Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7.
Article
PubMed
Google Scholar
Thrift AP, El-Serag HB. Burden of Gastric Cancer. Clin Gastroenterol Hepatol. 2020;18(3):534–42.
Article
PubMed
Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Article
PubMed
Google Scholar
Fock KM. Review article: the epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther. 2014;40(3):250–60.
Article
CAS
PubMed
Google Scholar
Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, Forman D, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet. 2012;380(9856):1840–50.
Article
PubMed
Google Scholar
Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32.
Article
PubMed
Google Scholar
Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, et al. Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell. 2020;37(6):800.
Article
CAS
PubMed
Google Scholar
Li J, Yuan Y, Yang F, Wang Y, Zhu X, Wang Z, et al. Expert consensus on multidisciplinary therapy of colorectal cancer with lung metastases (2019 edition). J Hematol Oncol. 2019;12(1):16.
Article
PubMed
PubMed Central
Google Scholar
Tan YK, Fielding JW. Early diagnosis of early gastric cancer. Eur J Gastroenterol Hepatol. 2006;18(8):821–9.
Article
PubMed
Google Scholar
Smith D, Ballal M, Hodder R, Soin G, Selvachandran SN, Cade D. Symptomatic presentation of early colorectal cancer. Ann R Coll Surg Engl. 2006;88(2):185–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seevaratnam R, Cardoso R, McGregor C, Lourenco L, Mahar A, Sutradhar R, et al. How useful is preoperative imaging for tumor, node, metastasis (TNM) staging of gastric cancer? A meta-analysis Gastric Cancer. 2012;15(Suppl 1):S3-18.
Article
PubMed
Google Scholar
Gómez-España MA, Gallego J, González-Flores E, Maurel J, Páez D, Sastre J, et al. SEOM clinical guidelines for diagnosis and treatment of metastatic colorectal cancer (2018). Clin Transl Oncol. 2019;21(1):46–54.
Article
PubMed
Google Scholar
Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth edition AJCC cancer staging: manual continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–9.
Article
PubMed
Google Scholar
Kim YK, Lee MW, Lee WJ, Kim SH, Rhim H, Lim JH, et al. Diagnostic accuracy and sensitivity of diffusion-weighted and of gadoxetic acid-enhanced 3-T MR imaging alone or in combination in the detection of small liver metastasis (≤ 1.5 cm in diameter). Invest Radiol. 2012;47(3):159–66.
Article
CAS
PubMed
Google Scholar
Giganti F, De Cobelli F, Canevari C, Orsenigo E, Gallivanone F, Esposito A, et al. Response to chemotherapy in gastric adenocarcinoma with diffusion-weighted MRI and (18) F-FDG-PET/CT: correlation of apparent diffusion coefficient and partial volume corrected standardized uptake value with histological tumor regression grade. J Magn Reson Imaging. 2014;40(5):1147–57.
Article
PubMed
Google Scholar
Sheng WQ, Huang D, Ying JM, Lu N, Wu HM, Liu YH, et al. HER2 status in gastric cancers: a retrospective analysis from four Chinese representative clinical centers and assessment of its prognostic significance. Ann Oncol. 2013;24(9):2360–4.
Article
CAS
PubMed
Google Scholar
Wang FH, Shen L, Li J, Zhou ZW, Liang H, Zhang XT, et al. The chinese society of clinical oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun (Lond). 2019;39(1):10.
Article
Google Scholar
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui K, Xu X, Wang F, Zhang L. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci. 2021;17(5):1361–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.
Article
CAS
PubMed
Google Scholar
Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635–48.
Article
CAS
PubMed
Google Scholar
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–80.
Article
PubMed
Google Scholar
Ajani JA, D’Amico TA, Almhanna K, Bentrem DJ, Chao J, Das P, et al. Gastric cancer, version 3.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2016;14(10):1286–312.
Article
PubMed
Google Scholar
Muro K, Van Cutsem E, Narita Y, Pentheroudakis G, Baba E, Li J, et al. Pan-asian adapted ESMO clinical practice guidelines for the management of patients with metastatic gastric cancer: a JSMO-ESMO initiative endorsed by CSCO, KSMO, MOS SSO and TOS. Ann Oncol. 2019;30(1):19–33.
Article
CAS
PubMed
Google Scholar
Cunningham D, Lang I, Marcuello E, Lorusso V, Ocvirk J, Shin DB, et al. Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. Lancet Oncol. 2013;14(11):1077–85.
Article
CAS
PubMed
Google Scholar
Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol. 2012;30(28):3499–506.
Article
PubMed
CAS
Google Scholar
Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran S-E, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1065–75.
