A. Adenoviral vectors: a promising tool for gene therapy. Appl Biochem Biotechnol. 2006;133:9–29.
Article
CAS
PubMed
Google Scholar
Mori T, Kiyono T, Imabayashi H, Takeda Y, Tsuchiya K, Miyoshi S, Makino H, Matsumoto K, Saito H, Ogawa S, Sakamoto M, Hata J, Umezawa A. Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential. Mol Cell Biol. 2005;25:5183–95.
Article
CAS
PubMed Central
PubMed
Google Scholar
Peng D, Qian C, Sun Y, Barajas MA, Prieto J. Transduction of hepatocellular carcinoma (HCC) using recombinant adeno-associated virus (rAAV): in vitro and in vivo effects of genotoxic agents. J Hepatol. 2000;32:975–85.
Article
CAS
PubMed
Google Scholar
Kaiser J. Clinical research. Death prompts a review of gene therapy vector. Science. 2007;317:580. https://doi.org/10.1126/science.317.5838.580.
Article
CAS
PubMed
Google Scholar
Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8:543–57.
Article
CAS
PubMed
Google Scholar
Rajasekhar A, Gimi B, Hu W. Applications of semiconductor fabrication methods to nanomedicine: a review of recent inventions and techniques. Recent Pat Nanomed. 2013;3(1):9–20.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wijesena RN, Tissera N, Kannangara YY, Lin Y, Amaratunga GA, de Silva KM. A method for top down preparation of chitosan nanoparticles and nanofibers. Carbohydr Polym. 2015;117:731–8.
Article
CAS
PubMed
Google Scholar
Lin G, Zhang H, Huang L. Smart polymeric nanoparticles for cancer gene delivery. Mol Pharm. 2015;12:314–21.
Article
PubMed
Google Scholar
Miller AD. Cationic liposome systems in gene therapy. IDrugs. 1998;1:574–83.
CAS
PubMed
Google Scholar
Aissaoui A, Oudrhiri N, Petit L, Hauchecorne M, Kan E, Sainlos M, Julia S, Navarro J, Vigneron JP, Lehn JM, Lehn P. Progress in gene delivery by cationic lipids: guanidinium-cholesterol-based systems as an example. Curr Drug Targets. 2002;3:1–16.
Article
CAS
PubMed
Google Scholar
Aissaoui A, Chami M, Hussein M, Miller AD. Efficient topical delivery of plasmid DNA to lung in vivo mediated by putative triggered, PEGylated pDNA nanoparticles. J Control Release. 2011;154:275–84.
Article
CAS
PubMed
Google Scholar
Wang H, Zhao P, Su W, Wang S, Liao Z, Niu R, Chang J. PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials. 2010;31:8741–8.
Article
CAS
PubMed
Google Scholar
Moreira JN, Santos A, Moura V, Pedroso de Lima MC, Simoes S. Non-viral lipid-based nanoparticles for targeted cancer systemic gene silencing. J Nanosci Nanotechnol. 2008;8:2187–204.
Article
CAS
PubMed
Google Scholar
Gomes-da-Silva LC, Fonseca NA, Moura V, Pedroso de Lima MC, Simoes S, Moreira JN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res. 2012;45:1163–71.
Article
CAS
PubMed
Google Scholar
Scheideler M, Vidakovic I, Prassl R. Lipid nanocarriers for microRNA delivery. Chem Phys Lipids. 2020;226: 104837. https://doi.org/10.1016/j.chemphyslip.2019.104837.
Article
CAS
PubMed
Google Scholar
Guevara ML, Persano F, Persano S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front Chem. 2020;8: 589959. https://doi.org/10.3389/fchem.2020.589959.
Article
CAS
PubMed Central
PubMed
Google Scholar
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev. 2020;159:344–63.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wan T, Niu D, Wu C, Xu F-J, Church G, Ping Y. Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook. Mater Today. 2019;26:40–66.
Article
CAS
Google Scholar
Noureddine A, Maestas-Olguin A, Saada EA, LaBauve AE, Agola JO, Baty KE, Howard T, Sabo JK, Espinoza CRS, Doudna JA, Schoeniger JS, Butler KS, Negrete OA, Brinker CJ, Serda RE. Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta Biomater. 2020;114:358–68.
Article
CAS
PubMed
Google Scholar
Kaczmarek JC, Patel AK, Kauffman KJ, Fenton OS, Webber MJ, Heartlein MW, DeRosa F, Anderson DG. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew Chem Int Ed Engl. 2016;55:13808–12.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sun D, Maeno H, Gujrati M, Schur R, Maeda A, Maeda T, Palczewski K, Lu ZR. Self-assembly of a multifunctional lipid with core-shell dendrimer DNA nanoparticles enhanced efficient gene delivery at low charge ratios into RPE cells. Macromol Biosci. 2015;15:1663–72.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ. A new type of synthetic peptide library for identifying ligand-binding activity. Nature. 1991;354:82–4.
