Dhama K, Pawaiya RVS, Chakrabort S, Tiwari R, Saminathan M, Verma AK. Coronavirus infection in equines: a review. Asian J Anim Vet Adv. 2014;9:164–76.
CAS
Google Scholar
Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16:69.
PubMed
PubMed Central
Google Scholar
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–3.
PubMed
PubMed Central
CAS
Google Scholar
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199–207.
PubMed
PubMed Central
CAS
Google Scholar
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13.
PubMed
PubMed Central
CAS
Google Scholar
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27:taaa021.
PubMed
Google Scholar
Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Bio Medica Atenei Parmensis. 2020;91:157–60.
PubMed
PubMed Central
Google Scholar
Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17:181–92.
PubMed
CAS
Google Scholar
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74.
PubMed
PubMed Central
CAS
Google Scholar
Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–9.
PubMed
PubMed Central
CAS
Google Scholar
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94:e00127-20.
PubMed
PubMed Central
Google Scholar
Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. Mol Biol. 2020. https://doi.org/10.1101/2020.01.31.929042.
Article
Google Scholar
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–3.
PubMed
PubMed Central
CAS
Google Scholar
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562–9.
PubMed
CAS
Google Scholar
Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Med Res. 2020;7:4.
CAS
Google Scholar
Zumla A, Hui DS, Azhar EI, Memish ZA, Maeurer M. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet. 2020;395:e35–6.
PubMed
PubMed Central
CAS
Google Scholar
Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect. 2020;9:221–36.
CAS
Google Scholar
Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, et al. COVID-19: a promising cure for the global panic. Sci Total Environ. 2020;725:138277.
PubMed
PubMed Central
CAS
Google Scholar
Hui L, Yeming W, Jiuyang X, Bin C. Potential antiviral therapeutics for 2019 Novel Coronavirus. Chin J Tuberc Respir Dis. 2020;43:170–2.
Google Scholar
Zhang J, Zhou L, Yang Y, Peng W, Wang W, Chen X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir Med. 2020;8:e11–2.
PubMed
PubMed Central
CAS
Google Scholar
Xia B, Kang X. Activation and maturation of SARS-CoV main protease. Protein Cell. 2011;2:282–90.
PubMed
PubMed Central
CAS
Google Scholar
Kang S, Peng W, Zhu Y, Lu S, Zhou M, Lin W, et al. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int J Antimicrob Agents. 2020;55:105950.
PubMed
PubMed Central
CAS
Google Scholar
Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin N Am. 2010;24:413–37.
Google Scholar
Jackman JA, Lee J, Cho N-J. Nanomedicine for infectious disease applications: innovation towards broad-spectrum treatment of viral infections. Small. 2016;12:1133–9.
PubMed
CAS
Google Scholar
Chen W-H, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep. 2020;7:61–4.
Google Scholar
Revuelta-Herrero JL, Chamorro-de-Vega E, Rodríguez-González CG, Alonso R, Herranz-Alonso A, Sanjurjo-Sáez M. Effectiveness, safety, and costs of a treatment switch to dolutegravir plus rilpivirine dual therapy in treatment-experienced HIV patients. Ann Pharmacother. 2018;52:11–8.
PubMed
CAS
Google Scholar
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front Pharmacol. 2019;10:1207.
PubMed
PubMed Central
Google Scholar
Lembo D, Donalisio M, Civra A, Argenziano M, Cavalli R. Nanomedicine formulations for the delivery of antiviral drugs: a promising solution for the treatment of viral infections. Expert Opin Drug Deliv. 2018;15:93–114.
PubMed
CAS
Google Scholar
Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. 2017;4:105–31.
PubMed
PubMed Central
CAS
Google Scholar
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the inhibition of viral infections. Molecules. 2015;20:14051–81.
PubMed
PubMed Central
CAS
Google Scholar
Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2018;48:43–60.
PubMed
CAS
Google Scholar
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71.
Google Scholar
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: principles, properties, and regulatory issues. Front Chem. 2018;6:360.
PubMed
PubMed Central
Google Scholar
Fornaguera C, García-Celma MJ. Personalized nanomedicine: a revolution at the nanoscale. J Personal Med. 2017;7:12–20.
Google Scholar
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Deliv Transl Res. 2020;10:354–67.
PubMed
CAS
Google Scholar
Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, et al. Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8:66680–98.
PubMed
PubMed Central
Google Scholar
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective properties of the golden spice curcumin. Front Microbiol. 2019;10:912.
PubMed
PubMed Central
Google Scholar
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine. 2015;10:6055–74.
PubMed
PubMed Central
CAS
Google Scholar
Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Anal Chem. 2017;97:445–57.
