Dha B, Jta B, Min C, Rui D, Sha C, Lya B, et al. Microplastics and Nanoplastics in the Environment: Macroscopic Transport and Effects on Creatures. J Hazard Mater. 2020;407:124399.
Google Scholar
Jambeck JR, Geyer R, Wilcox C, Siegler TR, Law KL. Marine pollution. Plastic waste inputs from land into the ocean. Science. 2015;347:768–71.
Article
CAS
PubMed
Google Scholar
Ferreira I, Venancio C, Lopes I, Oliveira M. Nanoplastics and marine organisms: What has been studied? Environ Toxicol Pharmacol. 2019;67:1–7.
Article
CAS
PubMed
Google Scholar
Nizzetto L, Langaas S, Futter M. Pollution: Do microplastics spill on to farm soils? Nature. 2016;537:488–8.
Article
CAS
PubMed
Google Scholar
Peeken I, Primpke S, Beyer B, Gütermann J, Katlein C, Krumpen T, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat Commun. 2018;9:1505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Hu Y, Yang C, Chen C, Huang W, Dang Z. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments. Water Res. 2019;163:114870.
Article
CAS
PubMed
Google Scholar
Song YK, Hong SH, Eo S, Han GM, Shim WJ. Rapid Production of Micro- and Nanoplastics by Fragmentation of Expanded Polystyrene Exposed to Sunlight. Environ Sci Technol. 2020;54:11191–200.
Article
CAS
PubMed
Google Scholar
Yang Y, Guo Y, O’Brien AM, Lins TF, Sinton D. Biological responses to climate change and nanoplastics are altered in concert: full-factorial screening reveals effects of multiple stressors on primary producers. Environ Sci Technol. 2020;54:2401–10.
Article
CAS
PubMed
Google Scholar
Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ Sci Technol. 2018;52:1704–24.
Article
CAS
PubMed
Google Scholar
Cozar A, Marti E, Duarte CM, Garcia-de-Lomas J, van Sebille E, Ballatore TJ, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Sci Adv. 2017;3:e1600582.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pabortsava K, Lampitt RS. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat Commun. 2020;11:4073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environ Sci Technol. 2019;53:12300–10.
Article
CAS
PubMed
Google Scholar
Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL. Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates. Environ Sci Technol. 2017;51:4714–21.
Article
CAS
PubMed
Google Scholar
Rodriguez-Hernandez AG, Chiodoni A, Bocchini S, Vazquez-Duhalt R. 3D printer waste, a new source of nanoplastic pollutants. Environ Pollut. 2020;267:115609.
Article
CAS
PubMed
Google Scholar
Dawson AL, Kawaguchi S, King CK, Townsend KA, King R, Huston WM, et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat Commun. 2018;9:1001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ter Halle A, Jeanneau L, Martignac M, Jarde E, Pedrono B, Brach L, et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Technol. 2017;51:13689–97.
Article
CAS
PubMed
Google Scholar
Wei R, Tiso T, Bertling J, O’Connor K, Blank LM, Bornscheuer UT. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat Catal. 2020;3:867–71.
Article
CAS
Google Scholar
Banerjee A, Shelver WL. Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci Total Environ. 2021;755:142518.
Article
CAS
PubMed
Google Scholar
Kik K, Bukowska B, Sicinska P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut. 2020;262:114297.
Article
CAS
PubMed
Google Scholar
Li LZ, Luo YM, Li RJ, Zhou Q, Peijnenburg WJGM, Yin N, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain. 2020;3:929–37.
Article
Google Scholar
Sun XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, Dong SS, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol. 2020;15:755–60.
Article
CAS
PubMed
Google Scholar
Fotopoulou KN, Karapanagioti HK. Surface properties of beached plastic pellets. Mar Environ Res. 2012;81:70–7.
Article
CAS
PubMed
Google Scholar
Galloway TS, Cole M, Lewis C. Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol. 2017;1:116.
Article
PubMed
Google Scholar
Gaylarde CC, Baptista Neto JA, da Fonseca EM. Nanoplastics in aquatic systems - are they more hazardous than microplastics? Environ Pollut. 2021;272:115950.
Article
CAS
PubMed
Google Scholar
Lu Y, Zhang Y, Deng Y, Jiang W, Zhao Y, Geng J, et al. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ Sci Technol. 2016;50:4054–60.
Article
CAS
PubMed
Google Scholar
Shen MC, Zhang YX, Zhu Y, Song B, Zeng GM, Hu DF, et al. Recent advances in toxicological research of nanoplastics in the environment: A review. Environ Pollut. 2019;252:511–21.
Article
CAS
PubMed
Google Scholar
Wardrop P, Shimeta J, Nugegoda D, Morrison PD, Miranda A, Tang M, et al. Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish. Environ Sci Technol. 2016;50:4037–44.
Article
CAS
PubMed
Google Scholar
Rennick JJ, Johnston A, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16:1–11.
Article
CAS
Google Scholar
Chithrani DB. Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol. 2010;27:299–311.
Article
CAS
PubMed
Google Scholar
Schütz I, Lopez-Hernandez T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubio L, Barguilla I, Domenech J, Marcos R, Hernandez A. Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines. J Hazard Mater. 2020;398:122900.