Article
CAS
PubMed
Google Scholar
Luo S, Feng J, Xiao L, Guo L, Deng L, Du Z, Xue Y, Song X, Sun X, Zhang Z, Fu Y, Gong T. Targeting self-assembly peptide for inhibiting breast tumor progression and metastasis. Biomaterials. 2020;249: 120055. https://doi.org/10.1016/j.biomaterials.2020.120055 (Epub 2020 Apr 15).
Article
CAS
PubMed
Google Scholar
Veiman KL, Mager I, Ezzat K, Margus H, Lehto T, Langel K, Kurrikoff K, Arukuusk P, Suhorutsenko J, Padari K, Pooga M, Lehto T, Langel U. PepFect14 peptide vector for efficient gene delivery in cell cultures. Mol Pharm. 2013;10:199–210.
Article
CAS
PubMed
Google Scholar
Zarei H, Malaekeh-Nikouei B, Ramezani M, Soltani F. Multifunctional peptides based on low molecular weight protamine (LMWP) in the structure of polyplexes and lipopolyplexes: design, preparation and gene delivery characterization. J Drug Delivery Sci Technol. 2021. https://doi.org/10.1016/j.jddst.2021.102422.
Article
Google Scholar
Devulapally R, Paulmurugan R. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:40–60.
Article
CAS
PubMed
Google Scholar
Dusinska M, Magdolenova Z, Fjellsbo LM. Toxicological aspects for nanomaterial in humans. Methods Mol Biol. 2013;948:1–12.
Article
CAS
PubMed
Google Scholar
Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li CY, Wang HJ, Cao JM, Zhang J, Yu XQ. Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors. Eur J Med Chem. 2014;87:413–20.
Article
CAS
PubMed
Google Scholar
Witzigmann D, Wu D, Schenk SH, Balasubramanian V, Meier W, Huwyler J. Biocompatible polymer-Peptide hybrid-based DNA nanoparticles for gene delivery. ACS Appl Mater Interfaces. 2015;7:10446–56.
Article
CAS
PubMed
Google Scholar
Wang G, Zhou Z, Zhao Z, Li Q, Wu Y, Yan S, Shen Y, Huang P. Enzyme-triggered transcytosis of dendrimer-drug conjugate for deep penetration into pancreatic tumors. ACS Nano. 2020;14:4890–904.
Article
CAS
PubMed
Google Scholar
Li HJ, Liu J, Luo YL, Chen SB, Liu R, Du JZ, Wang J. Intratumor performance and therapeutic efficacy of PAMAM dendrimers carried by clustered nanoparticles. Nano Lett. 2019;19:8947–55.
Article
CAS
PubMed
Google Scholar
Liu C, Wan T, Wang H, Zhang S, Ping Y, Cheng Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5(6):eaaw8922. https://doi.org/10.1126/sciadv.aaw8922.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ghaffari M, Dehghan G, Baradaran B, Zarebkohan A, Mansoori B, Soleymani J, Ezzati Nazhad Dolatabadi J, Hamblin MR. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf B Biointerfaces. 2020;188:110762. https://doi.org/10.1016/j.colsurfb.2019.110762.
Article
CAS
PubMed
Google Scholar
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25(17):3982. https://doi.org/10.3390/molecules25173982.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nam HY, Nam K, Lee M, Kim SW, Bull DA. Dendrimer type bio-reducible polymer for efficient gene delivery. J Control Release. 2012;160:592–600.
Article
CAS
PubMed
Google Scholar
Kim H, Nam K, Nam JP, Kim HS, Kim YM, Joo WS, Kim SW. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs). J Control Release. 2015;220:222–8.
Article
CAS
PubMed
Google Scholar
Yu T, Liu X, Bolcato-Bellemin AL, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr JP, Peng L. An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed Engl. 2012;51:8478–84.
Article
CAS
PubMed
Google Scholar
Bae Y, Song SJ, Mun JY, Ko KS, Han J, Choi JS. Apoptin gene delivery by the functionalized polyamidoamine (PAMAM) dendrimer modified with ornithine induces cell death of HepG2 cells. Polymers (Basel). 2017;9(6):197. https://doi.org/10.3390/polym9060197.
Article
CAS
PubMed
Google Scholar
Navarro G, Pan J, Torchilin VP. Micelle-like nanoparticles as carriers for DNA and siRNA. Mol Pharm. 2015;12:301–13.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11:4985–98.
Article
PubMed Central
PubMed
Google Scholar
Yoshinaga N, Uchida S, Dirisala A, Naito M, Koji K, Osada K, Cabral H, Kataoka K. Bridging mRNA and polycation using RNA oligonucleotide derivatives improves the robustness of polyplex micelles for efficient mRNA delivery. Adv Healthc Mater. 2022;11:2102016.
Article
CAS
Google Scholar
Chang CC, Tsou HK, Chang HH, Chan LY, Zhuo GY, Maeda T, Lin CY. Runx1 messenger RNA delivered by polyplex nanomicelles alleviate spinal disc hydration loss in a rat disc degeneration model. Int J Mol Sci. 2022;23:565.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B. 2019;9:381–96.
