Fabrication and characterization of PLLA/LP nanofibers
In this study, lignin was grafted with PLA (Fig. 1A) to improve its miscibility in Poly-L-lactic acid (PLLA) matrix. Various lengths of PLA were grafted onto lignin by varying the feeding ratio, and the molecular weight of the copolymers ranges from 75.6 kDa for LP10 to 28.5 kDa for LP50 (Additional file 1: Table S1, Figure S1, S2). The resulting copolymers exhibits different fractions of PLA and lignin (calculated based on the results from NMR and GPC). At higher feed ratio of lignin to PLA, the resulting lignin content in the copolymer increases. The LP10 has the lowest lignin content of 7%, while LP40 exhibit the highest at 20% (Fig. 1A). It is worthy to note that the dodecylation pretreatment of lignin was employed to facilitate the ring-opening polymerization and improve matrix/additive compatibility. But the process is relative energy-intensive and may cause environmental concern (due to the halogenated compound). In future work, sustainable and green methods need to be developed to synthesize novel lignin copolymers while protecting the phenolic hydroxyl groups to retain the antioxidant activities.
Such LP copolymers were blended with PLLA and electrospun into nanofibrous scaffolds for cartilage TE. As shown in Fig. 1A, all the fibers exhibited uniform and bead-free nanoscale morphology, and the fiber diameter ranges from 712 ± 63 nm for neat PLLA to 350 ± 80 nm for PLLA/LP50. The results showed that the addition of LP copolymers reduce the fiber diameter (Fig. 1B(a)), probably due to the lower molecular weight of such copolymers, which causes a decrease of viscosity of the spinning solution [20, 21]. The mechanical properties of the nanofibrous scaffolds were carried out by tensile test. The tensile strength and Young’s modulus of the fibers were summarized in Fig. 1B (b and c). The addition of LP copolymers decreased the tensile strength of the nanofibers from 3.49 ± 0.20 MPa for PLLA to 2.49 ± 0.14 MPa for PLLA/LP20, but it increased the Young’s Modulus from 56.8 ± 1.6 for PLLA to 66.8 ± 2.8 MPa for PLLA/LP50 (Additional file 1: Figure S5). In Fig. 1B(b), the nanofibers exhibit comparable tensile strength with the native articular cartilage (0.8- 25 MPa), while the Young’s modulus (Fig. 1B(c)) falls within the range of 5–25 MPa of the native articular cartilage [22]. The results indicate that our nanofibers could be a suitable scaffold with comparable mechanical properties for cartilage repair.
The viscoelastic behaviour of the nanofibrous scaffolds was evaluated by creep-recovery experiment. Creep-recovery test is the most effective method to analyse the elasticity of polymeric scaffold. In a typical creep test, a constant stress is applied onto the sample and time-dependent deformation (strain) is detected. As shown in Fig. 1B(d), all scaffolds display a typical viscoelastic creep-recovery curve following Kelvin-Voigt model. In the model, the material is represented by a Hookean spring and a Newtonian dashpot in parallel. Compared to neat PLLA fibers, PLLA/LP10, PLLA/LP20 and PLLA/LP30 showed higher creep compliance levels. On the other hand, LP40 and LP50 slightly decreased creep compliance of the resulting nanofibers.
The interaction between PLLA matrix and LP fillers play a crucial role to influence the viscoelastic properties of the composite nanofibers. Here, there are two types of interactions between PLLA and LP copolymers: 1) polymer chain inter-entanglement between PLLA matrix and PLA polymer chains on the surface of LP; 2) hydrogen-bonding interactions between C = O of PLLA and OH groups on lignin. In such case, the polymer chain inter-entanglement is dominate in the nanofiber system, and therefore, those LP copolymers with longer PLA chain length were more compatible with PLLA matrix, which enable the softening of PLLA and facilitate the polymer chain movement in the amorphous regions of the matrix.
Antioxidant activity of PLLA/LP nanofibers
Oxidative stress is a major impediment against cartilage repair, and antioxidants could play a crucial role in addressing this issue. Lignin is a natural antioxidant from plants. The antioxidant activities of PLLA/LP nanofibers were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Neat PLLA fibers were used as negative control, respectively. As shown in Fig. 2A, PLLA fibers showed very low antioxidant activity (< 15% free radical inhibition) during the first 24 h. The addition of lignin copolymers into PLLA improved the antioxidant activity of the resulting nanofibers, and the nanofibers with higher lignin content exhibited higher free radical inhibition. It is worthy to note that the free radical inhibition of PLLA/LP nanofibers increased gradually with time, and after 24 h of incubation, the free radical inhibition values of these composite nanofibers (except PLLA/LP10) reached more than 90%. It is report that the half-life of small antioxidant molecules (such as vitamins) in the human body is relatively short (normally < 30 min) [23], indicating that such antioxidants loses its function very fast. Comparatively, our lignin copolymers showed a slower response against DPPH radicals but reached the same level of antioxidant activity at 24 h, indicating such LP copolymers have longer half-life and more stable in the oxidative stress environment.
