Polonsky WH, Henry RR. Poor medication adherence in type 2 diabetes: recognizing the scope of the problem and its key contributors. Patient Prefer Adherence. 2016;10:1299–307.
Article
PubMed
PubMed Central
Google Scholar
Loretz B, et al. Oral gene delivery: strategies to improve stability of pDNA towards intestinal digestion. J Drug Target. 2006;14(5):311–9.
Article
CAS
PubMed
Google Scholar
Lehr C-M, et al. An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop. Int J Pharm. 1991;70(3):235–40.
Article
CAS
Google Scholar
Gardner ML. Gastrointestinal absorption of intact proteins. Annu Rev Nutr. 1988;8:329–50.
Article
CAS
PubMed
Google Scholar
Corfield AP, et al. Mucins in the gastrointestinal tract in health and disease. Front Biosci. 2001;6:D1321–57.
Article
CAS
PubMed
Google Scholar
Fallingborg J, et al. pH-profile and regional transit times of the normal gut measured by a radiotelemetry device. Aliment Pharmacol Ther. 1989;3(6):605–13.
Article
CAS
PubMed
Google Scholar
Perry SL, McClements DJ. Recent advances in encapsulation, protection, and oral delivery of bioactive proteins and peptides using colloidal systems. Molecules. 2020;25(5):1161.
Article
CAS
PubMed Central
Google Scholar
Caffarel-Salvador E, et al. Oral delivery of biologics using drug-device combinations. Curr Opin Pharmacol. 2017;36:8–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marasini N, Skwarczynski M, Toth I. Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines. 2014;13(11):1361–76.
Article
CAS
PubMed
Google Scholar
Yoshida M, et al. Complexation hydrogels as potential carriers in oral vaccine delivery systems. Eur J Pharm Biopharm. 2017;112:138–42.
Article
CAS
PubMed
Google Scholar
des Rieux A, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1–27.
Article
PubMed
CAS
Google Scholar
McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Adv Colloid Interface Sci. 2018;253:1–22.
Article
CAS
PubMed
Google Scholar
Gabor F, et al. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev. 2004;56(4):459–80.
Article
CAS
PubMed
Google Scholar
Ibrahim YHY, et al. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru. 2019;28:403–16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Musika J, Chudapongse N. Development of lipid-based nanocarriers for increasing gastrointestinal absorption of Lupinifolin. Planta Med. 2020;86(5):364–72.
Article
CAS
PubMed
Google Scholar
Dumont C, et al. In-vitro evaluation of solid lipid nanoparticles: ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int J Pharm. 2019;565:409–18.
Article
CAS
PubMed
Google Scholar
Kurd M, et al. Oral delivery of indinavir using mPEG-PCL nanoparticles: preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol. 2019;47(1):2123–33.
Article
CAS
PubMed
Google Scholar
Bransil R, Turner BS. Mucin structure, aggregation, physiological functions and biomedical applications. Curr Opin Colloid Interface Sci. 2006;11(2–3):164–70.
Article
CAS
Google Scholar
Offner GD, et al. The amino-terminal sequence of MUC5B contains conserved multifunctional D domains: implications for tissue-specific mucin functions. Biochem Biophys Res Commun. 1998;251(1):350–5.
Article
CAS
PubMed
Google Scholar
de Bolos C, Real FX, Lopez-Ferrer A. Regulation of mucin and glycoconjugate expression: from normal epithelium to gastric tumors. Front Biosci. 2001;6:d1256–63.
PubMed
Google Scholar
Schneider H, et al. Study of mucin turnover in the small intestine by in vivo labeling. Sci Rep. 2018;8(1):1–11.
Google Scholar
Johansson MEV, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci. 2008;105(39):15064–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arul GS, et al. Mucin gene expression in Barrett’s oesophagus: an in situ hybridisation and immunohistochemical study. Gut. 2000;47(6):753–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho SB, et al. The adherent gastric mucous layer is composed of alternating layers of MUC5AC and MUC6 mucin proteins. Dig Dis Sci. 2004;49(10):1598–606.
Article
CAS
PubMed
Google Scholar
Gustafsson JK, et al. An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. Am J Physiol Gastrointest Liver Physiol. 2012;302(4):G430–8.
Article
CAS
PubMed
Google Scholar
Johansson MEV, Sjövall H, Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10(6):352–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. 2010;26(6):547–53.
Article
PubMed
Google Scholar
Vaishnava S, et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chu H, et al. Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science. 2012;337(6093):477–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johansson MEV, Hansson GC. Keeping bacteria at a distance. Science. 2011;334(6053):182–3.
Article
CAS
PubMed
Google Scholar
Meaney C, O’Driscoll C. Mucus as a barrier to the permeability of hydrophilic and lipophilic compounds in the absence and presence of sodium taurocholate micellar systems using cell culture models. Eur J Pharm Sci. 1999;8(3):167–75.
Article
CAS
PubMed
Google Scholar
Dekker J, et al. The MUC family: an obituary. Trends Biochem Sci. 2002;27(3):126–31.
Article
CAS
PubMed
Google Scholar
Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.