Article
CAS
PubMed
Google Scholar
Meyer-Cifuentes IE, Werner J, Jehmlich N, Will SE, Neumann-Schaal M, Ozturk B. Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium. Nat Commun. 2020;11:1–13.
Article
CAS
Google Scholar
Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature. 2020;580:216–9.
Article
CAS
PubMed
Google Scholar
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. Response to Comment on “A bacterium that degrades and assimilates poly(ethylene terephthalate).” Science. 2016;353:759.
Article
CAS
PubMed
Google Scholar
Feng LJ, Sun XD, Zhu FP, Feng Y, Duan JL, Xiao F, et al. Nanoplastics Promote Microcystin Synthesis and Release from Cyanobacterial Microcystis aeruginosa. Environ Sci Technol. 2020;54:3386–94.
Article
CAS
PubMed
Google Scholar
Linklater DP, Baulin VA, Le Guevel X, Fleury JB, Hanssen E, Nguyen THP, et al. Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Adv Mater. 2020;32:e2005679.
Article
CAS
PubMed
Google Scholar
Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol. 2013;8:594–601.
Article
CAS
PubMed
Google Scholar
Bhattacharjee S, Ershov D, Islam MA, Kampfer AM, Maslowska KA, van der Gucht J, et al. Role of membrane disturbance and oxidative stress in the mode of action underlying the toxicity of differently charged polystyrene nanoparticles. RSC Adv. 2014;4:19321–30.
Article
CAS
Google Scholar
Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev. 2001;65:44–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13:1–12.
Article
CAS
Google Scholar
Li S, Malmstadt N. Deformation and poration of lipid bilayer membranes by cationic nanoparticles. Soft Matter. 2013;9:4969–76.
Article
CAS
Google Scholar
Yacobi NR, Malmstadt N, Fazlollahi F, DeMaio L, Marchelletta R, Hamm-Alvarez SF, et al. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol. 2010;42:604–14.
Article
CAS
PubMed
Google Scholar
Rossi G, Barnoud J, Monticelli L. Polystyrene Nanoparticles Perturb Lipid Membranes. J Phys Chem Lett. 2014;5:241–6.
Article
CAS
PubMed
Google Scholar
Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B. 2007;111:7812–24.
Article
CAS
PubMed
Google Scholar
Ipsen JH, Mouritsen OG, Bloom M. Relationships between Lipid-Membrane Area, Hydrophobic Thickness, and Acyl-Chain Orientational Order - the Effects of Cholesterol. Biophys J. 1990;57:405–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu L, Wan M, Zhang S, Gao L, Fang W. Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophys J. 2020;118:138–50.
Article
CAS
PubMed
Google Scholar
Fazlollahi F, Angelow S, Yacobi NR, Marchelletta R, Yu AS, Hamm-Alvarez SF, et al. Polystyrene nanoparticle trafficking across MDCK-II. Nanomedicine. 2011;7:588–94.
Article
CAS
PubMed
Google Scholar
Su CF, Merlitz H, Rabbel H, Sommer JU. Nanoparticles of Various Degrees of Hydrophobicity Interacting with Lipid Membranes. J Phys Chem Lett. 2017;8:4069–76.
Article
CAS
PubMed
Google Scholar
Ahmed S, Matsumura K, Hamada T. Hydrophobic Polyampholytes and Nonfreezing Cold Temperature Stimulate Internalization of Au Nanoparticles to Zwitterionic Liposomes. Langmuir. 2019;35:1740–8.
Article
CAS
PubMed
Google Scholar
Cao Z, Wang X, Pang Y, Cheng S, Liu J. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat Commun. 2019;10:5783.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu JL, Li T, Dai S, Weng YL, Li JL, Li QH, et al. A tamB homolog is involved in maintenance of cell envelope integrity and stress resistance of Deinococcus radiodurans. Sci Rep. 2017;7:45929.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi G, Monticelli L, Puisto SR, Vattulainen I, Ala-Nissila T. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case. Soft Matter. 2011;7:698–708.
Article
CAS
Google Scholar
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys. 2007;126:014101.
Article
CAS
PubMed
Google Scholar
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys. 1998;52:7182–90.
Article
Google Scholar
Uttarwar RG, Potoff J, Huang YL. Study on Interfacial Interaction between Polymer and Nanoparticle in a Nanocoating Matrix: A MARTINI Coarse-Graining Method. Ind Eng Chem Res. 2013;52:73–82.
Article
CAS
Google Scholar
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J Chem Theory Comput. 2008;4:819–34.
Article
CAS
PubMed
Google Scholar
Darden T, York D, Pedersen L. Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98:10089–92.
Article
CAS
Google Scholar
Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008;4:435–47.
Article
CAS
PubMed
Google Scholar
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(33–38):27–38.
Google Scholar
Dai S, Xie Z, Wang B, Yu N, Zhao J, Zhou Y, et al. Dynamic polyphosphate metabolism coordinating with manganese ions defends against oxidative stress in the extreme bacterium Deinococcus radiodurans. Appl Environ Microbiol. 2021;87:e02785-02720.
Article
CAS
PubMed
PubMed Central
Google Scholar