CAS
Google Scholar
Kizek R, Krejcova L, Michalek P, Merlos Rodrigo M, Heger Z, Krizkova S, et al. Nanoscale virus biosensors: state of the art. NDD. 2015;4:47–66.
Google Scholar
Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol. 2019;10:22.
PubMed
PubMed Central
CAS
Google Scholar
Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics. 2019;11:534.
PubMed Central
CAS
Google Scholar
Luo R, Fang L, Jin H, Wang D, An K, Xu N, et al. Label-free quantitative phosphoproteomic analysis reveals differentially regulated proteins and pathway in PRRSV-Infected Pulmonary Alveolar Macrophages. J Proteome Res. 2014;13:1270–80.
PubMed
CAS
Google Scholar
Pan H, Zhang P, Gao D, Zhang Y, Li P, Liu L, et al. Noninvasive visualization of respiratory viral infection using bioorthogonal conjugated near-infrared-emitting quantum dots. ACS Nano. 2014;8:5468–77.
PubMed
CAS
Google Scholar
Zhang Y, Ke X, Zheng Z, Zhang C, Zhang Z, Zhang F, et al. Encapsulating quantum dots into enveloped virus in living cells for tracking virus infection. ACS Nano. 2013;7:3896–904.
PubMed
CAS
Google Scholar
Kramer A, Assadian O. Survival of microorganisms on inanimate surfaces. In: Use of biocidal surfaces for reduction of healthcare acquired infections. Springer International Publishing AG; 2014. p. 7–26.
Geller C, Varbanov M, Duval RE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4:3044–68.
PubMed
PubMed Central
CAS
Google Scholar
Lee W-S, Hsieh T-C, Shiau JC, Ou T-Y, Chen F-L, Liu Y-H, et al. Bio-Kil, a nano-based disinfectant, reduces environmental bacterial burden and multidrug-resistant organisms in intensive care units. J Microbiol Immunol Infect. 2017;50:737–46.
PubMed
Google Scholar
Karunanayake LI, Waniganayake YC, Gunawardena KDN, Padmaraja SAD, Peter D, Jayasekera R, et al. Use of silicon nanoparticle surface coating in infection control: experience in a tropical healthcare setting. Infect Dis Health. 2019;24:201–7.
PubMed
Google Scholar
Ortí-Lucas RM, Muñoz-Miguel J. Effectiveness of surface coatings containing silver ions in bacterial decontamination in a recovery unit. Antimicrob Resist Infect Control. 2017;6:61.
PubMed
PubMed Central
Google Scholar
Si Y, Zhang Z, Wu W, Fu Q, Huang K, Nitin N, et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci Adv. 2018;4:eaar5931.
PubMed
PubMed Central
Google Scholar
Herron JBT, Hay-David AGC, Gilliam AD, Brennan PA. Personal protective equipment and Covid 19—a risk to healthcare staff? Br J Oral Maxillofac Surg. 2020;58(5):500–2.
PubMed
PubMed Central
CAS
Google Scholar
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382:1564–7.
PubMed
Google Scholar
Kampf G. Potential role of inanimate surfaces for the spread of coronaviruses and their inactivation with disinfectant agents. Infect Prev Pract. 2020;2:100044.
PubMed
PubMed Central
Google Scholar
Chang A, Schnall AH, Law R, Bronstein AC, Marraffa JM, Spiller HA, et al. Cleaning and disinfectant chemical exposures and temporal associations with COVID-19—National Poison Data System, United States, January 1, 2020–March 31, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:496–8.
PubMed
PubMed Central
CAS
Google Scholar
Kapoor A, Saha R. Hand washing agents and surface disinfectants in times of Coronavirus (COVID-19) outbreak. Indian J Community Health. 2020;32:225–7.
Google Scholar
Huang H, Fan C, Li M, Nie H-L, Wang F-B, Wang H, et al. COVID-19: a call for physical scientists and engineers. ACS Nano. 2020;14(4):3747–54.
PubMed
CAS
Google Scholar
Querido MM, Aguiar L, Neves P, Pereira CC, Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surf B Biointerfaces. 2019;178:8–21.
PubMed
PubMed Central
CAS
Google Scholar
Geyer F, D’Acunzi M, Sharifi-Aghili A, Saal A, Gao N, Kaltbeitzel A, et al. When and how self-cleaning of superhydrophobic surfaces works. Sci Adv. 2020;6:eaaw9727.
PubMed
PubMed Central
Google Scholar
Dalawai SP, Saad Aly MA, Latthe SS, Xing R, Sutar RS, Nagappan S, et al. Recent advances in durability of superhydrophobic self-cleaning technology: a critical review. Prog Org Coat. 2020;138:105381.