Article
CAS
PubMed
Google Scholar
Venook AP, Niedzwiecki D, Lenz H-J, Innocenti F, Fruth B, Meyerhardt JA, et al. Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with kras wild-type advanced or metastatic colorectal cancer: a randomized clinical trial. JAMA. 2017;317(23):2392–401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, Wang Y, Zhu L, Cui Y, Li L, Zeng Z, et al. Preventing the spread of COVID-19 in digestive endoscopy during the resuming period: meticulous execution of screening procedures. Gastrointest Endosc. 2020;92(2):445–7.
Article
PubMed
PubMed Central
Google Scholar
Hull MA, Rees CJ, Sharp L, Koo S. A risk-stratified approach to colorectal cancer prevention and diagnosis. Nat Rev Gastroenterol Hepatol. 2020;17(12):773–80.
Article
PubMed
PubMed Central
Google Scholar
Shimada H, Okazumi S, Koyama M, Murakami K. Japanese gastric cancer association task force for research promotion: clinical utility of 18F-fluoro-2-deoxyglucose positron emission tomography in gastric cancer. A systematic review of the literature. Gastric Cancer. 2011;14(1):13–21.
Article
PubMed
Google Scholar
Dassen AE, Lips DJ, Hoekstra CJ, Pruijt JFM, Bosscha K. FDG-PET has no definite role in preoperative imaging in gastric cancer. Eur J Surg Oncol. 2009;35(5):449–55.
Article
CAS
PubMed
Google Scholar
Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai B-C, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2017;8:CD004064.
PubMed
Google Scholar
McQuade RM, Stojanovska V, Bornstein JC, Nurgali K. Colorectal cancer chemotherapy: the evolution of treatment and new approaches. Curr Med Chem. 2017;24(15):1537–57.
Article
CAS
PubMed
Google Scholar
Li J, Yao M, Shao Y, Yao D. The application of bio-nanotechnology in tumor diagnosis and treatment: a view. Nanotechnol Rev. 2018;7(3):257–66.
Article
CAS
Google Scholar
Wu IC, Weng Y-H, Lu M-Y, Jen C-P, Fedorov VE, Chen WC, et al. Nano-structure ZnO/Cu<sub>2</sub>O photoelectrochemical and self-powered biosensor for esophageal cancer cell detection. Opt Express. 2017;25(7):7689–706.
Article
CAS
PubMed
Google Scholar
Yang B, Zhang Y, Chen B, He M, Yin X, Wang H, et al. A multifunctional probe for ICP-MS determination and multimodal imaging of cancer cells. Biosens Bioelectron. 2017;96:77–83.
Article
CAS
PubMed
Google Scholar
Chatzimitakos T, Kasouni A, Sygellou L, Avgeropoulos A, Troganis A, Stalikas C. Two of a kind but different: luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta. 2017;175:305–12.
Article
CAS
PubMed
Google Scholar
Weigum S, McIvor E, Munoz C, Feng R, Cantu T, Walsh K, et al. Targeted therapy of hepatocellular carcinoma with aptamer-functionalized biodegradable nanoparticles. J Nanopart Res. 2016;18(11):341.
Article
CAS
Google Scholar
Vaghani SS, Patel MM. pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release. Drug Dev Ind Pharm. 2011;37(10):1160–9.
Article
CAS
PubMed
Google Scholar
Zhang G, Ding L, Renegar R, Wang X, Lu Q, Huo S, et al. Hydroxycamptothecin-loaded Fe3O4 nanoparticles induce human lung cancer cell apoptosis through caspase-8 pathway activation and disrupt tight junctions. Cancer Sci. 2011;102(6):1216–22.
Article
CAS
PubMed
Google Scholar
Odiba A, Ukegbu C, Anunobi O, Chukwunonyelum I, Esemonu J. Making drugs safer: improving drug delivery and reducing the side effect of drugs on the human biochemical system. Nanotechnol Rev. 2016;5(2):183–94.
Article
CAS
Google Scholar
Wu W, Chen B, Cheng J, Wang J, Xu W, Liu L, et al. Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. Int J Nanomedicine. 2010;5:1079–84.
PubMed
PubMed Central
Google Scholar
Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63(6):395–418.
Article
PubMed
Google Scholar
Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–22.
Article
CAS
PubMed
Google Scholar
Salapa J, Bushman A, Lowe K, Irudayaraj J. Nano drug delivery systems in upper gastrointestinal cancer therapy. Nano Converg. 2020;7(1):38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng R-M, Zong Y-N, Cao S-M, Xu R-H. Current cancer situation in China: good or bad news from the 2018 global cancer statistics? Cancer Commun. 2019;39(1):22.
Article
Google Scholar
Yao K, Uedo N, Kamada T, Hirasawa T, Nagahama T, Yoshinaga S, et al. Guidelines for endoscopic diagnosis of early gastric cancer. Dig Endosc. 2020;32(5):663–98.