Article
CAS
PubMed
Google Scholar
Verdugo P. Goblet cells secretion and mucogenesis. Annu Rev Physiol. 1990;52(1):157–76.
Article
CAS
PubMed
Google Scholar
Shogren R, Gerken TA, Jentoft N. Role of glycosylation on the conformation and chain dimensions of O-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry. 1989;28(13):5525–36.
Article
CAS
PubMed
Google Scholar
Sheehan JK, Oates K, Carlstedt I. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem J. 1986;239(1):147–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrmann A, et al. Studies on the “insoluble” glycoprotein complex from human colon Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem. 1999;274(22):15828–36.
Article
CAS
PubMed
Google Scholar
Van Klinken BJ, et al. Mucin gene structure and expression: protection vs adhesion. Am J Physiol-Gastrointest Liver Physiol. 1995;269(5):G613–27.
Article
Google Scholar
Neutra MR. Gastrointestinal mucus: synthesis, secretion, and function. Physiol Gastrointest Tract. 1987:975–1009.
Moran AP, Gupta A, Joshi L. Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut. 2011;60(10):1412–25.
Article
CAS
PubMed
Google Scholar
Yudin AI, Hanson FW, Katz DF. Human cervical mucus and its interaction with sperm: a fine-structural view. Biol Reprod. 1989;40(3):661–71.
Article
CAS
PubMed
Google Scholar
Olmsted SS, et al. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys J. 2001;81(4):1930–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajka BH, et al. The influence of small intestinal mucus structure on particle transport ex vivo. Colloids Surf B. 2015;135:73–80.
Article
CAS
Google Scholar
Ensign LM, et al. Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Mol Pharm. 2013;10(6):2176–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdulkarim M, et al. Nanoparticle diffusion within intestinal mucus: three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles. Eur J Pharm Biopharm. 2015;97:230–8.
Article
CAS
PubMed
Google Scholar
Celli J, et al. Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromol. 2005;6(3):1329–33.
Article
CAS
Google Scholar
Georgiades P, et al. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers. 2014;101(4):366–77.
Article
CAS
PubMed
Google Scholar
Yildiz HM, et al. Food-associated stimuli enhance barrier properties of gastrointestinal mucus. Biomaterials. 2015;54:1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma A, et al. In vitro reconstitution of an intestinal mucus layer shows that cations and pH control the pore structure that regulates its permeability and barrier function. ACS Appl Bio Mater. 2020;3(5):2897–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nhu NTQ, et al. Alkaline pH increases swimming speed and facilitates mucus penetration for Vibrio cholerae. J Bacteriol. 2021;203(7):e00607-20.
Article
PubMed
PubMed Central
Google Scholar
Yildiz HM, et al. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. J Drug Target. 2015;23(7–8):768–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mackie A, et al. Increasing dietary oat fibre decreases the permeability of intestinal mucus. J Funct Foods. 2016;26:418–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maisel K, et al. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release. 2015;197:48–57.
Article
CAS
PubMed
Google Scholar
Xu R-J. Development of the newborn GI tract and its relation to colostrum/milk intake: a review. Reprod Fertil Dev. 1996;8(1):35–48.
Article
CAS
PubMed
Google Scholar
Farinati F, et al. Changes in parietal and mucous cell mass in the gastric mucosa of normal subjects with age: a morphometric study. Gerontology. 1993;39(3):146–51.
Article
CAS
PubMed
Google Scholar
Corfield AP, et al. Sialic acids in human gastric aspirates: detection of 9-O-lactyl- and 9-O-acetyl-N-acetylneuraminic acids and a decrease in total sialic acid concentration with age. Clin Sci (Lond). 1993;84(5):573–9.
Article
CAS
Google Scholar
Cryer B, et al. Effect of aging on gastric and duodenal mucosal prostaglandin concentrations in humans. Gastroenterology. 1992;102(4):1118–23.
Article
CAS
PubMed
Google Scholar
Larhed AW, et al. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci. 1997;86(6):660–5.
Article
CAS
PubMed
Google Scholar
Matthes I, et al. Mucus models for investigation of intestinal absorption mechanisms. 4. Comparison of mucus models with absorption models in vivo and in situ for prediction of intestinal drug absorption. Pharmazie. 1992;47(10):787–91.
CAS
PubMed
Google Scholar
Kas HS. Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul. 1997;14(6):689–711.
Article
CAS
PubMed
Google Scholar
Svensson O, Arnebrant T. Mucin layers and multilayers—physicochemical properties and applications. Curr Opin Colloid Interface Sci. 2010;15(6):395–405.
Article
CAS
Google Scholar
Rubinstein A, Tirosh B. Mucus gel thickness and turnover in the gastrointestinal tract of the rat: response to cholinergic stimulus and implication for mucoadhesion. Pharm Res. 1994;11(6):794–9.
Article
CAS
PubMed
Google Scholar
Navabi N, et al. Helicobacter pylori infection impairs the mucin production rate and turnover in the murine gastric mucosa. Infect Immun. 2013;81(3):829–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johansson ME. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. PLoS ONE. 2012;7(7):e41009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pothuraju R, et al. Mechanistic and functional shades of mucins and associated glycans in colon cancer. Cancers (Basel). 2020;12(3):649.