The antioxidative properties of PLLA/LP nanofibers are further evaluated through the viability of bone marrow mesenchymal stem cells (BMSCs)in the exposure of H2O2 (24 h) and was confirmed with the live/dead assay. As revealed by the confocal imaging (Fig. 2B), H2O2 treatment resulted in the highest number of dead cells (red) and the lowest number of live cells (green) observed in Figure B(a) of PLLA. The PLLA/LP studies exhibited higher live to dead cell ratio in the H2O2 environment. The PLLA/LP10 exhibited a small number of dead cells but moving forward across PLLA/LP20-50 B (b-f), there are no signs of the red markers, a significant difference to PLLA. These observations indicates that PLLA/LP nanofibers are able to shield BMSCs from oxidative stress. The presence of LP had a significant impact on the antioxidative properties in the fibers. Lignin has been consistently studied and exploited for its antioxidative properties. The various functional groups exist in this complex heteropolymer such as the methoxy, phenolic hydroxyl, and double bond groups, plays a crucial role as a free radical scavenger [13, 24].
Morphology and proliferation of BMSCs on PLLA/LP nanofibrous scaffold
The proliferation of BMSCs on PLLA/LP the nanofibers was evaluated by its resulting deoxyribonucleic acid (DNA) contents. In Fig. 3A, PLLA/LP30 exhibited the highest DNA content as compared to the rest of the PLLA/LP. A calcein/ propidium iodide (PI) live/dead viability assay kit determines the cell viability based on plasma membrane integrity and esterase activity of BMSCs. As shown in Fig. 3B-C, the PLLA/LP nanofibers supported a higher survivability of BMSCs than PLLA nanofibers at day 21. In general, PLLA exhibits good biodegradation and biocompatibility but poor bioactivity due to the lack of functional groups [25]. The strategic optimization of electrospinning condition and PLLA/LP blend would produce nanofibers that exhibit suitable functionality and scaffold structure to facilitate tissue regeneration. The significant increased cell proliferation and viability on PLLA/LP30 demonstrates the optimal nanofibers characteristics to facilitate tissue regeneration. Saudi et al. had also reported electospun poly (glycerol sebacate)-poly(vinyl alcohol) fibers with lignin had promoted the neural cell proliferation and differentiation [26]. The addition of lignin in the blend induces anti-oxidative properties that would facilitate cell viability [27, 28]. The low cell viability at higher lignin concentrations is possibly due to the inhibition from lignin itself pass the ideal range. At excessive amounts of lignin, the cytotoxicity characteristics becomes a detrimental factor, as observed between PLLA/LP50 and the control. Ugartondo et al. reported cytotoxicity effects of lignin to human keratinocytes and murine fibroblast 3T3 cells but at high concentrations [29].
The morphology of BMSCs on PLLA/LP nanofibers was observed using scanning electron microscopy (SEM) (Fig. 4A). BMSCs have been widely studied with for bone tissue engineering because of its ability to differentiate into chondrocytes, and osteoblasts [30]. The optimal micro-environment of a scaffold is key to facilitate stem cell attachment and proliferation. In the control group, cells exhibited a stretched, long, spindle-shaped, fibroblast-like morphology during the culture period. On day 7, a portion of the cells on PLLA nanofibers exhibit flat and spindle-like characteristics. However, the BMSCs on the PLLA/LP nanofibers were spread out smoothly, and the cells on the PLLA/LP30 gradually became more spherical, which displayed chondrocyte-like morphology. The results indicate that the topography of PLLA/LP nanofibers, especially PLLA/LP30, would be suitable to support cell adhesion [16].
The cytoskeletal morphology was investigated using rhodamine-phalloidin staining for actin filament (F-actin) (red) and 4',6-diamidino-2-phenylindole (DAPI) staining for nuclei (blue) followed by confocal microscopy (Fig. 4B). The actin filamentous network structure is significant to identify the progression of cytoskeleton network. Through the staining, a small number of polymerized actin filaments was observed in the BMSCs of the control group, followed by increasing fluorescent activation in PLLA and PLLA/LP. The presence of F-actin (red) and nuclei is significantly higher in the PLLA/LP group (highest with PLLA/LP30) compared to PLLA, thus indicating better cell proliferation and viability towards chondrogenesis. A similar observation had been reported previously whereby, lignin-PCL nanofibers exhibit higher cell viability of human chondrocytes at 64% compared to just 17% of PCL nanofibers alone [31]. The cytoskeletons of the cells exhibit a wide branched network of elongated actin that would facilitate to achieve better cell extension and growth in the environment. A recent study of lignin/PCL-hydroxyapatite composite had reported an observation of elongated filopodia formed on the film that indicating the maturity of the cell growth stage towards their innate environment [32].