Google Scholar
Dyshlyuk L, Babich O, Ivanova S, Vasilchenco N, Prosekov A, Sukhikh S. Suspensions of metal nanoparticles as a basis for protection of internal surfaces of building structures from biodegradation. Case Stud Constr Mater. 2020;12:e00319.
Google Scholar
Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42:46–56.
PubMed
CAS
Google Scholar
Vaze N, Pyrgiotakis G, McDevitt J, Mena L, Melo A, Bedugnis A, et al. Inactivation of common hospital acquired pathogens on surfaces and in air utilizing engineered water nanostructures (EWNS) based nano-sanitizers. Nanomed Nanotechnol Biol Med. 2019;18:234–42.
CAS
Google Scholar
StatNano. Coronavirus: nanotech surface sanitizes milan with nanomaterials remaining self-sterilized for years | STATNANO. 2020. https://statnano.com//news/67531/Coronavirus-Nanotech-Surface-Sanitizes-Milan-with-Nanomaterials-Remaining-Self-sterilized-for-Years. Accessed 28 Apr 2020.
StatNano. Mineral nanocrystal-based coating activated by light kills coronavirus | STATNANO. 2020. https://statnano.com/news/67583/Mineral-Nanocrystal-based-Coating-Activated-by-Light-Kills-Coronavirus. Accessed 7 Aug 2020.
Chan WCW. Nano research for COVID-19. ACS Nano. 2020;14:3719–20.
PubMed
CAS
Google Scholar
Abo-zeid Y, Urbanowicz RA, Thomson BJ, Irving WL, Tarr AW, Garnett MC. Enhanced nanoparticle uptake into virus infected cells: could nanoparticles be useful in antiviral therapy? Int J Pharm. 2018;547:572–81.
PubMed
CAS
Google Scholar
Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 Influenza Virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces. 2016;8:24385–93.
PubMed
CAS
Google Scholar
Kim J, Yeom M, Lee T, Kim H-O, Na W, Kang A, et al. Porous gold nanoparticles for attenuating infectivity of influenza A virus. J Nanobiotechnol. 2020;18:54.
CAS
Google Scholar
Sun B, Zhang M, He Z, Zheng L, Shen J, Ni Y. Towards greener and more sustainable cellulose-based hand sanitizer products. JB&B. 2017;2:56–60.
Google Scholar
Park S, Ko Y-S, Lee SJ, Lee C, Woo K, Ko G. Inactivation of influenza A virus via exposure to silver nanoparticle-decorated silica hybrid composites. Environ Sci Pollut Res. 2018;25:27021–30.
CAS
Google Scholar
Neal J, Sirsat S. Titanium dioxide nanoparticles as an environmental sanitizing agent. J Microb Biochem Technol. 2015;07:61–4.
Google Scholar
Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A, Nõmmiste E, et al. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B. 2015;142:178–85.
PubMed
CAS
Google Scholar
Wei G, Nguyen D, Reghu S, Li J, Chua C, Ishida Y, et al. Fast-bactericidal effect of polyion complex nanoparticles on gram-negative bacteria. ACS Appl Nano Mater. 2020;3:2654–64.
CAS
Google Scholar
Vandhana T, Clement Lourduraj AJ. Biogenic synthesis of Mn-Ag co-doped FeO (Fe1-2xMnxAgx) nanoparticles: as an effective disinfectant and anticancer agent. Inorg Chem Commun. 2020;112:107712.
Google Scholar
SZALAY SFD. Skin sanitizer compositions comprising alcohol based emulsion. 2013. https://patents.google.com/patent/EP2654670A2/en. Accessed 26 Apr 2020.
Hu K, Liu H. Preparation method and application of essential oil and plga (poly(lactic-co-glycolic acid)) compounded shell-core structure nanoparticles. CN109568180A. 2019. https://worldwide.espacenet.com/patent/search/family/065924361/publication/CN109568180A?q=CN109568180A&queryLang=en%3Ade%3Afr.
Chiattello ML, Oman M. Polymer-based antimicrobial compositions and methods of use thereof. EP3493676A1. 2019. https://worldwide.espacenet.com/patent/search/family/061011855/publication/EP3493676A1?q=EP3493676A1&queryLang=en%3Ade%3Afr.
Jones S, Stellacci F. Virucidal compounds and uses thereof. EP3487508A1. 2019. https://worldwide.espacenet.com/patent/search/family/056550084/publication/EP3487508A1?q=EP3487508A1&queryLang=en%3Ade%3Afr.