Article
CAS
PubMed Central
Google Scholar
Blank M, et al. Expression of MUC2-mucin in colorectal adenomas and carcinomas of different histological types. Int J Cancer. 1994;59(3):301–6.
Article
CAS
PubMed
Google Scholar
Van der Sluis M, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131(1):117–29.
Article
PubMed
CAS
Google Scholar
Martens EC, et al. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem. 2009;284(27):18445–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4(1):45–60.
Article
CAS
PubMed
Google Scholar
Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–30.
Article
PubMed
PubMed Central
Google Scholar
Okudaira K, et al. MUC2 gene promoter methylation in mucinous and non-mucinous colorectal cancer tissues. Int J Oncol. 2010;36(4):765–75.
CAS
PubMed
Google Scholar
Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):77–99.
Article
CAS
PubMed
Google Scholar
Johansson ME, et al. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS ONE. 2010;5(8):e12238.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577–94.
Article
CAS
PubMed
Google Scholar
Heazlewood CK, et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 2008;5(3):e54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bergstrom K, et al. Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 2017;10(1):91–103.
Article
CAS
PubMed
Google Scholar
Roy RK, et al. CEACAM6 is upregulated by Helicobacter pylori CagA and is a biomarker for early gastric cancer. Oncotarget. 2016;7(34):55290–301.
Article
PubMed
PubMed Central
Google Scholar
Locker GY, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.
Article
CAS
PubMed
Google Scholar
Comelli EM, et al. Biomarkers of human gastrointestinal tract regions. Mamm Genome. 2009;20(8):516–27.
Article
CAS
PubMed
Google Scholar
Soendergaard C, et al. Alpha-1 antitrypsin and granulocyte colony-stimulating factor as serum biomarkers of disease severity in ulcerative colitis. Inflamm Bowel Dis. 2015;21(5):1077–88.
Article
PubMed
Google Scholar
Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68(12):7010–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serada S, et al. Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis. Inflamm Bowel Dis. 2012;18(11):2169–79.
Article
PubMed
Google Scholar
Juge N. Microbial adhesins to gastrointestinal mucus. Trends Microbiol. 2012;20(1):30–9.
Article
CAS
PubMed
Google Scholar
Boekhorst J, et al. Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology. 2006;152(Pt 1):273–80.
Article
CAS
PubMed
Google Scholar
Miyoshi Y, et al. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem. 2006;70(7):1622–8.
Article
CAS
PubMed
Google Scholar
Watanabe M, et al. An adhesin-like protein, Lam29, from Lactobacillus mucosae ME-340 binds to histone H3 and blood group antigens in human colonic mucus. Biosci Biotechnol Biochem. 2012;76(9):1655–60.
Article
CAS
PubMed
Google Scholar
Van Tassell ML, Miller MJ. Lactobacillus adhesion to mucus. Nutrients. 2011;3(5):613–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Banla LI, et al. Sortase-dependent proteins promote gastrointestinal colonization by Enterococci. Infect Immun. 2019;87(5):e00853-18.
Article
PubMed
PubMed Central
Google Scholar
Erdem AL, et al. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol. 2007;189(20):7426–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez B, et al. A flagellin-producing Lactococcus strain: interactions with mucin and enteropathogens. FEMS Microbiol Lett. 2011;318(2):101–7.
Article
CAS
PubMed
Google Scholar
Tasteyre A, et al. Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun. 2001;69(12):7937–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu QV, McGuckin MA, Mendz GL. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol. 2008;57(Pt 7):795–802.
Article
CAS
PubMed
Google Scholar
Jin LZ, et al. Characterization and purification of porcine small intestinal mucus receptor for Escherichia coli K88ac fimbrial adhesin. FEMS Immunol Med Microbiol. 2000;27(1):17–22.
Article
CAS
PubMed
Google Scholar
Chessa D, et al. RosE represses Std fimbrial expression in Salmonella enterica serotype Typhimurium. Mol Microbiol. 2008;68(3):573–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kankainen M, et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci USA. 2009;106(40):17193–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Ossowski I, et al. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol. 2010;76(7):2049–57.
Article
CAS
Google Scholar
Geerlings SY, et al. Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how? Microorganisms. 2018;6(3):75.
Article
CAS
PubMed Central
Google Scholar
Martens EC, Chiang HC, Gordon JI. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe. 2008;4(5):447–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Praharaj AB, et al. Molecular dynamics insights into the structure, function, and substrate binding mechanism of mucin desulfating sulfatase of gut microbe Bacteroides fragilis. J Cell Biochem. 2018;119(4):3618–31.
Article
CAS
PubMed
Google Scholar
Lidell ME, et al. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc Natl Acad Sci USA. 2006;103(24):9298–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akiyama Y, Nagahara N. Novel formulation approaches to oral mucoadhesive drug delivery systems. Drugs Pharm Sci. 1999;98:477–505.
Article
CAS
Google Scholar
Dhaliwal S, et al. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation. AAPS J. 2008;10(2):322–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han HK, Shin HJ, Ha DH. Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur J Pharm Sci. 2012;46(5):500–7.