Article
PubMed
Google Scholar
Yao JJ, Du YZ, Yuan H, You J, Hu FQ. Efficient gene delivery system mediated by cis-aconitate-modified chitosan-g-stearic acid micelles. Int J Nanomedicine. 2014;9:2993.
PubMed Central
PubMed
Google Scholar
Peng LH, Niu J, Zhang CZ, Yu W, Wu JH, Shan YH, Wang XR, Shen YQ, Mao ZW, Liang WQ, Gao JQ. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials. 2014;35:5605–18.
Article
CAS
PubMed
Google Scholar
Bao Z, Lan CQ. Advances in biosynthesis of noble metal nanoparticles mediated by photosynthetic organisms-a review. Colloids Surf B Biointerfaces. 2019;184: 110519. https://doi.org/10.1016/j.colsurfb.2019.110519.
Article
CAS
PubMed
Google Scholar
Kumar H, Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle: a review. Biomedical J Sci Tech Res. 2018;4:3765–75.
Google Scholar
Hasan S. A review on nanoparticles: their synthesis and types. Res J Recent Sci. 2015;2277:2502.
Google Scholar
Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater. 2004;3:482–8.
Article
CAS
PubMed
Google Scholar
Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010;363:2434–43.
Article
CAS
PubMed
Google Scholar
Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006;83:132–40.
Article
CAS
Google Scholar
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Coll Interface Sci. 2010;156:1–13.
Article
CAS
Google Scholar
Rao CR, Kulkarni GU, Thomas PJ, Edwards PP. Metal nanoparticles and their assemblies. Chem Soc Rev. 2000;29:27–35.
Article
CAS
Google Scholar
Fedlheim DL, Foss CA. Metal nanoparticles: synthesis, characterization, and applications. CRC Press; 2001.
Book
Google Scholar
Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T. General method of synthesis for metal nanoparticles. J Nanopart Res. 2004;6:411–4.
Article
CAS
Google Scholar
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J Drug Delivery Sci Technol. 2019;53: 101174. https://doi.org/10.1016/j.jddst.2019.101174.
Article
CAS
Google Scholar
Thakur PK, Verma V. A review on green synthesis, characterization and anticancer application of metallic nanoparticles. Appl Biochem Biotechnol. 2021;193:2357–78.
Article
CAS
PubMed
Google Scholar
Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE. Characterization of nanoparticles for therapeutics. 2007;2(6):789–803.
Kumar A, Dixit CK. 3—methods for characterization of nanoparticles. In: Nimesh S, Chandra R, Gupta N, editors. Advances in nanomedicine for the delivery of therapeutic nucleic acids. Woodhead Publishing: Cambridge; 2017. p. 43–58. https://doi.org/10.1016/B978-0-08-100557-6.00003-1.
Chapter
Google Scholar
He Q, Wu Q, Feng X, Liao Z, Peng W, Liu Y, Peng D, Liu Z, Mo M. Interfacing DNA with nanoparticles: surface science and its applications in biosensing. Int J Biol Macromol. 2020;151:757–80.
Article
CAS
PubMed
Google Scholar
Amhare AF, Lei J, Deng H, Lv Y, Han J, Zhang L. Biomedical application of chondroitin sulfate with nanoparticles in drug delivery systems: systematic review. J Drug Target. 2020;29:1–10.
Google Scholar
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20:101–24.
Article
CAS
PubMed
Google Scholar
Liu Y, Li K, Liu B, Feng SS. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials. 2010;31:9145–55.
Article
CAS
PubMed
Google Scholar
Patil V, Patel A. Biodegradable nanoparticles: a recent approach and applications. Curr Drug Targets. 2020;21:1722–32.
Article
CAS
PubMed
Google Scholar
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116:2602–63.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gao W, Zhang L. Coating nanoparticles with cell membranes for targeted drug delivery. J Drug Target. 2015;23:619–26.
Article
CAS
PubMed
Google Scholar
Klębowski B, Depciuch J, Parlińska-Wojtan M, Baran J. Applications of noble metal-based nanoparticles in medicine. Int J Mol Sci. 2018;19(12):4031. https://doi.org/10.3390/ijms19124031.
Article
PubMed Central
PubMed
Google Scholar
Bhattacharya R, Patra CR, Earl A, Wang S, Katarya A, Lu L, Kizhakkedathu JN, Yaszemski MJ, Greipp PR, Mukhopadhyay D. Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine Nanotechnol Biol Med. 2007;3:224–38.
Article
CAS
Google Scholar
Cui T, Liang J-J, Chen H, Geng D-D, Jiao L, Yang J-Y, Qian H, Zhang C, Ding Y. Performance of doxorubicin-conjugated gold nanoparticles: regulation of drug location. ACS Appl Mater Interfaces. 2017;9:8569–80.
Article
CAS
PubMed
Google Scholar
Auria-Soro C, Nesma T, Juanes-Velasco P, Landeira-Vinuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of nanoparticles and biosystems: microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials (Basel). 2019;9(10):1365. https://doi.org/10.3390/nano9101365.
