Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17(4):385–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piltti KM, Funes GM, Avakian SN, Salibian AA, Huang KI, Carta K, et al. Increasing human neural stem cell transplantation dose alters oligodendroglial and neuronal differentiation after spinal cord injury. Stem Cell Reports. 2017;8(6):1534–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, et al. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells. 2009;27(9):2185–95.
Article
PubMed
Google Scholar
Liu Z, Tang M, Zhao J, Chai R, Kang J. Looking into the future: toward advanced 3D biomaterials for stem-cell-based regenerative medicine. Adv Mater. 2018;30(17):1705388.
Article
CAS
Google Scholar
Li X, Fan C, Xiao Z, Zhao Y, Zhang H, Sun J, et al. A collagen microchannel scaffold carrying paclitaxel-liposomes induces neuronal differentiation of neural stem cells through Wnt/β-catenin signaling for spinal cord injury repair. Biomaterials. 2018;183:114–27.
Article
CAS
PubMed
Google Scholar
Watanabe K, Kamiya D, Nishiyama A, Katayama T, Nozaki S, Kawasaki H, et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat Neurosci. 2005;8(3):288–96.
Article
CAS
PubMed
Google Scholar
Xiao M, Li X, Song Q, Zhang Q, Lazzarino M, Cheng G, et al. A fully 3D interconnected graphene-carbon nanotube web allows the study of glioma infiltration in bioengineered 3D cortex-like networks. Adv Mater. 2018;30(52): e1806132.
Article
PubMed
CAS
Google Scholar
Vieira MS, Santos AK, Vasconcellos R, Goulart VAM, Parreira RC, Kihara AH, et al. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnol Adv. 2018;36(7):1946–70.
Article
CAS
PubMed
Google Scholar
Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev. 2017;117(5):4376–421.
Article
CAS
PubMed
Google Scholar
Baker BM, Chen CS. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 2012;125(Pt 13):3015–24.
CAS
PubMed
PubMed Central
Google Scholar
Petrie RJ, Yamada KM. At the leading edge of three-dimensional cell migration. J Cell Sci. 2012;125(Pt 24):5917–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL, Shenoy VB, et al. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat Mater. 2015;14(12):1262–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A. Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev. 2013;113(5):3297–328.
Article
CAS
PubMed
Google Scholar
Lee J, Abdeen AA, Kim AS, Kilian KA. Influence of biophysical parameters on maintaining the mesenchymal stem cell phenotype. ACS Biomater Sci Eng. 2015;1(4):218–26.
Article
CAS
PubMed
Google Scholar
Roca-Cusachs P, Iskratsch T, Sheetz MP. Finding the weakest link: exploring integrin-mediated mechanical molecular pathways. J Cell Sci. 2012;125(Pt 13):3025–38.
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Ma X, Lin D, Shi H, Yuan Y, Tang W, et al. Magnesium modification of a calcium phosphate cement alters bone marrow stromal cell behavior via an integrin-mediated mechanism. Biomaterials. 2015;53:251–64.
Article
CAS
PubMed
Google Scholar
Yin S, Liu J, Kang Y, Lin Y, Li D, Shao L. Interactions of nanomaterials with ion channels and related mechanisms. Br J Pharmacol. 2019;176(19):3754–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang Y, Liu J, Song B, Feng X, Ou L, Wei L, et al. Potential links between cytoskeletal disturbances and electroneurophysiological dysfunctions induced in the central nervous system by inorganic nanoparticles. Cell Physiol Biochem. 2016;40(6):1487–505.
Article
CAS
PubMed
Google Scholar
Lin CX, Yang SY, Gu JL, Meng J, Xu HY, Cao JM. The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, INa and IK1 channels and heart rhythm in mice. Nanotoxicology. 2017;11(6):827–37.
CAS
PubMed
Google Scholar
Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25(16):2258–68.
Article
CAS
PubMed
Google Scholar
Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep. 2013;3:1604.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aydin T, Gurcan C, Taheri H, Yilmazer A. Graphene based materials in neural tissue regeneration. Adv Exp Med Biol. 2018;1107:129–42.
Article
CAS
PubMed
Google Scholar
Guo R, Li J, Chen C, Xiao M, Liao M, Hu Y, et al. Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces. 2021;200: 111590.
Article
CAS
PubMed
Google Scholar
Fabbro A, Prato M, Ballerini L. Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev. 2013;65(15):2034–44.
Article
CAS
PubMed
Google Scholar
Lee SJ, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng. 2018;15(1): 016018.
Article
PubMed
Google Scholar
Pampaloni NP, Lottner M, Giugliano M, Matruglio A, D’Amico F, Prato M, et al. Single-layer graphene modulates neuronal communication and augments membrane ion currents. Nat Nanotechnol. 2018;13(8):755–64.