Article
CAS
PubMed
Google Scholar
Manconi M, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation. AAPS PharmSciTech. 2013;14(2):485–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin BS, et al. Enhanced absorption and tissue distribution of paclitaxel following oral administration of DHP 107, a novel mucoadhesive lipid dosage form. Cancer Chemother Pharmacol. 2009;64(1):87–94.
Article
CAS
PubMed
Google Scholar
Cao QR, et al. Enhanced oral bioavailability of novel mucoadhesive pellets containing valsartan prepared by a dry powder-coating technique. Int J Pharm. 2012;434(1–2):325–33.
Article
CAS
PubMed
Google Scholar
Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–68.
Article
CAS
PubMed
Google Scholar
Durrer C, et al. Mucoadhesion of latexes. II. Adsorption isotherms and desorption studies. Pharm Res. 1994;11(5):680–3.
Article
CAS
PubMed
Google Scholar
Smart JD. The role of water movement and polymer hydration in mucoadhesion. Drugs Pharm Sci. 1999;98:11–23.
Article
CAS
Google Scholar
Mortazavi SA, Smart JD. An investigation into the role of water movement and mucus gel dehydration in mucoadhesion. J Control Release. 1993;25(3):197–203.
Article
CAS
Google Scholar
Silberberg-Bouhnik M, et al. Osmotic deswelling of weakly charged poly (acrylic acid) solutions and gels. J Polym Sci, Part B: Polym Phys. 1995;33(16):2269–79.
Article
CAS
Google Scholar
Voyutskii SS. Autohesion and adhesion of high polymers. New York: Interscience; 1963.
Google Scholar
Peppas NA, Sahlin JJ. Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials. 1996;17(16):1553–61.
Article
CAS
PubMed
Google Scholar
Mikos A, Peppas N. Scaling concepts and molecular theories of adhesion of synthetic polymers to glycoproteinic networks. In: Bioadhesive drug delivery systems. Boca Raton, FL: CRC Press; 1990. p. 25–42.
Google Scholar
Peppas N, Mikos A. Kinetics of mucus-polymer interactions. Paperback APV. 1990;25:65–85.
Google Scholar
Peppas NA. Molecular calculations of poly(ethylene glycol) transport across a swollen poly (acrylic acid)/mucin interface. J Biomater Sci Polym Ed. 1998;9(6):535–42.
Article
CAS
PubMed
Google Scholar
Sahlin JJ, Peppas NA. An investigation of polymer diffusion in hydrogel laminates using near-field FTIR microscopy. Macromolecules. 1996;29(22):7124–9.
Article
CAS
Google Scholar
Peppas NA, Thomas JB, McGinty J. Molecular aspects of mucoadhesive carrier development for drug delivery and improved absorption. J Biomater Sci Polym Ed. 2009;20(1):1–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edmans JG, et al. Mucoadhesive electrospun fibre-based technologies for oral medicine. Pharmaceutics. 2020;12(6):504.
Article
CAS
PubMed Central
Google Scholar
Derjaguin BV, et al. On the relationship between the electrostatic and the molecular component of the adhesion of elastic particles to a solid surface. J Colloid Interface Sci. 1977;58(3):528–33.
Article
Google Scholar
Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromol. 2008;9(7):1837–42.
Article
CAS
Google Scholar
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015;13(3):1133–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bravo-Osuna I, et al. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 2007;28(13):2233–43.
Article
CAS
PubMed
Google Scholar
Alishahi A, et al. Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chem. 2011;126(3):935–40.
Article
CAS
Google Scholar
Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol. 2019;24(4):504–12.
Article
CAS
PubMed
Google Scholar
Imperiale JC, et al. Oral pharmacokinetics of a chitosan-based nano- drug delivery system of interferon alpha. Polymers (Basel). 2019;11(11):1862.
Article
CAS
Google Scholar
Murthy A, et al. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int J Pharm. 2020;588:119731.
Article
CAS
PubMed
Google Scholar
Wang J, et al. Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. J Control Release. 2020;329:1198–209.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rosso A, et al. Nanocomposite sponges for enhancing intestinal residence time following oral administration. J Control Release. 2021;333:579–92.
Article
CAS
PubMed
Google Scholar
Shin GH, Kim JT. Comparative study of chitosan and oligochitosan coatings on mucoadhesion of curcumin nanosuspensions. Pharmaceutics. 2021;13(12):2154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, et al. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Acta Biomater. 2021;135:506–19.
Article
CAS
PubMed
Google Scholar
Abd El Hady WE, et al. Glutaraldehyde-crosslinked chitosan-polyethylene oxide nanofibers as a potential gastroretentive delivery system of nizatidine for augmented gastroprotective activity. Drug Deliv. 2021;28(1):1795–809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Vimal A. Why Chitosan? From properties to perspective of mucosal drug delivery. Int J Biol Macromol. 2016;91:615–22.
Article
CAS
PubMed
Google Scholar
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1–14.
Article
CAS
PubMed
Google Scholar
Sandri G, et al. Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm. 2005;297(1–2):146–55.
