Skip to main content

Table 1 Summary of mechanisms and removal efficiency of different organic and inorganic nanomaterials for air pollutants remediation

From: Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms

Nanomaterials

Air pollutants

Mechanism

Removal efficiency (%)

References

CuO–MnO2–Fe2O3/ γ-Al2O3

Mercury (Hg°)

Thermal desorption

–

[109]

Cerium oxide

CO

Catalytic oxidation

100

[110]

Fe/Co co-doped/Mn-Ce/TiO2

NO and Hg°

Reduction and oxidation

55–92

[111]

Ti-doped Fe3O4 (1 1 1)

NOx

Catalytic oxidation

80

[112]

Silver, zinc, and iron

E. coli

Disinfection

97 ~ 99

[113]

Pt-TiO2

NOx

Catalysis

96.7

[114]

Graphene oxide

PM 2.5

Filtration

99

[58]

CoFe2O4-peroxymonosulfate

Hg°

Catalysis

85

[115]

Fe3O4@EDTA@Fe (II)

NOx

Adsorption

90

[116]

Iron-loaded ZSM-5 zeolite

SO2, NO, Hg°

Catalysis

100, 72.6, 93.4

[117]

Silver/polyacrylonitrile

Bacteria (E. coli)

Filtration

104 CFU/mL

[118]

ZnO

H2S

Adsorption

29.50 mg/g

[119]

bismuth oxide with graphene

Xylene

Photocatalysis

38.8–98.7

[120]

MnOx- MIL-100(Fe)

Hg°

Adsorption and oxidation

77.4

[121]

Silica(HS-UVM7-NH2-UVM7)

Lead (Pb)

Adsorption

95

[122]

MOF-801 and Cu2O

PM2.5 and PM10

Filtration, adsorption

64–85

[123]

Nd (neodymium) -TiO2

VOCs

Photocatalysis

60–80

[124]

V2O5-WO3/TiO2

NOx and Hg°

Catalytic reduction

93 ~ 99

[26, 125]

Thiol modified silica

Vanadium (V)

Adsorption

95

[126]

Polyacrylonitrile-boehmite

PM 2.5

Filtration

99.97

[127]

Hypochlorite (ClO−)

Sulfur gas

Adsorption

–

[26]

Nd (neodymium) -TiO2

NOx, VOCs, bioaerosols

Photocatalysis

60 ~ 80

[124]

Ca-doped ZnO

Tetracycline

Mineralization

99

[128]

Li2MnO3

CO, CO2

Chemisorption, Catalysis

–

[129]

Polysaccharides/MnO2-polymer fiber

Formaldehyde

Oxidation, catalysis

95.5

[130]