Article
CAS
PubMed
Google Scholar
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25:2193. https://doi.org/10.3390/molecules25092193.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics. 2018;8:3038–58.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jahan ST, Sadat SMA, Walliser M, Haddadi A. Targeted therapeutic nanoparticles: an immense promise to fight against cancer. J Drug Deliv. 2017;2017:9090325. https://doi.org/10.1155/2017/9090325 (Epub 2017 Dec 31).
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen M, Chen M, He J. Cancer cell membrane cloaking nanoparticles for targeted co-delivery of doxorubicin and PD-L1 siRNA. Artif Cells Nanomed Biotechnol. 2019;47:1635–41.
Article
CAS
PubMed
Google Scholar
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.
Article
CAS
PubMed
Google Scholar
Lee C-M, Jang D, Kim J, Cheong S-J, Kim E-M, Jeong M-H, Kim S-H, Kim DW, Lim ST, Sohn M-H. Oleyl-chitosan nanoparticles based on a dual probe for optical/MR imaging in vivo. Bioconjug Chem. 2011;22:186–92.
Article
CAS
PubMed
Google Scholar
Anarjan FS. Active targeting drug delivery nanocarriers: ligands. Nano-Structures Nano-Objects. 2019;19: 100370. https://doi.org/10.1016/j.nanoso.2019.100370.
Article
CAS
Google Scholar
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71:1185–98.
Article
CAS
PubMed
Google Scholar
Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62:90–9.
Article
CAS
PubMed
Google Scholar
Mussi SV, Torchilin VP. Recent trends in the use of lipidic nanoparticles as pharmaceutical carriers for cancer therapy and diagnostics. J Mater Chem B. 2013;1:5201–9.
Article
CAS
PubMed
Google Scholar
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297–315.
CAS
PubMed Central
PubMed
Google Scholar
Lin Y-S, Lee M-Y, Yang C-H, Huang K-S. Active targeted drug delivery for microbes using nano-carriers. Curr Top Med Chem. 2015;15:1525–31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, Moeckel D, Hermanns-Sachweh B, Pechar M, Ulbrich K, Hennink WE. Passive versus active tumor targeting using RGD-and NGR-modified polymeric nanomedicines. Nano Lett. 2014;14:972–81.
Article
CAS
PubMed Central
PubMed
Google Scholar
Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev. 2012;41:2943–70.
Article
CAS
PubMed Central
PubMed
Google Scholar
Akhter S, Zaki Ahmad M, Singh A, Ahmad I, Rahman M, Anwar M, Kumar Jain G, Jalees Ahmad F, Krishen KR. Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des. 2011;17:1834–50.
Article
CAS
PubMed
Google Scholar
Sangiliy G, Kyung J, Kalimuthu K, Sardarpasha S, Vaidyanathan R, Eom S. Antiangiogenic properties of silver nanoparticle. Biomaterials. 2009;30:6341–50.
Article
Google Scholar
Maiti S, Sen KK. Advanced technology for delivering therapeutics. BoD Books on Demand. 2017. https://doi.org/10.5772/65245.
Article
Google Scholar
Riley MK, Vermerris W. Recent advances in nanomaterials for gene delivery—a review. Nanomaterials (Basel). 2017;7(5):94. https://doi.org/10.3390/nano7050094.
Article
CAS
PubMed
Google Scholar
Chen XJ, Sanchez-Gaytan BL, Qian Z, Park SJ. Noble metal nanoparticles in DNA detection and delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:273–90.
Article
CAS
PubMed
Google Scholar
Witlox MA, Lamfers ML, Wuisman PI, Curiel DT, Siegal GP. Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone. 2007;40:797–812.
Article
CAS
PubMed
Google Scholar
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15:541–55.
Article
CAS
PubMed
Google Scholar
Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 2009;11:671–81.
Article
CAS
PubMed Central
PubMed
Google Scholar
Remant Bahadur KC, Thapa B, Bhattarai N. Gold nanoparticle-based gene delivery: promises and challenges. Nanotechnol Rev. 2014;3:269–80.
Google Scholar
Ma K, Mi CL, Cao XX, Wang TY. Progress of cationic gene delivery reagents for non-viral vector. Appl Microbiol Biotechnol. 2021;105:525–38.
Article
PubMed
Google Scholar
Artiga A, Serrano-Sevilla I, De Matteis L, Mitchell SG, de la Fuente JM. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B. 2019;7:876–96.
Article
CAS
PubMed
Google Scholar
Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014;22:1075–83.
Article
CAS
PubMed Central
PubMed
Google Scholar
Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci. 2003;100:9138–43.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ghosh PS, Kim C-K, Han G, Forbes NS, Rotello VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano. 2008;2:2213–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Elbakry A, Zaky A, Liebl R, Rachel R, Goepferich A, Breunig M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009;9:2059–64.
Article
CAS
PubMed
Google Scholar
Niu J, Chu Y, Huang YF, Chong YS, Jiang ZH, Mao ZW, Peng LH, Gao JQ. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl Mater Interfaces. 2017;9:9388–401.