Shivdas HP, Vitthal MR. Environment-friendly silver nanocomposite and method for same. IN1426/MUM/2014, 2015. https://www.quickcompany.in/patents/environment-friendly-silver-nanocomposite-and-method-for-same.
GONDAL MA, Dastageer MA, Khalil AB, Siddique RG, Baig U. Method of forming a photocatalyst and disinfecting a fluid. 2019 https://patents.google.com/patent/US10421672B2/en. Accessed 26 Apr 2020.
Grossman C, Ngo M, Wysocki R. Composition and method to form a self decontaminating surface. 2019. https://patents.google.com/patent/US10421870B2/en. Accessed 26 Apr 2020.
Gutiérrez GL. Nanoparticulate titanium dioxide nanomaterial modified with functional groups and with citric extracts adsorbed on the surface, for the removal of a wide range of microorganisms. 2019. https://patents.google.com/patent/US10342840B2/en. Accessed 19 Apr 2020.
Rösch A, Schaefer C. Metal Dispersion with Increased Stability. EP3368204A1. 2018. https://worldwide.espacenet.com/patent/search/family/057130386/publication/EP3368204A1?q=EP3368204A1&queryLang=en%3Ade%3Afr.
Liu Y, Sun W. Preparation method of nanometer silver/quaternary ammonium salt composite sanitizer. CN108391673A, 2018. https://worldwide.espacenet.com/patent/search/family/063091462/publication/CN108391673A?q=CN108391673A&queryLang=en%3Ade%3Afr.
CDC. Coronavirus disease 2019 (COVID-19)—transmission. Centers for Disease Control and Prevention. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html. Accessed 11 Aug 2020.
Conlon M. A facemask having one or more nanofiber layers. 2014. https://patents.google.com/patent/WO2014143039A1/en. Accessed 27 Apr 2020.
Lustenberger F. Nanofiber filtering material for disposable/reusable respirators. 2016. https://patents.google.com/patent/US9446547B2/en. Accessed 27 Apr 2020.
Ren G, Oxford PJS, Reip PW, Lambkin-Williams R, Mann A. Anti-viral formulations nanomaterials and nanoparticles. 2013. https://patents.google.com/patent/US20130091611/de. Accessed 27 Apr 2020.
Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, et al. Nanotechnology in textiles. ACS Nano. 2016;10:3042–68.
PubMed
CAS
Google Scholar
Spagnol C, Fragal EH, Pereira AGB, Nakamura CV, Muniz EC, Follmann HDM, et al. Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. J Colloid Interface Sci. 2018;531:705–15.
PubMed
CAS
Google Scholar
Mansi A, Boccuni F, Iavicoli S. Nanomaterials as a new opportunity for protecting workers from biological risk. Ind Health. 2019;57:668–75.
PubMed
PubMed Central
CAS
Google Scholar
El-Nahhal IM, Salem J, Anbar R, Kodeh FS, Elmanama A. Preparation and antimicrobial activity of ZnO-NPs coated cotton/starch and their functionalized ZnO-Ag/cotton and Zn(II) curcumin/cotton materials. Sci Rep. 2020;10:5410.
PubMed
PubMed Central
CAS
Google Scholar
Srinivas AD, Peng C, Mittal AC, Agarwal P. Surfaces having particles and related methods. 2014. https://patents.google.com/patent/US20140041905A1/en. Accessed 27 Apr 2020.
Elston DM. Occupational skin disease among health care workers during the coronavirus (COVID-19) epidemic. J Am Acad Dermatol. 2020;82:1085–6.
PubMed
PubMed Central
CAS
Google Scholar
Kanovsky M. Antimicrobial fabric materials for use in safety masks and personal protection clothing. 2016. https://patents.google.com/patent/WO2016125173A1/no. Accessed 27 Apr 2020.
Clement S. Kupfer(II)enthaltende Formmasse aus Polyester, ihre Herstellung und Verwendung. 2008. https://patents.google.com/patent/DE102007003649A1/de. Accessed 10 Aug 2020.
ФУДЖИMOPИ И, ДЖИКИXИPA И, CATO T, ФУКУИ Й, HAКAЯMA Ц. Virus inactivating cloth. 2015. https://patents.google.com/patent/RU2550922C2/en. Accessed 27 Apr 2020.
Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C. 2019;97:954–65.
CAS
Google Scholar
Amigoni S, Josse D, Devers T, Zenerino A, Guittard F, de Givenchy ET, et al. Polymerised cerium oxide nanoparticles in an active or bioactive network, protective topical treatments, methods for preparation thereof and uses thereof. 2018. https://patents.google.com/patent/US10155869B2/en. Accessed 27 Apr 2020.