Article
CAS
PubMed
Google Scholar
Rauti R, Lozano N, Leon V, Scaini D, Musto M, Rago I, et al. Graphene oxide nanosheets reshape synaptic function in cultured brain networks. ACS Nano. 2016;10(4):4459–71.
Article
CAS
PubMed
Google Scholar
Barrejon M, Rauti R, Ballerini L, Prato M. Chemically cross-linked carbon nanotube films engineered to control neuronal signaling. ACS Nano. 2019;13(8):8879–89.
Article
CAS
PubMed
Google Scholar
Fabbro A, Villari A, Laishram J, Scaini D, Toma FM, Turco A, et al. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano. 2012;6(3):2041–55.
Article
CAS
PubMed
Google Scholar
Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, et al. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci. 2007;27(26):6931–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Driscoll N, Richardson AG, Maleski K, Anasori B, Adewole O, Lelyukh P, et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano. 2018;12(10):10419–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon. 2012;50(1):3–33.
Article
CAS
Google Scholar
Lee HP, Gaharwar AK. Light-responsive inorganic biomaterials for biomedical applications. Adv Sci (Weinh). 2020;7(17):2000863.
Article
CAS
PubMed Central
Google Scholar
Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater. 2018;30(52):1804779.
Article
CAS
Google Scholar
Lin H, Wang X, Yu L, Chen Y, Shi J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017;17(1):384–91.
Article
CAS
PubMed
Google Scholar
Dai C, Chen Y, Jing X, Xiang L, Yang D, Lin H, et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano. 2017;11(12):12696–712.
Article
CAS
PubMed
Google Scholar
Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene). Adv Mater. 2018;30(4):1703284.
Article
CAS
Google Scholar
Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed Engl. 2016;55(47):14569–74.
Article
CAS
PubMed
Google Scholar
Lin H, Gao S, Dai C, Chen Y, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc. 2017;139(45):16235–47.
Article
CAS
PubMed
Google Scholar
Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Interfaces. 2017;9(46):40077–86.
Article
CAS
PubMed
Google Scholar
Rakhi RB, Nayak P, Xia C, Alshareef HN. Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep. 2016;6:36422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hroncekova S, Bertok T, Hires M, Jane E, Lorencova L, Vikartovska A, et al. Ultrasensitive Ti3C2TX MXene/Chitosan nanocomposite-based amperometric biosensor for detection of potential prostate cancer marker in urine samples. Processes (Basel). 2020;8(5):580.
Article
CAS
Google Scholar
Cho YW, Park JH, Lee KH, Lee T, Luo Z, Kim TH. Recent advances in nanomaterial-modified electrical platforms for the detection of dopamine in living cells. Nano Converg. 2020;7(1):40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramanavicius S, Ramanavicius A. Progress and insights in the application of MXenes as new 2D nano-materials suitable for biosensors and biofuel cell design. Int J Mol Sci. 2020;21(23).
Tran NM, Ta QTH, Noh J-S. rGO/Ti3C2Tx heterostructures for the efficient, room-temperature detection of multiple toxic gases. Mater Chem Phys. 2021;273.
Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci Rep. 2017;7(1):1598.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial activity of Ti(3)C(2)Tx MXene. ACS Nano. 2016;10(3):3674–84.
Article
CAS
PubMed
Google Scholar
My Tran N, Thanh Hoai Ta Q, Noh J-S. Unusual synthesis of safflower-shaped TiO2/Ti3C2 heterostructures initiated from two-dimensional Ti3C2 MXene. Appl Surface Sci. 2021;538.
My Tran N, Thanh Hoai Ta Q, Sreedhar A, Noh J-S. Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater. Appl Surface Sci. 2021;537.
Xue Q, Zhang H, Zhu M, Pei Z, Li H, Wang Z, et al. Photoluminescent Ti3 C2 MXene quantum dots for multicolor cellular imaging. Adv Mater. 2017;29(15).
Song M, Pang SY, Guo F, Wong MC, Hao J. Fluoride-free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv Sci (Weinh). 2020;7(24):2001546.
Article
CAS
Google Scholar
Huang K, Li Z, Lin J, Han G, Huang P. Correction: two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(17):6889.
Article
CAS
PubMed
Google Scholar
Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic imaging: contrast agents and their biomedical applications. Adv Mater. 2018.
Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(14):5109–24.
Article
CAS
PubMed
Google Scholar
Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci (Weinh). 2018;5(10):1800518.
Article
PubMed Central
CAS
Google Scholar
Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80.
Article
CAS
PubMed
Google Scholar
Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthc Mater. 2019;8(1): e1801137.
Article
PubMed
CAS
Google Scholar
Yu X, Cai X, Cui H, Lee SW, Yu XF, Liu B. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale. 2017;9(45):17859–64.
