Skip to main content

Table 3 Summary of experimental conditions, adsorption kinetic, removal efficiencies and mechanisms of different organic and inorganic NMs for environmental pollutants remediation

From: Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms

Nanomaterials

Pollutants

Experimental conditions

qmax (mg/g)

Ads kinetics

Removal efficiency (%)

(L/Fa, A)

R2

Mechanism

References

  

Sorbent mg/L

initial

Adsorbent dose (g/L)

Temp ( ͦ C)

pH

Time

(h)

     

Fe–Ni-Eucalyptus leaf extract

Ar

0.8 g

0.4–4

20

6

24

2nd

87.3

L

0.99

S.C, E.R

[72]

ZnO-Banana peel extract

Basic Blue 9, crystal violet, and cresol red

30

2.0 × 10–5 M

–

12

1.5

–

100

–

P

[153]

Fe (nZVI)-pomegranate peel coated activated carbon

Amoxicillin

50

1

20

5

0.5

40.28

2nd

97.9,

L

0.99

–

[154]

Activated carbon-Neem (Azadirachta indica) leaf extract

Ciprofloxacin

10

1.2

30

4

3

2nd

89.5

L

0.99

I.E, π–π, H

[155]

Activated carbon-pomegranate husk

4-Chlorophenol

20

0.4

20

6

2

26.18, 24.78, 2nd

100

L, A

0.99

H

[156]

Chitosan-iron-activated carbon-orange peel

Nitrate

50

0.1

20

2

3

263.15

2nd

99.59

L

1

I.P.D

[157]

Fe3O4-Azardica indica leaf extract

Methyl blue,

2-Nitroaniline

140, 0.05

5

21–23

6.3

2.67

–

99.96, 83

–

R

[158]

CuO-Moringa oleifera extract

Nitrate

100

0.5

25

2

24

7.98

1st

60

L

0.99

E.A

[159]

TiO2-Jatropha curcas

L. leaves extract

Chemical oxygen demand (COD), Cr VI

5000

6.8, 3.2 mg/L

59

UN

5

–

82.26, 76.48

0.95

P

[160]

Cu2O-lignin

Bacteria

10 μL

90 μL

37

7

24

–

100

–

D

[82]

Cu2O- astragalus, rosemary and mallow

Pb

0.030

0.2

25

7

24

41.1, 39.8, 32.4, 1st

88.4, 84.9, 69.6, L

0.99

Co, C

[149]

Activated carbon- pomegranate peel- nZVI

Amoxicillin

10 mL

1.5

25

5

0.5

40.28

1st

83.54

L

0.99

I.P.D

[154]

FeNPs-Korla fragrant pear peel extracts

Cr

10

0.02

55

5

2

46.6, 1st

99.1, L

0.97

R, C.P

[52]

ZnO-Syzygium cumini plant leaves extract

Methylene blue

2 mg/50 mL

0.5

–

8

2

1st

91.4

 

P

[161]

FeNPs-(Eucalyptus leaf extracts

Ammonia, Phosphate

10

7

30

6.35

0.5

3.47, 38.91

2nd

43.3 NH4+, 99.8 PO43−, L

0.95–0.97

Ch

[150]

AgNPs-Ficus Benjamina leaf extract

Cd

50–100

0.05

25

5

0.67

2nd

F

0.97

–

[162]

Fe3O4-wheat straw

Hg°

40

1

25

6

0.75

101.01

2nd

98

L

0.99

E.A

[163]

ZnO-Artemisia absinthium

Cr (VI)

25

0.25

25

4

2.5

315.46

2nd

99

L

0.99

E.A

[164]

α-Fe2O3-Aloe vera leaf extract

Ar (V)

10

0.5

20

6

12

7.95 2nd

98, L

0.99

Ch

[165]

Cu0 + Ag)@Bentonite-P. guajava leaves

Amoxicillin, Sulfamethazine

2.0

0.3

25

3

2

1st

84 and 74

0.98

P

[166]

CuO/NiO-Capparis decidua

Lambda-cyhalothrin

20

0.002

25

7

3

1st

99, 89

 

R, O, P

[167]

Rice straw biochar-alginate beads

Per- and polyfluoroalkyl

0.1

1

–

7

16

1.572

2nd

87–99

F,L

0.99, 0.97

Ch

[168]

Fe2O3 -black tea

Ametryn

30.0 μg/L

2.5 g/L

20

7

0.5

2nd

F, L, T, D

0.98

L.F.D

[169]

Fe3O4-office paper (cellulose fibre)

Cobalt oxide

100 mg L−1

100 mg L−1

25

5

48

1567

2nd

L

0.94

Ch, E.A

[75]

  1. aL/F: The adsorption isotherm follows the Langmuir or Freundlich models
  2. bS.C: surface complexation; H: hydrogen bonding; Ch: chemisorption; E.A: electrostatic attraction; π–π: π–π interaction; C:chelation: I.E: ion exchange; I.P.D: inter particle diffusion: R: reduction: D; disinfection; Co: coordination; P: photocatalysis; O: oxidation; L.F.D: liquid film diffusion; C.P: coprecipitation