Ballard RL, Anneaux BL, Manasco JL, Garner DP, Hao P. Electrospun porous media. 2013. https://patents.google.com/patent/US20130197664A1/en. Accessed 27 Apr 2020.
고군호, 박종철. Face mask having nano fiber layer. 2012. https://patents.google.com/patent/KR101130788B1/en. Accessed 23 June 2020.
Kwak JH. Antiviral treatment method, antiviral filter, and mask having same. 2019. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019160261. Accessed 23 June 2020.
Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–35.
PubMed
CAS
Google Scholar
Draz MS, Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics. 2018;8:1985–2017.
PubMed
PubMed Central
CAS
Google Scholar
Chen L, Liang J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C. 2020;112:110924.
CAS
Google Scholar
Cheng X, Chen G, Rodriguez WR. Micro- and nanotechnology for viral detection. Anal Bioanal Chem. 2009;393:487–501.
PubMed
CAS
Google Scholar
Waris A, Ali M, Khan AU, Ali A, Baset A. Exploring pathophysiology of COVID-19 infection: faux espoir and dormant therapeutic options. Int J Clin Virol. 2020;4:065–70.
Google Scholar
Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano. 2020;14:7617–27.
PubMed
CAS
Google Scholar
Halfpenny KC, Wright DW. Nanoparticle detection of respiratory infection: nanoparticle detection of respiratory infection. WIREs Nanomed Nanobiotechnol. 2010;2:277–90.
CAS
Google Scholar
Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J. Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol. 2020;15:618–21.
PubMed
CAS
Google Scholar
Layqah LA, Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim Acta. 2019;186:224.
Google Scholar
Kim H, Park M, Hwang J, Kim JH, Chung D-R, Lee K, et al. Development of label-free colorimetric assay for MERS-CoV using gold nanoparticles. ACS Sens. 2019;4:1306–12.
PubMed
PubMed Central
CAS
Google Scholar
Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020. https://doi.org/10.1002/jmv.25727.
Article
PubMed
PubMed Central
Google Scholar
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25:2000045.
PubMed Central
Google Scholar
Zhao Z, Cui H, Song W, Ru X, Zhou W, Yu X. A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. Mol Biol. 2020. https://doi.org/10.1101/2020.02.22.961268.
Article
Google Scholar
Brazilchuck N. From thousands of tiny magnetic balls to 150,000 COVID-19 tests per week. Norwegian SciTech News. 2020. https://norwegianscitechnews.com/2020/04/from-thousands-of-tiny-magnetic-balls-to-150000-covid-19-tests-per-week/. Accessed 10 Aug 2020.
Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in Human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–42.
PubMed
CAS
Google Scholar
Santiago I. Trends and innovations in biosensors for COVID-19 mass testing. ChemBioChem. 2020. https://doi.org/10.1002/cbic.202000250.
Article
PubMed
PubMed Central
Google Scholar
Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Res. 2020;30:189–90.
PubMed
PubMed Central
CAS
Google Scholar
Solaimuthu A, Vijayan AN, Murali P, Korrapati PS. Nano-biosensors and their relevance in tissue engineering. Curr Opin Biomed Eng. 2020;13:84–93.
Google Scholar
Zhu X, Wang X, Han L, Chen T, Wang L, Li H, et al. Reverse transcription loop-mediated isothermal amplification combined with nanoparticles-based biosensor for diagnosis of COVID-19. 2020. https://doi.org/10.1101/2020.03.17.20037796.
Chen Z, Zhang Z, Zhai X, Li Y, Lin L, Zhao H, et al. Rapid and Sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal Chem. 2020;92:7226–31.
PubMed
CAS
Google Scholar
Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. 2020;14:5268–77.
PubMed
CAS
Google Scholar
Somvanshi SB, Kharat PB, Saraf TS, Somwanshi SB, Shejul SB, Jadhav KM. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innov. 2020;24:1–6.
Google Scholar
Wang M, Fu A, Hu B, Tong Y, Liu R, Liu Z, et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small. 2020;16(32):2002169.
CAS
Google Scholar
Huang L, Ding L, Zhou J, Chen S, Chen F, Zhao C, et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device. BioRxiv. 2020;142373:1–18.
Google Scholar
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824–36.
CAS
PubMed
Google Scholar
Salvi R, Patankar P. Emerging pharmacotherapies for COVID-19. Biomed Pharmacother. 2020;128:110267.
PubMed
PubMed Central
CAS
Google Scholar
García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res. 2019;264:22–31.
PubMed
PubMed Central
Google Scholar
Teissier E, Penin F, Pécheur E-I. Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules. 2010;16:221–50.
PubMed
PubMed Central
Google Scholar
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295:4773–9.