Chondrogenic differentiation of BMSCs on PLLA/LP nanofibers
The glycosaminoglycans (GAG) secretion of BMSCs cultured on PLLA/LP nanofibers was evaluated by using 1,9-dimethylmethylene blue (DMMB) assay. GAG is a key marker to identify the process of chondrogenesis and cartilage formation [33]. As shown in Fig. 5A, the GAG production in PLLA/LP groups were higher than that in PLLA group at 21 days, which was increased by 54.29% for PLLA/LP10, 101.07% for PLLA/LP20, 172.56% for PLLA/LP30, and 79.49% for PLLA/LP40. These results indicated that PLLA/LP scaffold had positive effects on GAG secretion for BMSCs. This is important to promote the favorable differentiation of BMSCs at the early stage that will be coupled with the expression of chondrogenic-specific genes [34].
The chondrogenic differentiation of the cells were evaluated through quantitative real-time polymerase chain reaction (qRT-PCR) detection of chondrogenic-related genes expression in BMSCs for 21 days. The collagen type II (Col2a1), aggrecan (ACAN), and SRY (sex determining region Y)-box9 (Sox9), collagen type I (Col1a1) and collagen type X (Col10a1) are key genes to distinguish chondrogenesis [35,36,37]. As shown in Fig. 5B–D, the PLLA/LP nanofibers upregulated the gene expression levels of BMSCs compared with PLLA membrane, in especially PLLA/LP30 group. The expression of gene levels on PLLA/LP30 group in 21 days were all higher than that of PLLA group: nearly 300.73% higher for Col2a1, 164.49% higher for ACAN, and 234.09% higher for SOX9. The slow and minimal increase of Col10al throughout the days are the result of its typical expression at a later stage of chondrogenesis towards cartilage maturation and hypertrophy [33]. The low expression of Col10al in PLLA/LP30 indicates that the cell growth is further away from chondrocyte hypertrophy [38]. This is also observed in Col1a1, where it’s downregulated by the 21 days, with PLLA/LP20 and 30 exhibiting the lowest expression. These results suggest that PLLA/LP synergistically enhances chondrogenic differentiation of the BMSCs.
The secretion of collagen type II (Col2a1), which is specific for cartilage, was detected by immunofluorescence. As shown in Fig. 5E, PLLA/LP nanofibers also showed a significantly increased accumulation of Col2a1 after 21 days of culture than PLLA. Moreover, among all the groups, BMSCs on PLLA/LP30 produced the most abundant extracellular matrix that was rich in Col2a1. The abundance of Col2al indicates primary growth in chondrocytes which is consistent within the cartilaginous tissues [16, 37].
PLLA/LP nanofibers promoted cartilage regeneration in vivo
To assess the ability of cartilage regeneration in vivo, the PLLA/LP30 nanofibers were introduced on the surface of the patellar groove of Sprague-Dawley(SD) rat femurs. No synovial hyperplasia and inflammation in each group was observed after 6 weeks treatment on the knee joints (Fig. 6A). After 6 weeks of post-transplantation, only a few reparative tissues in the defect of the control group, and there were distinct boundary between regenerated neo-tissue and original cartilage. The defects in the control group with BMSCs only contained a few regenerated neo-tissue that are related to the surrounding cartilage. In contrast, the repaired neo-tissue tissues observed in the PLLA/LP30 group exhibited compacted and well-integrated with the neighboring cartilage tissue. We further identified the macroscopic observations by the International Cartilage Repair Society (ICRS) scores. The PLLA/LP30 group showed the highest ICRS scores among all the groups, 12.33 ± 2.05 and 18.67 ± 0.94 on week 4 and 6 week 6, respectively (Fig. 6B).
Histological evaluation with hematoxylin and eosin (HE) and safranin O-fast green staining were performed after the surgery treatment (Fig. 7A, B). After 6 weeks, the control group exhibited reparative neo-tissues, primarily fibrous tissue with a loose and detached interface to the surrounding cartilage. On another hand, the PLLA/LP30 with cells exhibited the formation of well-integrated hyaline cartilage surrounding the affected cartilage area. The results are here aligned with the GAG and gene expression exhibited with the DMMB assay and qRT-PCR. Specifically, the regenerated cartilage in the PLLA/LP30 group exhibited a more uniform and compact tissue than the other groups, which exhibit minimal differences from the existing surrounding cartilage tissue.
These results were additionally confirmed by the quantitative histological scores (Fig. 7C). At post-transplantation week 4 and 6, the mean score of the defect treated in the PLLA/LP30 group was higher than that treated using only BMSCs. The histological score in the PLLA/LP30 group were 9.33 ± 0.47 and 11.00 ± 0.82 on week 4 and 6, respectively. Immunohistochemistry staining was performed to confirm the levels of collagen type II in the repaired tissue (Fig. 7D). The results presented an almost negative staining in the untreated groups. After 6 weeks of treatment, only a few positive staining was found in the control with BMSCs. A stronger positive staining indicated favorable tissue regeneration in the PLLA/LP30 group after 4- and 6-weeks post-transplantation as compared to other groups.