Article
CAS
PubMed
Google Scholar
Karlsson LH, Birch J, Halim J, Barsoum MW, Persson PO. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 2015;15(8):4955–60.
Article
CAS
PubMed
Google Scholar
Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens Actuators, B Chem. 2015;218:60–6.
Article
CAS
Google Scholar
Wu W, Ge H, Zhang L, Lei X, Yang Y, Fu Y, et al. Evaluating the cytotoxicity of Ti3C2 MXene to neural stem cells. Chem Res Toxicol. 2020;33(12):2953–62.
Article
CAS
PubMed
Google Scholar
Vural M, Zhu H, Pena-Francesch A, Jung H, Allen BD, Demirel MC. Self-assembly of topologically networked protein-Ti3C2Tx MXene composites. ACS Nano. 2020;14(6):6956–67.
Article
CAS
PubMed
Google Scholar
Guo R, Xiao M, Zhao W, Zhou S, Hu Y, Liao M, et al. 2D Ti3C2TxMXene couples electrical stimulation to promote proliferation and neural differentiation of neural stem cells. Acta Biomater. 2022;139:105–17.
Article
CAS
PubMed
Google Scholar
Moody WJ, Bosma MM. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol Rev. 2005;85(3):883–941.
Article
CAS
PubMed
Google Scholar
Fields RD. Effects of ion channel activity on development of dorsal root ganglion neurons. J Neurobiol. 1998;37(1):158–70.
Article
CAS
PubMed
Google Scholar
Baines RA, Pym EC. Determinants of electrical properties in developing neurons. Semin Cell Dev Biol. 2006;17(1):12–9.
Article
CAS
PubMed
Google Scholar
Brini M, Cali T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci. 2014;71(15):2787–814.
Article
CAS
PubMed
Google Scholar
Arie Y, Iketani M, Takamatsu K, Mikoshiba K, Goshima Y, Takei K. Developmental changes in the regulation of calcium-dependent neurite outgrowth. Biochem Biophys Res Commun. 2009;379(1):11–5.
Article
CAS
PubMed
Google Scholar
Gasperini RJ, Pavez M, Thompson AC, Mitchell CB, Hardy H, Young KM, et al. How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol Cell Neurosci. 2017;84:29–35.
Article
CAS
PubMed
Google Scholar
Zhao QR, Lu JM, Li ZY, Mei YA. Neuritin promotes neurite and spine growth in rat cerebellar granule cells via L-type calcium channel-mediated calcium influx. J Neurochem. 2018;147(1):40–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Tuft B, Xu L, Polacco M, Clarke JC, Guymon CA, et al. Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical substrate features. J Biomed Mater Res A. 2016;104(8):2037–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hegarty JL, Kay AR, Green SH. Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of [Ca2+]i within a set range. J Neurosci. 1997;17(6):1959–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams DJ, Hill MA. Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells. J Cardiovasc Electrophysiol. 2004;15(5):598–610.
Article
PubMed
Google Scholar
Cerbai E, Pino R, Sartiani L, Mugelli A. Influence of postnatal-development on I(f) occurrence and properties in neonatal rat ventricular myocytes. Cardiovasc Res. 1999;42(2):416–23.
Article
CAS
PubMed
Google Scholar
Guo R, Zhang S, Xiao M, Qian F, He Z, Li D, et al. Accelerating bioelectric functional development of neural stem cells by graphene coupling: implications for neural interfacing with conductive materials. Biomaterials. 2016;106:193–204.
Article
CAS
PubMed
Google Scholar
Bahrey HL, Moody WJ. Voltage-gated currents, dye and electrical coupling in the embryonic mouse neocortex. Cereb Cortex. 2003;13(3):239–51.
Article
PubMed
Google Scholar
Owens DF, Boyce LH, Davis MB, Kriegstein AR. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci. 1996;16(20):6414–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao M, Ulloa Severino FP, Iseppon F, Cheng G, Torre V, Tang M. 3D free-standing ordered graphene network geometrically regulates neuronal growth and network formation. Nano Lett. 2020;20(10):7043–51.
Article
CAS
PubMed
Google Scholar
Ulloa Severino FP, Ban J, Song Q, Tang M, Bianconi G, Cheng G, et al. The role of dimensionality in neuronal network dynamics. Sci Rep. 2016;6:29640.
Article
PubMed
PubMed Central
Google Scholar
Tang M, Song Q, Li N, Jiang Z, Huang R, Cheng G. Enhancement of electrical signaling in neural networks on graphene films. Biomaterials. 2013;34(27):6402–11.
Article
CAS
PubMed
Google Scholar
Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, et al. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials. 2011;32(35):9374–82.
Article
CAS
PubMed
Google Scholar