Article
CAS
PubMed
Google Scholar
Ramalingam V. Multifunctionality of gold nanoparticles: plausible and convincing properties. Adv Colloid Interface Sci. 2019;271: 101989. https://doi.org/10.1016/j.cis.2019.101989 (Epub 2019 Jul 12).
Article
CAS
PubMed
Google Scholar
Yu S, Zhou Y, Sun Y, Wu S, Xu T, Chang YC, Bi S, Jiang LP, Zhu JJ. Endogenous mRNA triggered DNA-Au nanomachine for in situ imaging and targeted multimodal synergistic cancer therapy. Angew Chem Int Ed Engl. 2021;60:5948–58.
Article
CAS
PubMed
Google Scholar
Beha MJ, Ryu JS, Kim YS, Chung HJ. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. Mater Sci Eng C Mater Biol Appl. 2021;126:112167. https://doi.org/10.1016/j.msec.2021.112167.
Article
CAS
PubMed
Google Scholar
Yasser Hamdi Nor Azlan A, Katas H, Mohamad Zin N, Fauzi Mh Busra M. Dual action gels containing DsiRNA loaded gold nanoparticles: augmenting diabetic wound healing by promoting angiogenesis and inhibiting infection. Eur J Pharm Biopharm. 2021. https://doi.org/10.1016/j.ejpb.2021.09.007.
Article
Google Scholar
Nor Azlan AYH, Katas H, Mohamad Zin N, Fauzi MB. Dual action gels containing DsiRNA loaded gold nanoparticles: augmenting diabetic wound healing by promoting angiogenesis and inhibiting infection. Eur J Pharm Biopharm. 2021;169:78–90.
Article
CAS
PubMed
Google Scholar
Kumar A, Zhang X, Liang X-J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31:593–606.
Article
CAS
PubMed
Google Scholar
Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. 2017;109:84–101.
Article
CAS
PubMed
Google Scholar
Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang PC. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano. 2012;6:4483–93.
Article
CAS
PubMed Central
PubMed
Google Scholar
Evans ER, Bugga P, Asthana V, Drezek R. Metallic nanoparticles for cancer immunotherapy. Mater Today. 2018;21:673–85.
Article
CAS
Google Scholar
Lizundia E, Goikuria U, Vilas JL, Cristofaro F, Bruni G, Fortunati E, Armentano I, Visai L, Torre L. Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromol. 2018;19:2618–28.
Article
CAS
Google Scholar
De Matteis V, Cascione M, Toma CC, Leporatti S. Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials (Basel). 2018;8(5):319. https://doi.org/10.3390/nano8050319.
Article
CAS
PubMed
Google Scholar
Kievit FM, Zhang M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res. 2011;44:853–62.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett. 2013;13:1059–64.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kamalzare S, Noormohammadi Z, Rahimi P, Atyabi F, Irani S, Tekie FSM, Mottaghitalab F. Carboxymethyl dextran-trimethyl chitosan coated superparamagnetic iron oxide nanoparticles: an effective siRNA delivery system for HIV-1 Nef. J Cell Physiol. 2019;234:20554–65.
Article
CAS
PubMed
Google Scholar
Williams JP, Southern P, Lissina A, Christian HC, Sewell AK, Phillips R, Pankhurst Q, Frater J. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. Int J Nanomedicine. 2013;8:2543–54.
Article
PubMed Central
PubMed
Google Scholar
Al-Deen FN, Ho J, Selomulya C, Ma C, Coppel R. Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir. 2011;27:3703–12.
Article
CAS
PubMed
Google Scholar
Qi L, Wu L, Zheng S, Wang Y, Fu H, Cui D. Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of siRNA. Biomacromol. 2012;13:2723–30.
Article
CAS
Google Scholar
Dowaidar M, Nasser Abdelhamid H, Hallbrink M, Langel U, Zou X. Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. J Biomater Appl. 2018;33:392–401.
Article
CAS
PubMed
Google Scholar
Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev. 2011;63:1300–31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. Int J Mol Sci. 2011;12:3705–22.
Article
CAS
PubMed Central
PubMed
Google Scholar
Takahashi H, Niidome T, Nariai A, Niidome Y, Yamada S. Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology. 2006;17:4431–5.
Article
CAS
Google Scholar
Aigner A, Kögel D. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Nanomedicine. 2018;13:89–103.
Article
CAS
PubMed
Google Scholar
Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine. 2017;12:2533–54.
Article
PubMed
Google Scholar
Mirzaei S, Gholami MH, Ang HL, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Delfi M, Khan H, Ashrafizadeh M. Pre-clinical and clinical applications of small interfering rnas (Sirna) and co-delivery systems for pancreatic cancer therapy. Cells. 2021;10:3348. https://doi.org/10.3390/cells10123348.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hamzian N, Hashemi M, Ghorbani M, Aledavood SA, Ramezani M, Toosi MHB. In-vitro study of multifunctional plga-spion nanoparticles loaded with gemcitabine as radiosensitizer used in radiotherapy. Iran J Pharm Res IJPR. 2019;18:1694–703.