PubMed
PubMed Central
CAS
Google Scholar
Andersen PI, Ianevski A, Lysvand H, Vitkauskiene A, Oksenych V, Bjørås M, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis. 2020;93:268–76.
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Cao R, Zhang H, Liu J, Xu M, Hu H, et al. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov. 2020;6:1–5.
Google Scholar
Clercq ED, Li G. approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29:695–747.
PubMed
PubMed Central
Google Scholar
Al-Bari MAA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70:1608–21.
PubMed
Google Scholar
Thomas E, Ghany MG, Liang TJ. The application and mechanism of action of ribavirin in therapy of hepatitis C. Antivir Chem Chemother. 2012;23:1–12.
PubMed
CAS
Google Scholar
Sofias AM, Andreassen T, Hak S. Nanoparticle ligand-decoration procedures affect in vivo interactions with immune cells. Mol Pharm. 2018;15:5754–61.
PubMed
CAS
Google Scholar
Sun X, Wang T, Cai D, Hu Z, Chen J, Liao H, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020;53:38–42.
PubMed
PubMed Central
CAS
Google Scholar
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80:607–13.
PubMed
PubMed Central
CAS
Google Scholar
Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29:1005–10.
PubMed
PubMed Central
CAS
Google Scholar
Testori A. The “perfect cytokine storm” of covID-19. Mayo Clin Proc. 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256537/.
Khalvati B, Sheikhsaran F, Sharifzadeh S, Kalantari T, Behzad Behbahani A, Jamshidzadeh A, et al. Delivery of plasmid encoding interleukin-12 gene into hepatocytes by conjugated polyethylenimine-based nanoparticles. Artif Cells Nanomed Biotechnol. 2017;45:1036–44.
PubMed
CAS
Google Scholar
Zeng L, Ma W, Shi L, Chen X, Wu R, Zhang Y, et al. Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy. IJN. 2019;14:6357–69.
PubMed
CAS
PubMed Central
Google Scholar
Gao H, Xiong Y, Zhang S, Yang Z, Cao S, Jiang X. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm. 2014;11:1042–52.
PubMed
CAS
Google Scholar
Duncan SA, Dixit S, Sahu R, Martin D, Baganizi DR, Nyairo E, et al. Prolonged release and functionality of interleukin-10 encapsulated within PLA-PEG nanoparticles. Nanomaterials. 2019;9:1074.
PubMed Central
CAS
Google Scholar
Dormont F, Brusini R, Cailleau C, Reynaud F, Peramo A, Gendron A, et al. Squalene-based multidrug nanoparticles for improved mitigation of uncontrolled inflammation in rodents. Sci Adv. 2020;6:eaaz5466.
PubMed
PubMed Central
Google Scholar
Loutfy SA, Elberry MH, Farroh KY, Mohamed HT, Mohamed AA, Mohamed EB, et al. Antiviral activity of chitosan nanoparticles encapsulating curcumin against hepatitis C virus genotype 4a in human hepatoma cell lines. IJN. 2020;15:2699–715.
PubMed
PubMed Central
Google Scholar
Dey P, Bergmann T, Cuellar-Camacho JL, Ehrmann S, Chowdhury MS, Zhang M, et al. Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry. ACS Nano. 2018;12:6429–42.
PubMed
CAS
Google Scholar
Hendricks GL, Weirich KL, Viswanathan K, Li J, Shriver ZH, Ashour J, et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem. 2013;288:8061–73.
PubMed
PubMed Central
CAS
Google Scholar
Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen Y-T, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11:42964–74.
PubMed
PubMed Central
Google Scholar
Hu C-MJ, Chen Y-T, Fang Z-S, Chang W-S, Chen H-W. Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors against influenza virus infection. Int J Nanomed. 2018;13:8579–93.
CAS
Google Scholar
Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell. 2020;181(865–876):e12.
Google Scholar
Baram-Pinto D, Shukla S, Gedanken A, Sarid R. Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. Small. 2010;6:1044–50.
PubMed
CAS
Google Scholar
Liu L, Chopra P, Li X, Wolfert MA, Tompkins SM, Boons G-J. SARS-CoV-2 spike protein binds heparan sulfate in a length- and sequence-dependent manner. BioRxiv. 2020. https://doi.org/10.1101/2020.05.10.087288.
Article
PubMed
PubMed Central
Google Scholar
Cagno V, Andreozzi P, D’Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17:195–203.
PubMed
CAS
Google Scholar
Jones ST, Cagno V, Janeček M, Ortiz D, Gasilova N, Piret J, et al. Modified cyclodextrins as broad-spectrum antivirals. Sci Adv. 2020;6:eaax9318.
