Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: a review. Microb pathog. 2020;142: 104095.
Article
CAS
Google Scholar
Omotayo OP, Omotayo AO, Mwanza M, Babalola OO. Prevalence of mycotoxins and their consequences on human health. Toxicol Res. 2019;35:1–7.
Article
CAS
Google Scholar
Zheng Y-T, Zhao B-S, Zhang H-B, Jia H, Wu M. Colorimetric aptasensor for fumonisin B1 detection by regulating the amount of bubbles in closed bipolar platform. J Electroanal Chem. 2020;877: 114584.
Article
CAS
Google Scholar
Wan J, Chen B, Rao J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr Rev Food Sci Food Saf. 2020;19:928–53.
Article
Google Scholar
Zangheri M, Di Nardo F, Anfossi L, Giovannoli C, Baggiani C, Roda A, Mirasoli M. A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst. 2015;140:358–65.
Article
CAS
Google Scholar
Yu Y, Li Y, Zhang Q, Zha Y, Lu S, Yang Y, Li P, Zhou Y. Colorimetric immunoassay via smartphone based on Mn2+ Mediated aggregation of AuNPs for convenient detection of fumonisin B1. Food Control. 2022;132: 108481.
Article
CAS
Google Scholar
Mirón-Mérida VA, Gong YY, Goycoolea FM. Aptamer-based detection of fumonisin B1: a critical review. Anal Chim Acta. 2021;1160: 338395.
Article
Google Scholar
Shephard G, Sewram V. Determination of the mycotoxin fumonisin B1 in maize by reversed-phase thin-layer chromatography: a collaborative study. Food Addit Contam. 2004;21:498–505.
Article
CAS
Google Scholar
Zou L, Xu Y, Li Y, He Q, Chen B, Wang D. Development of a single-chain variable fragment antibody-based enzyme-linked immunosorbent assay for determination of fumonisin B1 in corn samples. J Sci Food Agric. 2014;94:1865–71.
Article
CAS
Google Scholar
Gazzotti T, Lugoboni B, Zironi E, Barbarossa A, Serraino A, Pagliuca G. Determination of fumonisin B1 in bovine milk by LC–MS/MS. Food Control. 2009;20:1171–4.
Article
CAS
Google Scholar
Ekwomadu TI, Dada TA, Akinola SA, Nleya N, Mwanza M. Analysis of selected mycotoxins in maize from north-west South Africa using high performance liquid chromatography (HPLC) and other analytical techniques. Separations. 2021;8:143.
Article
CAS
Google Scholar
Zheng Y, Shi Z, Wu W, He C, Zhang H. Label-free DNA electrochemical aptasensor for fumonisin B 1 detection in maize based on graphene and gold nanocomposite. J Anal Chem. 2021;76:252–7.
Article
Google Scholar
Vafaye SE, Rahman A, Safaeian S, Adabi M. An electrochemical aptasensor based on electrospun carbon nanofiber mat and gold nanoparticles for the sensitive detection of Penicillin in milk. J Food Meas Charact. 2021;15:876–82.
Article
Google Scholar
Rahmani HR, Adabi M, Bagheri KP, Karim G. Development of electrochemical aptasensor based on gold nanoparticles and electrospun carbon nanofibers for the detection of aflatoxin M1 in milk. J Food Meas Charact. 2021;15:1826–33.
Article
Google Scholar
Schmitz FRW, Valério A, de Oliveira D, Hotza D. An overview and future prospects on aptamers for food safety. Appl Microbiol Biotechnol. 2020;104:6929–39.
Article
CAS
Google Scholar
McKeague M, Bradley CR, Girolamo AD, Visconti A, Miller JD, DeRosa MC. Screening and initial binding assessment of fumonisin B1 aptamers. Int J Mol Sci. 2010;11:4864–81.
Article
CAS
Google Scholar
Yue S, Jie X, Wei L, Bin C, Dou Dou W, Yi Y, QingXia L, JianLin L, TieSong Z. Simultaneous detection of ochratoxin A and fumonisin B1 in cereal samples using an aptamer–photonic crystal encoded suspension Array. Anal Chem. 2014;86:11797–802.
Article
CAS
Google Scholar
Xiong Y, Li W, Wen Q, Xu D, Ren J, Lin Q. Aptamer-engineered nanomaterials to aid in mycotoxin determination. Food Control. 2022;35: 108661.
Article
Google Scholar
Adabi M, Esnaashari SS, Adabi M. An electrochemical immunosensor based on electrospun carbon nanofiber mat decorated with gold nanoparticles and carbon nanotubes for the detection of breast cancer. J Porous Mater. 2021;28:415–21.
Article
CAS
Google Scholar
Ebrahimi Vafaye S, Rahman A, Safaeian S, Adabi M. An electrochemical aptasensor based on electrospun carbon nanofiber mat and gold nanoparticles for the sensitive detection of Penicillin in milk. J Food Meas Charact. 2021;15:876–82.
Article
Google Scholar
Li F, Yu Z, Han X, Lai RY. Electrochemical aptamer-based sensors for food and water analysis: a review. Anal Chim Acta. 2019;1051:1–23.
Article
CAS
Google Scholar
Chen X, Huang Y, Ma X, Jia F, Guo X, Wang Z. Impedimetric aptamer-based determination of the mold toxin fumonisin B1. Microchim Acta. 2015;182:1709–14.
Article
CAS
Google Scholar
Montville D, Voigtman E. Statistical properties of limit of detection test statistics. Talanta. 2003;59:461–76.
Article
CAS
Google Scholar
Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem. 2012;84:6263–70.
Article
CAS
Google Scholar
Chen X, Bai X, Li H, Zhang B. Aptamer-based microcantilever array biosensor for detection of fumonisin B-1. RSC Adv. 2015;5:35448–52.
Article
CAS
Google Scholar
Tao Z, Zhou Y, Li X, Wang Z. Competitive HRP-linked colorimetric aptasensor for the detection of fumonisin B1 in food based on dual biotin-streptavidin interaction. Biosen. 2020;10:31.
Article
CAS
Google Scholar
Yang X, Zhou X, Zhang X, Qing Y, Luo M, Liu X, Li C, Li Y, Xia H, Qiu J. A highly sensitive electrochemical immunosensor for fumonisin B1 detection in corn using single-walled carbon nanotubes/chitosan. Electroanalysis. 2015;27:2679–87.
Article
CAS
Google Scholar
Ren C, Li H, Lu X, Qian J, Zhu M, Chen W, Liu Q, Hao N, Li H, Wang K. A disposable aptasensing device for label-free detection of fumonisin B1 by integrating PDMS film-based micro-cell and screen-printed carbon electrode. Sens Actuators B Chem. 2017;251:192–9.
Article
CAS
Google Scholar
Zheng Y, Shi Z, Wu W, He C, Zhang H. Label-free DNA electrochemical aptasensor for fumonisin B1 detection in maize based on graphene and gold nanocomposite. J Anal Chem. 2021;76:252–7.
Article
Google Scholar