CAS
PubMed
Google Scholar
Vines JB, Yoon J-H, Ryu N-E, Lim D-J, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem. 2019;7:167. https://doi.org/10.3389/fchem.2019.00167.
Article
CAS
PubMed Central
PubMed
Google Scholar
Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. Int J Pharm. 2016;513:648–58.
Article
CAS
PubMed
Google Scholar
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother. 2019;109:1100–11.
Article
CAS
PubMed
Google Scholar
Yang Y, Yu C. Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine. 2016;12:317–32.
Article
CAS
PubMed
Google Scholar
Ways TMM, Ng KW, Lau WM, Khutoryanskiy VV. Silica nanoparticles in transmucosal drug delivery. Pharmaceutics. 2020;12(8):751. https://doi.org/10.3390/pharmaceutics12080751.
Article
CAS
Google Scholar
Montalvo-Quiros S, Gomez-Grana S, Vallet-Regi M, Prados-Rosales RC, Gonzalez B, Luque-Garcia JL. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. Colloids Surf B Biointerfaces. 2021;197: 111405. https://doi.org/10.1016/j.colsurfb.2020.111405.
Article
CAS
PubMed
Google Scholar
Juneja R, Vadarevu H, Halman J, Tarannum M, Rackley L, Dobbs J, Marquez J, Chandler M, Afonin K, Vivero-Escoto JL. Combination of nucleic acid and mesoporous silica nanoparticles: optimization and therapeutic performance in vitro. ACS Appl Mater Interfaces. 2020;12:38873–86.
Article
CAS
PubMed Central
PubMed
Google Scholar
McCall J, Smith JJ, Marquardt KN, Knight KR, Bane H, Barber A, DeLong RK. ZnO nanoparticles protect RNA from degradation better than DNA. Nanomaterials (Basel). 2017;7(11):378. https://doi.org/10.3390/nano7110378.
Article
CAS
PubMed Central
PubMed
Google Scholar
Khader A, Arinzeh TL. Biodegradable zinc oxide composite scaffolds promote osteochondral differentiation of mesenchymal stem cells. Biotechnol Bioeng. 2020;117:194–209.
Article
CAS
PubMed
Google Scholar
Deng Y, Zhang H. The synergistic effect and mechanism of doxorubicin-ZnO nanocomplexes as a multimodal agent integrating diverse anticancer therapeutics. Int J Nanomedicine. 2013;8:1835–41.
PubMed Central
PubMed
Google Scholar
Shanmugam NR, Muthukumar S, Prasad S. A review on ZnO-based electrical biosensors for cardiac biomarker detection. Future Sci OA. 2017;3(4):FSO196. https://doi.org/10.4155/fsoa-2017-0006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Danielson E, Dhamodharan V, Porkovich A, Kumar P, Jian N, Ziadi Z, Grammatikopoulos P, Sontakke VA, Yokobayashi Y, Sowwan M. Gas-Phase synthesis for label-free biosensors: zinc-oxide nanowires functionalized with gold nanoparticles. Sci Rep. 2019;9(1):17370. https://doi.org/10.1038/s41598-019-53960-2.
Article
CAS
PubMed Central
PubMed
Google Scholar
Moon SH, Choi WJ, Choi SW, Kim EH, Kim J, Lee JO, Kim SH. Anti-cancer activity of ZnO chips by sustained zinc ion release. Toxicol Rep. 2016;3:430–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yin PT, Pongkulapa T, Cho HY, Han J, Pasquale NJ, Rabie H, Kim JH, Choi JW, Lee KB. Overcoming chemoresistance in cancer via combined MicroRNA therapeutics with anticancer drugs using multifunctional magnetic core-shell nanoparticles. ACS Appl Mater Interfaces. 2018;10:26954–63.
Article
CAS
PubMed
Google Scholar
Chen M, Tang Y, Wang T, Long Q, Zeng Z, Chen H, Feng X. Enhanced gene delivery of low molecular weight PEI by flower-like ZnO microparticles. Mater Sci Eng C Mater Biol Appl. 2016;69:1367–72.
Article
CAS
PubMed
Google Scholar
Kalinowska-Lis U, Szewczyk EM, Checinska L, Wojciechowski JM, Wolf WM, Ochocki J. Synthesis, characterization, and antimicrobial activity of silver(I) and copper(II) complexes of phosphate derivatives of pyridine and benzimidazole. ChemMedChem. 2014;9:169–76.
Article
CAS
PubMed
Google Scholar
Oussou-Azo AF, Nakama T, Nakamura M, Futagami T, Vestergaard MCM. Antifungal potential of nanostructured crystalline copper and its oxide forms. Nanomaterials (Basel). 2020;10(5):1003. https://doi.org/10.3390/nano10051003.
Article
CAS
PubMed
Google Scholar
Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 2020;14:1–13.
Article
PubMed
Google Scholar
Singh J, Kaur G, Rawat M. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J Bioelectron Nanotechnol. 2016;1(1):9. https://doi.org/10.13188/2475-224X.1000003.