Article
CAS
PubMed
Google Scholar
Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2016;139:52–61.
Article
CAS
PubMed
Google Scholar
Leitner VM, Walker GF, Bernkop-Schnurch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56(2):207–14.
Article
CAS
PubMed
Google Scholar
Moghaddam FA, Atyabi F, Dinarvand R. Preparation and in vitro evaluation of mucoadhesion and permeation enhancement of thiolated chitosan-pHEMA core-shell nanoparticles. Nanomedicine. 2009;5(2):208–15.
Article
CAS
PubMed
Google Scholar
Dunnhaupt S, et al. Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa. Int J Pharm. 2011;408(1–2):191–9.
Article
PubMed
CAS
Google Scholar
Millotti G, et al. In vivo evaluation of thiolated chitosan tablets for oral insulin delivery. J Pharm Sci. 2014;103(10):3165–70.
Article
CAS
PubMed
Google Scholar
Maria S, et al. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide. J Drug Deliv Sci Technol. 2020;58:101807.
Article
CAS
Google Scholar
Singla AK, Chawla M, Singh A. Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm. 2000;26(9):913–24.
Article
CAS
PubMed
Google Scholar
Brown HP. Carboxylic polymers. In: U.S.P. Office, editor. 1957; United States.
Yang X, et al. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking. PLoS ONE. 2012;7(12):e51054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smart JD, Kellaway IW, Worthington HE. An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmacol. 1984;36(5):295–9.
Article
CAS
PubMed
Google Scholar
Bottenberg P, et al. Development and testing of bioadhesive, fluoride-containing slow-release tablets for oral use. J Pharm Pharmacol. 1991;43(7):457–64.
Article
CAS
PubMed
Google Scholar
French DL, Mauger JW. Evaluation of the physicochemical properties and dissolution characteristics of mesalamine: relevance to controlled intestinal drug delivery. Pharm Res. 1993;10(9):1285–90.
Article
CAS
PubMed
Google Scholar
Sarkar D, et al. Sustained release gastroretentive tablet of metformin hydrochloride based on poly (acrylic acid)-grafted-gellan. Int J Biol Macromol. 2017;96:137–48.
Article
CAS
PubMed
Google Scholar
Takeuchi H, et al. Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release. 2003;86(2–3):235–42.
Article
CAS
PubMed
Google Scholar
Naderkhani E, et al. Improved permeability of acyclovir: optimization of mucoadhesive liposomes using the phospholipid vesicle-based permeation assay. J Pharm Sci. 2014;103(2):661–8.
Article
CAS
PubMed
Google Scholar
Ahmad N, et al. Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles. Expert Opin Drug Deliv. 2016;13(5):621–32.
Article
CAS
PubMed
Google Scholar
Cevher E, et al. Evaluation of mechanical and mucoadhesive properties of clomiphene citrate gel formulations containing carbomers and their thiolated derivatives. Drug Deliv. 2008;15(1):57–67.
Article
CAS
PubMed
Google Scholar
Bonengel S, et al. Thiolated alkyl-modified carbomers: novel excipients for mucoadhesive emulsions. Eur J Pharm Sci. 2015;75:123–30.
Article
CAS
PubMed
Google Scholar
Lamson NG, et al. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat Biomed Eng. 2020;4(1):84–96.
Article
CAS
PubMed
Google Scholar
Chickering DE, Mathiowitz E. Bioadhesive microspheres: I. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa. J Control Release. 1995;34(3):251–62.
Article
CAS
Google Scholar
Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31(3):267–85.
Article
CAS
PubMed
Google Scholar
Long L, et al. Investigation of vitamin B12-modified amphiphilic sodium alginate derivatives for enhancing the oral delivery efficacy of peptide drugs. Int J Nanomed. 2019;14:7743–58.
Article
CAS
Google Scholar
Ghosal K, et al. Novel interpenetrating polymeric network based microbeads for delivery of poorly water soluble drug. J Polym Res. 2020;27(4):1–11.
Article
CAS
Google Scholar
Azad AK, et al. Electro-hydrodynamic assisted synthesis of lecithin-stabilized peppermint oil-loaded alginate microbeads for intestinal drug delivery. Int J Biol Macromol. 2021;185:861–75.
Article
CAS
PubMed
Google Scholar
Jindal AB, Wasnik MN, Nair HA. Synthesis of thiolated alginate and evaluation of mucoadhesiveness, cytotoxicity and release retardant properties. Indian J Pharm Sci. 2010;72(6):766–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidovich-Pinhas M, Harari O, Bianco-Peled H. Evaluating the mucoadhesive properties of drug delivery systems based on hydrated thiolated alginate. J Control Release. 2009;136(1):38–44.
Article
CAS
PubMed
Google Scholar
Bernkop-Schnurch A, Kast CE, Richter MF. Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. J Control Release. 2001;71(3):277–85.
Article
CAS
PubMed
Google Scholar
Netsomboon K, Bernkop-Schnurch A. Mucoadhesive vs. mucopenetrating particulate drug delivery. Eur J Pharm Biopharm. 2016;98:76–89.