PubMed
PubMed Central
Google Scholar
Wu C-J, Huang H-W, Liu C-Y, Hong C-F, Chan Y-L. Inhibition of SARS-CoV replication by siRNA. Antiviral Res. 2005;65:45–8.
PubMed
CAS
Google Scholar
Li T, Zhang Y, Fu L, Yu C, Li X, Li Y, et al. siRNA targeting the Leader sequence of SARS-CoV inhibits virus replication. Gene Ther. 2005;12:751–61.
PubMed
PubMed Central
CAS
Google Scholar
Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med. 2020;28:174–84.
PubMed
CAS
Google Scholar
Ceccarelli M, Berretta M, Venanzi Rullo E, Nunnari G, Cacopardo B. Differences and similarities between Severe Acute Respiratory Syndrome (SARS)-CoronaVirus (CoV) and SARS-CoV-2. Would a rose by another name smell as sweet? Eur Rev Med Pharmacol Sci. 2020;24:2781–3.
PubMed
CAS
Google Scholar
Ghosh S, Firdous SM, Nath A. siRNA could be a potential therapy for COVID-19. EXCLI J. 2020;19:528–31.
PubMed
PubMed Central
Google Scholar
Levanova A, Poranen MM. RNA interference as a prospective tool for the control of human viral infections. Front Microbiol. 2018;9:2151.
PubMed
PubMed Central
Google Scholar
Rohiwal SS, Dvorakova N, Klima J, Vaskovicova M, Senigl F, Slouf M, et al. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci Rep. 2020;10:4619.
PubMed
PubMed Central
CAS
Google Scholar
Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020;578:229–36.
PubMed
CAS
PubMed Central
Google Scholar
Tanaka P, Santos J, Oliveira E, Miglioli N, Assis A, Monteleone-Cassiano A, et al. A Crispr-Cas9 system designed to introduce point mutations into the human ACE2 gene to weaken the interaction of the ACE2 receptor with the SARS-CoV-2 S protein. Preprints; 2020. https://www.preprints.org/manuscript/202005.0134/v1. Accessed 19 June 2020.
Deng H, Huang W, Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: progress and prospect. Nano Res. 2019;12:2437–50.
CAS
Google Scholar
Aghamiri S, Talaei S, Ghavidel AA, Zandsalimi F, Masoumi S, Hafshejani NH, et al. Nanoparticles-mediated CRISPR/Cas9 delivery: recent advances in cancer treatment. J Drug Deliv Sci Technol. 2020;56:101533.
CAS
Google Scholar
Glass Z, Li Y, Xu Q. Nanoparticles for CRISPR–Cas9 delivery. Nat Biomed Eng. 2017;1:854–5.
PubMed
PubMed Central
Google Scholar
Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.
PubMed
PubMed Central
CAS
Google Scholar
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. WIREs Nanomed Nanobiotechnol. 2020;12:e1609.
Google Scholar
Liu J, Chang J, Jiang Y, Meng X, Sun T, Mao L, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater. 2019;31:1902575.
Google Scholar
Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. J Clin Investig. 2016;126:799.
PubMed
PubMed Central
Google Scholar
Sautto GA, Kirchenbaum GA, Diotti RA, Criscuolo E, Ferrara F. Next generation vaccines for infectious diseases. J Immunol Res. 2019;2019:5890962.
PubMed
PubMed Central
Google Scholar
Lung P, Yang J, Li Q. Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale. 2020;12:5746–63.
PubMed
CAS
Google Scholar
Kim S-H, Jang Y-S. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res. 2017;6:15.
PubMed
PubMed Central
CAS
Google Scholar
Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines. 2019;7:37.
PubMed Central
CAS
Google Scholar
Kim CG, Kye Y-C, Yun C-H. The role of nanovaccine in cross-presentation of antigen-presenting cells for the activation of CD8+ T cell responses. Pharmaceutics. 2019;11:612.
PubMed Central
CAS
Google Scholar
Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, et al. Pathogen recognition and development of particulate vaccines: does size matter? Methods. 2006;40:1–9.
PubMed
CAS
Google Scholar
Shin MD, Shukla S, Chung YH, Beiss V, Chan SK, Ortega-Rivera OA, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020;15:646–55.
PubMed
CAS
Google Scholar
Espeseth AS, Cejas PJ, Citron MP, Wang D, DiStefano DJ, Callahan C, et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. npj Vaccines. 2020;5:16.
PubMed
PubMed Central
CAS
Google Scholar
Moon JJ, Suh H, Polhemus ME, Ockenhouse CF, Yadava A, Irvine DJ. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS ONE. 2012;7:e31472.