Article
Google Scholar
Wu D, Wang W, He X, Jiang M, Lai C, Hu X, Xi J, Wang M. Biofabrication of nano copper oxide and its aptamer bioconjugate for delivery of mRNA 29b to lung cancer cells. Mater Sci Eng C Mater Biol Appl. 2019;97:827–32.
Article
CAS
PubMed
Google Scholar
Mohamed EA. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon. 2020;6: e03123. https://doi.org/10.1016/j.heliyon.2019.e03123.
Article
PubMed Central
PubMed
Google Scholar
Abbasi A. Chapter 7—TiO2-based nanocarriers for drug delivery. Amsterdam: Elsevier; 2019. https://doi.org/10.1016/B978-0-12-814033-8.00007-2.
Book
Google Scholar
Gupta B, Ruttala HB, Poudel BK, Pathak S, Regmi S, Gautam M, Poudel K, Sung MH, Ou W, Jin SG, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Polyamino acid layer-by-layer (LbL) constructed silica-supported mesoporous titania nanocarriers for stimuli-responsive delivery of microRNA 708 and paclitaxel for combined chemotherapy. ACS Appl Mater Interfaces. 2018;10:24392–405.
Article
CAS
PubMed
Google Scholar
Tinggi U. Selenium: its role as antioxidant in human health. Environ Health Prev Med. 2008;13:102–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ikram M, Javed B, Raja NI, Mashwani ZU. Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. Int J Nanomedicine. 2021;16:249–68.
Article
PubMed Central
PubMed
Google Scholar
Wang C, Xia Y, Huo S, Shou D, Mei Q, Tang W, Li Y, Liu H, Zhou Y, Zhu B. Silencing of MEF2D by siRNA loaded selenium nanoparticles for ovarian cancer therapy. Int J Nanomedicine. 2020;15:9759–70.
Article
CAS
PubMed Central
PubMed
Google Scholar
Xia Y, Guo M, Xu T, Li Y, Wang C, Lin Z, Zhao M, Zhu B. siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy. Int J Nanomedicine. 2018;13:1539–52.
Article
CAS
PubMed Central
PubMed
Google Scholar
Phan TTV, Huynh TC, Manivasagan P, Mondal S, Oh J. An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials (Basel). 2019;10(1):66. https://doi.org/10.3390/nano10010066.
Article
CAS
PubMed
Google Scholar
Saldan I, Semenyuk Y, Marchuk I, Reshetnyak O. Chemical synthesis and application of palladium nanoparticles. J Mater Sci. 2015;50:2337–54.
Article
CAS
Google Scholar
Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures. Chem Mater. 1998;10:594–600.
Article
CAS
Google Scholar
Kang S, Shin W, Kang K, Choi MH, Kim YJ, Kim YK, Min DH, Jang H. Revisiting of Pd nanoparticles in cancer treatment: all-round excellence of porous pd nanoplates in gene-thermo combinational therapy. ACS Appl Mater Interfaces. 2018;10:13819–28.
Article
CAS
PubMed
Google Scholar
Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012;7:4391–408.
CAS
PubMed Central
PubMed
Google Scholar
Yamagishi Y, Watari A, Hayata Y, Li X, Kondoh M, Yoshioka Y, Tsutsumi Y, Yagi K. Acute and chronic nephrotoxicity of platinum nanoparticles in mice. Nanoscale Res Lett. 2013;8:395. https://doi.org/10.1186/1556-276X-8-395.
Article
CAS
PubMed Central
PubMed
Google Scholar
Johnstone TC, Park GY, Lippard SJ. Understanding and improving platinum anticancer drugs–phenanthriplatin. Anticancer Res. 2014;34:471–6.
CAS
PubMed Central
PubMed
Google Scholar
Sun C-Y, Qin C, Wang X-L, Su Z-M. Metal-organic frameworks as potential drug delivery systems. Expert Opin Drug Deliv. 2013;10:89–101.
Article
PubMed
Google Scholar
Wang S, Chen Y, Wang S, Li P, Mirkin CA, Farha OK. DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins. J Am Chem Soc. 2019;141:2215–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Vikrant K, Kumar V, Kim K-H, Kukkar D. Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. J Mater Chem A. 2017;5:22877–96.
Article
CAS
Google Scholar
Abdelhamid HN, Dowaidar M, Hällbrink M, Langel Ü. Gene delivery using cell penetrating peptides-zeolitic imidazolate frameworks. Microporous Mesoporous Mater. 2020;300: 110173. https://doi.org/10.1016/j.micromeso.2020.110173.
Article
CAS
Google Scholar
Liu B, Jiang M, Zhu D, Zhang J, Wei G. Metal-organic frameworks functionalized with nucleic acids and amino acids for structure-and function-specific applications: a tutorial review. Chem Eng J. 2022;428: 131118. https://doi.org/10.1016/j.cej.2021.131118.