Article
CAS
PubMed
Google Scholar
Grabovac V, Guggi D, Bernkop-Schnurch A. Comparison of the mucoadhesive properties of various polymers. Adv Drug Deliv Rev. 2005;57(11):1713–23.
Article
CAS
PubMed
Google Scholar
Mortazavi SAR. Investigation of various parameters influencing the duration of mucoadhesion of some polymer containing discs. DARU J Pharm Sci. 2002;10(3):98–104.
CAS
Google Scholar
Park H, Robinson JR. Mechanisms of mucoadhesion of poly(acrylic acid) hydrogels. Pharm Res. 1987;4(6):457–64.
Article
CAS
PubMed
Google Scholar
Suwannateep N, et al. Mucoadhesive curcumin nanospheres: biological activity, adhesion to stomach mucosa and release of curcumin into the circulation. J Control Release. 2011;151(2):176–82.
Article
CAS
PubMed
Google Scholar
Xiong W, et al. Enhancing the photostability and bioaccessibility of resveratrol using ovalbumin-carboxymethylcellulose nanocomplexes and nanoparticles. Food Funct. 2018;9(7):3788–97.
Article
CAS
PubMed
Google Scholar
Gadalla HH, et al. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy. Int J Pharm. 2020;577: 119070.
Article
CAS
PubMed
Google Scholar
Kaur K, Kumar P, Kush P. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Biomed Pharmacother. 2020;128:110297.
Article
CAS
PubMed
Google Scholar
Nair AB, et al. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of sitagliptin: optimization and in vivo evaluation in rats. Materials (Basel). 2019;12(24):4239.
Article
CAS
Google Scholar
Wood KM, Stone GM, Peppas NA. Wheat germ agglutinin functionalized complexation hydrogels for oral insulin delivery. Biomacromol. 2008;9(4):1293–8.
Article
CAS
Google Scholar
Catron ND, Lee H, Messersmith PB. Enhancement of poly(ethylene glycol) mucoadsorption by biomimetic end group functionalization. Biointerphases. 2006;1(4):134–41.
Article
CAS
PubMed
Google Scholar
Cheng H, et al. Design of self-polymerized insulin loaded poly(n-butylcyanoacrylate) nanoparticles for tunable oral delivery. J Control Release. 2020;321:641–53.
Article
CAS
PubMed
Google Scholar
Amin MK, Boateng JS. Surface modification of mobile composition of matter (MCM)-41 type silica nanoparticles for potential oral mucosa vaccine delivery. J Pharm Sci. 2020;109:2271–83.
Article
CAS
PubMed
Google Scholar
Laha B, et al. Novel propyl karaya gum nanogels for bosentan: in vitro and in vivo drug delivery performance. Colloids Surf B Biointerfaces. 2019;180:263–72.
Article
CAS
PubMed
Google Scholar
Cheng Z, et al. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnol. 2018;16(1):24.
Article
CAS
Google Scholar
Harloff-Helleberg S, et al. Exploring the mucoadhesive behavior of sucrose acetate isobutyrate: a novel excipient for oral delivery of biopharmaceuticals. Drug Deliv. 2019;26(1):532–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao P, et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat Commun. 2021;12(1):7162.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker D, et al. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci Adv. 2015;1(11):e1500501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choi H, et al. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact Mater. 2022;9:54–62.
Article
CAS
PubMed
Google Scholar
Yang Y, et al. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. Sci Adv. 2020;6(6):eaay9937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, et al. Chiral mesoporous silica nano-screws as an efficient biomimetic oral drug delivery platform through multiple topological mechanisms. Acta Pharm Sin B. 2021;12:1432–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang Y, et al. Nanoparticles targeted against cryptococcal pneumonia by interactions between Chitosan and its peptide ligand. Nano Lett. 2018;18(10):6207–13.
Article
CAS
PubMed
Google Scholar
Cai L, et al. Boston ivy-inspired disc-like adhesive microparticles for drug delivery. Research (Wash D C). 2021;2021:9895674.
CAS
Google Scholar
Chen W, et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci Adv. 2022;8(1):eabk1792.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang M, et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew Chem Int Ed Engl. 2011;50(11):2597–600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai SK, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA. 2007;104(5):1482–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourganis V, et al. On the synthesis of mucus permeating nanocarriers. Eur J Pharm Biopharm. 2015;97(Pt A):239–49.
Article
CAS
PubMed
Google Scholar
Wang YY, et al. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl. 2008;47(50):9726–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mert O, et al. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. J Control Release. 2012;157(3):455–60.
Article
CAS
PubMed
Google Scholar
Maisel K, et al. Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo. Nanomedicine. 2016;11(11):1337–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Q, et al. Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus. J Control Release. 2013;170(2):279–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reboredo C, et al. Preparation and evaluation of PEG-coated zein nanoparticles for oral drug delivery purposes. Int J Pharm. 2021;597:120287.
Article
CAS
PubMed
Google Scholar
Anderski J, et al. Mucus-penetrating nanoparticles: promising drug delivery systems for the photodynamic therapy of intestinal cancer. Eur J Pharm Biopharm. 2018;129:1–9.