PubMed
PubMed Central
CAS
Google Scholar
Papadopoulos NG, Megremis S, Kitsioulis NA, Vangelatou O, West P, Xepapadaki P. Promising approaches for the treatment and prevention of viral respiratory illnesses. J Allergy Clin Immunol. 2017;140:921–32.
PubMed
PubMed Central
Google Scholar
Gomes AC, Mohsen M, Bachmann MF. Harnessing nanoparticles for immunomodulation and vaccines. Vaccines. 2017;5:6.
PubMed Central
Google Scholar
Angioletti-Uberti S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: a soft matter perspective. npj Comput Mater. 2017;3:48.
Google Scholar
Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC, Schuster BS, et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci Adv. 2017;3:e1601556.
PubMed
PubMed Central
Google Scholar
Lurie N, Saville M, Hatchett R, Halton J. Developing covid-19 Vaccines At Pandemic Speed. N Engl J Med. 2020;382:1969–73.
PubMed
CAS
Google Scholar
Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020;52:583–9.
PubMed
PubMed Central
CAS
Google Scholar
Du L, He Y, Zhou Y, Liu S, Zheng B-J, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7:226–36.
PubMed
PubMed Central
CAS
Google Scholar
Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. BioRxiv. 2020. https://doi.org/10.1101/2020.03.20.000141.
Article
PubMed
PubMed Central
Google Scholar
EpiVax. EPV-CoV19: HCW vaccine. EpiVax, Inc.—Informatics and Immunology. 2020. https://epivax.com/pipeline/epv-cov19. Accessed 16 June 2020.
Magnusson SE, Altenburg AF, Bengtsson KL, Bosman F, de Vries RD, Rimmelzwaan GF, et al. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunol Res. 2018;66:224–33.
PubMed
PubMed Central
CAS
Google Scholar
Novavax. Novavax to receive up to $388 million funding from CEPI for COVID-19 vaccine development and manufacturing | Novavax Inc. - IR Site. 2020. http://ir.novavax.com/news-releases/news-release-details/novavax-receive-388-million-funding-cepi-covid-19-vaccine. Accessed 16 June 2020.
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.
PubMed
PubMed Central
CAS
Google Scholar
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17:261–79.
PubMed
PubMed Central
CAS
Google Scholar
WHO. Draft landscape of COVID-19 candidate vaccines. 2020. https://www.who.int/who-documents-detail-redirect/draft-landscape-of-covid-19-candidate-vaccines. Accessed 13 June 2020.
Sportelli MC, Picca RA, Cioffi N. Recent advances in the synthesis and characterization of nano-antimicrobials. Trends Anal Chem. 2016;84:131–8.
CAS
Google Scholar
Gunell M, Haapanen J, Brobbey KJ, Saarinen JJ, Toivakka M, Mäkelä JM, et al. Antimicrobial characterization of silver nanoparticle-coated surfaces by “touch test” method. Nanotechnol Sci Appl. 2017;10:137–45.
PubMed
PubMed Central
CAS
Google Scholar
Swaminathan M, Sharma NK. Antimicrobial Activity of the engineered nanoparticles used as coating agents. In: Martínez LMT, Kharissova OV, Kharisov BI, editors. Handbook of ecomaterials. Cham: Springer International Publishing; 2019. p. 549–63. https://doi.org/10.1007/978-3-319-68255-6_1. Accessed 28 Apr 2020.
Mitchell SL, Carlson EE. Tiny things with enormous impact: nanotechnology in the fight against infectious disease. ACS Infect Dis. 2018;4:1432–5.
PubMed
CAS
Google Scholar
Polyak B, Cordovez B. How can we predict behavior of nanoparticles in vivo ? Nanomedicine. 2016;11:189–92.
PubMed
CAS
Google Scholar
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Hindawi. 2015;1:246012.
Google Scholar
Wacker MG, Proykova A, Santos GML. Dealing with nanosafety around the globe-regulation vs. innovation. Int J Pharm. 2016;509:95–106.
PubMed
CAS
Google Scholar
Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther. 2017;42:742–55.
Google Scholar
Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9:e1416.
Google Scholar
Zhdanov VP. Formation of a protein corona around nanoparticles. Curr Opin Colloid Interface Sci. 2019;41:95–103.
CAS
Google Scholar
Lane LA, Qian X, Smith AM, Nie S. Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo. Annu Rev Phys Chem. 2015;66:521–47.
PubMed
CAS
PubMed Central
Google Scholar
Berrecoso G, Crecente-Campo J, Alonso MJ. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv Transl Res. 2020;10:730–50.
PubMed
CAS
Google Scholar