Article
CAS
Google Scholar
Zhuang J, Gong H, Zhou J, Zhang Q, Gao W, Fang RH, Zhang L. Targeted gene silencing in vivo by platelet membrane–coated metal-organic framework nanoparticles. Sci Adv. 2020;6(13):eaaz6108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhao H, Li T, Yao C, Gu Z, Liu C, Li J, Yang D. Dual roles of metal–organic frameworks as nanocarriers for miRNA delivery and adjuvants for chemodynamic therapy. ACS Appl Mater Interfaces. 2021;202113(5):6034–42.
Article
Google Scholar
Wang H, Chen Y, Wang H, Liu X, Zhou X, Wang F. DNAzyme-loaded metal–organic frameworks (MOFs) for self-sufficient gene therapy. Angew Chem Int Ed Engl. 2019;131(22):7458–62.
Article
Google Scholar
Hidalgo T, Alonso-Nocelo M, Bouzo BL, Reimondez-Troitiño S, Abuin-Redondo C, de la Fuente MDLF, Horcajada P. Biocompatible iron (III) carboxylate metal–organic frameworks as promising RNA nanocarriers. Nanoscale. 2020;12(8):4839–45.
Article
CAS
PubMed
Google Scholar
Guo L, Zhong S, Liu P, Guo M, Ding J, Zhou W. Radicals scavenging MOFs enabling targeting delivery of siRNA for rheumatoid arthritis therapy. Small. 2022;18:2202604.
Article
CAS
Google Scholar
He X, Luo Q, Zhang J, Chen P, Wang H-J, Luo K, Yu X-Q. Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale. 2019;11:12973–82.
Article
CAS
PubMed
Google Scholar
Li Z, Tao Y, Huang S, Gao N, Ren J, Qu X. Lanthanide-based hollow mesoporous nanoparticles: a novel multifunctional platform for simultaneous gene delivery and cell imaging. Chem Commun. 2013;49:7129–31.
Article
CAS
Google Scholar
Hasanzadeh A, Radmanesh F, Hosseini ES, Hashemzadeh I, Kiani J, Nourizadeh H, Naseri M, Fatahi Y, Chegini F, Madjd Z. Highly photoluminescent nitrogen-and zinc-doped carbon dots for efficient delivery of CRISPR/Cas9 and mRNA. Bioconjug Chem. 2021;32:1875–87.
Article
CAS
PubMed
Google Scholar
Li Z, Ye E, Lakshminarayanan R, Loh XJ. Recent advances of using hybrid nanocarriers in remotely controlled therapeutic delivery. Small. 2016;12:4782–806.
Article
CAS
PubMed
Google Scholar
Feng J, Yu W, Xu Z, Hu J, Liu J, Wang F. Multifunctional siRNA-laden hybrid nanoplatform for noninvasive PA/IR dual-modal imaging-guided enhanced photogenetherapy. ACS Appl Mater Interfaces. 2020;12:22613–23.
Article
CAS
PubMed
Google Scholar
Madni A, Tahir N, Rehman M, Raza A, Mahmood MA, Khan MI, Kashif PM. Hybrid Nano-carriers for potential drug delivery. Advanced technology for delivering therapeutics. 2017;53–87. https://doi.org/10.5772/66466.
Zohrabi T, Hosseinkhani S. Ternary nanocomplexes of metallic nanoclusters and recombinant peptides for fluorescence imaging and enhanced gene delivery. Mol Biotechnol. 2020;62:495–507.
Article
CAS
PubMed
Google Scholar
Anastassacos FM, Zhao Z, Zeng Y, Shih WM. Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. J Am Chem Soc. 2020;142:3311–5.
Article
CAS
PubMed
Google Scholar
Stephanopoulos N. Strategies for stabilizing DNA nanostructures to biological conditions. ChemBioChem. 2019;20:2191–7.
Article
CAS
PubMed
Google Scholar
Ramakrishnan S, Ijäs H, Linko V, Keller A. Structural stability of DNA origami nanostructures under application-specific conditions. Comput Struct Biotechnol J. 2018;16:342–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Abu-Salah KM, Zourob MM, Mouffouk F, Alrokayan SA, Alaamery MA, Ansari AA. DNA-based nanobiosensors as an emerging platform for detection of disease. Sensors. 2015;15:14539–68.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liu X, Xu Y, Yu T, Clifford C, Liu Y, Yan H, Chang Y. A DNA nanostructure platform for directed assembly of synthetic vaccines. Nano Lett. 2012;12:4254–9.
Article
CAS
PubMed
Google Scholar
Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han J-Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol. 2018;36:258–64.
Article
CAS
PubMed
Google Scholar
Ryu Y, Am Hong C, Song Y, Beak J, Am Seo B, Lee J-J, Kim H-S. Modular protein–DNA hybrid nanostructures as a drug delivery platform. Nanoscale. 2020;12:4975–81.
Article
CAS
PubMed
Google Scholar
Zhang Y, Ma W, Zhu Y, Shi S, Li Q, Mao C, Zhao D, Zhan Y, Shi J, Li W. Inhibiting methicillin-resistant Staphylococcus aureus by tetrahedral DNA nanostructure-enabled antisense peptide nucleic acid delivery. Nano Lett. 2018;18:5652–9.
Article
CAS
PubMed
Google Scholar