Article
CAS
PubMed
Google Scholar
Tan X, et al. Hydrophilic and electroneutral nanoparticles to overcome mucus trapping and enhance oral delivery of insulin. Mol Pharm. 2020;17(9):3177–91.
Article
CAS
PubMed
Google Scholar
Guo S, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnol. 2021;19(1):32.
Article
CAS
Google Scholar
Sato H, et al. Polymeric nanocarriers with mucus-diffusive and mucus-adhesive properties to control pharmacokinetic behavior of orally dosed Cyclosporine A. J Pharm Sci. 2020;109(2):1079–85.
Article
CAS
PubMed
Google Scholar
Warren MR, et al. Milk exosomes with enhanced mucus penetrability for oral delivery of siRNA. Biomater Sci. 2020;9:4260–77.
Article
Google Scholar
Le Z, et al. Antioxidant enzymes sequestered within lipid-polymer hybrid nanoparticles for the local treatment of inflammatory bowel disease. ACS Appl Mater Interfaces. 2021;13(47):55966–77.
Article
CAS
PubMed
Google Scholar
Goto T, et al. Gastrointestinal transit and mucoadhesive characteristics of complexation hydrogels in rats. J Pharm Sci. 2006;95(2):462–9.
Article
CAS
PubMed
Google Scholar
Puranik AS, et al. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics. Eur J Pharm Biopharm. 2016;108:196–213.
Article
CAS
PubMed
Google Scholar
Tang BC, et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA. 2009;106(46):19268–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients, vol. 6. London: Pharmaceutical Press; 2006.
Google Scholar
Emanuele RM. FLOCOR: a new anti-adhesive, rheologic agent. Expert Opin Investig Drugs. 1998;7(7):1193–200.
Article
CAS
PubMed
Google Scholar
Li X, et al. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int J Nanomed. 2011;6:3151–62.
CAS
Google Scholar
Chen D, et al. Comparative study of Pluronic((R)) F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int J Pharm. 2013;449(1–2):1–9.
Article
CAS
PubMed
Google Scholar
Fares AR, ElMeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018;25(1):132–42.
Article
CAS
PubMed
Google Scholar
Huang Y, et al. Oral nanotherapeutics with enhanced mucus penetration and ROS-responsive drug release capacities for delivery of curcumin to colitis tissues. J Mater Chem B. 2021;9:1604–15.
Article
CAS
PubMed
Google Scholar
Date AA, et al. Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials. 2018;185:97–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song W, et al. Enhanced digestion inhibition and mucus penetration of F127-modified self-nanoemulsions for improved oral delivery. Asian J Pharm Sci. 2018;13(4):326–35.
Article
PubMed
PubMed Central
Google Scholar
Wada A, Nakamura H. Nature of the charge distribution in proteins. Nature. 1981;293(5835):757–8.
Article
CAS
PubMed
Google Scholar
Michen B, Graule T. Isoelectric points of viruses. J Appl Microbiol. 2010;109(2):388–97.
Article
CAS
PubMed
Google Scholar
Pereira de Sousa I, et al. Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. Eur J Pharm Biopharm. 2015;97(Pt A):273–9.
Article
CAS
PubMed
Google Scholar
Pereira de Sousa I, et al. Insulin loaded mucus permeating nanoparticles: addressing the surface characteristics as feature to improve mucus permeation. Int J Pharm. 2016;500(1–2):236–44.
Article
CAS
PubMed
Google Scholar
Wu J, et al. Biomimetic Viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl Mater Interfaces. 2018;10(12):9916–28.
Article
CAS
PubMed
Google Scholar
Bao C, et al. Enhanced transport of shape and rigidity-tuned α-lactalbumin nanotubes across intestinal mucus and cellular barriers. Nano Lett. 2020;20(2):1352–61.
Article
CAS
PubMed
Google Scholar
Cheng H, et al. Design of folic acid decorated virus-mimicking nanoparticles for enhanced oral insulin delivery. Int J Pharm. 2021;596:120297.
Article
CAS
PubMed
Google Scholar
Zhang Y, et al. Virus-mimicking mesoporous silica nanoparticles with an electrically neutral and hydrophilic surface to improve the oral absorption of insulin by breaking through dual barriers of the mucus layer and the intestinal epithelium. ACS Appl Mater Interfaces. 2021;13(15):18077–88.
Article
CAS
PubMed
Google Scholar
Han X, et al. Zwitterionic micelles efficiently deliver oral insulin without opening tight junctions. Nat Nanotechnol. 2020;15:605–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, et al. Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. J Colloid Interface Sci. 2021;582(Pt A):364–75.
Article
CAS
PubMed
Google Scholar
Rao R, et al. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater Sci. 2021;9(3):685–99.
Article
CAS
PubMed
Google Scholar
Biosca A, et al. Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment. J Control Release. 2021;331:364–75.
Article
CAS
PubMed
Google Scholar
Hu S, et al. Zwitterionic polydopamine modified nanoparticles as an efficient nanoplatform to overcome both the mucus and epithelial barriers. Chem Eng J. 2022;428:132107.
Article
CAS
Google Scholar
Dunnhaupt S, et al. Nano-carrier systems: strategies to overcome the mucus gel barrier. Eur J Pharm Biopharm. 2015;96:447–53.
Article
CAS
PubMed
Google Scholar
Rohrer J, et al. Mucus permeating thiolated self-emulsifying drug delivery systems. Eur J Pharm Biopharm. 2016;98:90–7.
Article
CAS
PubMed
Google Scholar
Sheffner AL. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-l-cysteine. Ann N Y Acad Sci. 1963;106:298–310.
Article
CAS
PubMed
Google Scholar
Takatsuka S, et al. Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant. Eur J Pharm Biopharm. 2006;62(1):52–8.
Article
CAS
PubMed
Google Scholar
Tian C, et al. N-acetyl-L-cysteine functionalized nanostructured lipid carrier for improving oral bioavailability of curcumin: preparation, in vitro and in vivo evaluations. Drug Deliv. 2017;24(1):1605–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samaridou E, et al. Enzyme-functionalized PLGA nanoparticles with enhanced mucus permeation rate. Nano Life. 2014;4(04):1441013.
Article
CAS
Google Scholar
Müller C, et al. Preparation and characterization of mucus-penetrating papain/poly (acrylic acid) nanoparticles for oral drug delivery applications. J Nanopart Res. 2013;15(1):1353.
Article
CAS
Google Scholar
Pereira de Sousa I, et al. Nanoparticles decorated with proteolytic enzymes, a promising strategy to overcome the mucus barrier. Eur J Pharm Biopharm. 2015;97(Pt A):257–64.
Article
CAS
PubMed
Google Scholar
Zafar H, et al. Design of enzyme decorated mucopermeating nanocarriers for eradication of H. pylori infection. J Nanopart Res. 2020;22(1):1–21.
Article
CAS
Google Scholar
Efiana NA, et al. Improved intestinal mucus permeation of vancomycin via incorporation into nanocarrier containing papain-palmitate. J Pharm Sci. 2019;108(10):3329–39.
Article
CAS
PubMed
Google Scholar
Razzaq S, et al. A multifunctional polymeric micelle for targeted delivery of paclitaxel by the inhibition of the P-glycoprotein transporters. Nanomaterials. 2021;11(11):2858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Homayun B, Choi HJ. Halloysite nanotube-embedded microparticles for intestine-targeted co-delivery of biopharmaceuticals. Int J Pharm. 2020;579:119152.
Article
CAS
PubMed
Google Scholar
MuGard (oral mucoadhesive) FDA Approval History. mso-padding-alt:31.0pt 31.0pt 31.0pt 31.0pt mso-border-shadow:yes"> https://www.drugs.com/history/mugard.html. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs - Sitavig. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=203791. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs—Oravig. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process. Accessed on 6 Nov 2021
510(k) Premarket Notification—ProctiGard. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K140558. Accessed on 6 Nov 2021
Orphan Drug Designations and Approvals—SP1049C. https://www.accessdata.fda.gov/scripts/opdlisting/oopd/detailedIndex.cfm?cfgridkey=248107. Accessed on 6 Nov 2021
Drug Approval Package: Cetylev effervescent tablets for oral solution, 500 mg and 2.5 grams (acetylcysteine). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/207916_toc.cfm. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Diphenoxylate Hydrochloride and Atropine Sulfate). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=085372. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (TARKA). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020591. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (KADIAN). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020616. Accessed on 6 Nov 2021
Drug Approval Package: Uroxatral (alfuzosin hydrochloride) extended release tablets. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/021287_uroxatral_toc.cfm. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (K-Tab). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=018279. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Exalgo). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021217. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Lescol XL). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021192. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Mirapex). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020667. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Voltaren-XR). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020254. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Kapspargo Sprinkle). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=210428. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Glumetza). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021748. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Razadyne ER). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021615. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Trokendi XR). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=201635. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Wellbutrin XL). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021515. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Elepsia XR). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=204417. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs (Aciphex). https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=020973. Accessed on 6 Nov 2021
U.S. FDA approves generic drug product containing Lubrizol’s Carbopol® Polymer (Carbomer Homopolymer). https://newscenter.lubrizol.com/news-releases/news-release-details/us-fda-approves-generic-drug-product-containing-lubrizols?ID=1745109&c=250972&p=irol-newsArticle. Accessed on 6 Nov 2021
Valeant and Progenics Announce FDA approves relistor tablets for the treatment of opioid-induced constipation in adults with chronic non-cancer pain. https://www.drugs.com/newdrugs/valeant-progenics-announce-fda-approves-relistor-opioid-induced-constipation-adults-chronic-non-4411.html. Accessed on 6 Nov 2021
Drugs@FDA: FDA-Approved Drugs—Meprom. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020500. Accessed on 6 Nov 2021
Drug Approval Package—Malarone. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/021078_malarone.cfm. Accessed on 6 Nov 2021
Eastwood GL. Gastrointestinal epithelial renewal. Gastroenterology. 1977;72(5, Part 1):962–75. Accessed on 6 Nov 2021
Article
CAS
PubMed
Google Scholar