Article
PubMed
Google Scholar
Bisschops R, East JE, Hassan C, Hazewinkel Y, Kamiński MF, Neumann H, et al. Advanced imaging for detection and differentiation of colorectal neoplasia: european society of gastrointestinal endoscopy (ESGE) guideline—update 2019. Endoscopy. 2019;51(12):1155–79.
Article
PubMed
Google Scholar
Kaise M. Advanced endoscopic imaging for early gastric cancer. Best Pract Res Clin Gastroenterol. 2015;29(4):575–87.
Article
PubMed
Google Scholar
Axon A. Is diagnostic and therapeutic endoscopy currently appropriate?: suggestions for improvement. Best Pract Res Clin Gastroenterol. 2008;22(5):959–70.
Article
PubMed
Google Scholar
Gado AS, Ebeid BA, Axon AT. Quality assurance in gastrointestinal endoscopy: An Egyptian experience. Arab J Gastroenterol. 2016;17(4):153–8.
Article
PubMed
Google Scholar
Giday SA, Kim Y, Krishnamurty DM, Ducharme R, Liang DB, Shin EJ, et al. Long-term randomized controlled trial of a novel nanopowder hemostatic agent (TC-325) for control of severe arterial upper gastrointestinal bleeding in a porcine model. Endoscopy. 2011;43(4):296–9.
Article
CAS
PubMed
Google Scholar
Seitz U, Block A, Schaefer A-C, Wienhold U, Bohnacker S, Siebert K, et al. Biliary stent clogging solved by nanotechnology? In vitro study of inorganic-organic sol-gel coatings for teflon stents. Gastroenterology. 2007;133(1):65–71.
Article
CAS
PubMed
Google Scholar
Kwack WG, Lim YJ. Current Status and Research into Overcoming Limitations of Capsule Endoscopy. Clin Endosc. 2016;49(1):8.
Article
PubMed
PubMed Central
Google Scholar
Hale MF, Sidhu R, McAlindon ME. Capsule endoscopy: current practice and future directions. World J Gastroenterol. 2014;20(24):7752–9.
Article
PubMed
PubMed Central
Google Scholar
Liu D, Szili EJ, Ostrikov KK. Plasma medicine: opportunities for nanotechnology in a digital age. Plasma Process Polym. 2020;17:e2000097.
Article
CAS
Google Scholar
Moglia A, Pietrabissa A, Cuschieri A. Capsule endoscopy. BMJ. 2009;11(339):b3420. https://doi.org/10.1136/bmj.b3420.
Article
Google Scholar
Ankri R, Peretz D, Motiei M, Sella-Tavor O, Popovtzer R. New optical method for enhanced detection of colon cancer by capsule endoscopy. Nanoscale. 2013;5(20):9806–11. https://doi.org/10.1039/c3nr02396f.
Article
CAS
PubMed
Google Scholar
Yim S, Gultepe E, Gracias DH, Sitti M. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans Biomed Eng. 2014;61(2):513–21.
Article
PubMed
PubMed Central
Google Scholar
Du Z, Qi Y, He J, Zhong D, Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(2): e1672. https://doi.org/10.1002/wnan.1672.
Article
CAS
PubMed
Google Scholar
Zhang Y, Hong H, Myklejord DV, Cai W. Molecular imaging with SERS-active nanoparticles. Small. 2011;7(23):3261–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zavaleta CL, Garai E, Liu JTC, Sensarn S, Mandella MJ, Van de Sompel D, et al. A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci USA. 2013;110(25):E2288–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garai E, Sensarn S, Zavaleta CL, Loewke NO, Rogalla S, Mandella MJ, et al. A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS ONE. 2015;10(4): e0123185.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garai E, Sensarn S, Zavaleta CL, Van de Sompel D, Loewke NO, Mandella MJ, et al. High-sensitivity, real-time, ratiometric imaging of surface-enhanced Raman scattering nanoparticles with a clinically translatable Raman endoscope device. J Biomed Opt. 2013;18(9): 096008.
Article
PubMed
PubMed Central
Google Scholar
Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS, et al. Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small. 2011;7(15):2232–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Y, Fan K, Zhang H, Li L, Wang P, He J, et al. Endoscopic molecular imaging of early gastric cancer using fluorescently labeled human H-ferritin nanoparticle. Nanomedicine. 2018;14(7):2259–70.
Article
CAS
PubMed
Google Scholar
Li Z, Zuo XL, Li CQ, Zhou CJ, Liu J, Goetz M, et al. In vivo molecular imaging of gastric cancer by targeting MG7 antigen with confocal laser endomicroscopy. Endoscopy. 2013;45(2):79–85.
Article
PubMed
Google Scholar
Duffy MJ, Lamerz R, Haglund C, Nicolini A, Kalousová M, Holubec L, et al. Tumor markers in colorectal cancer, gastric cancer and gastrointestinal stromal cancers: European group on tumor markers 2014 guidelines update. Int J Cancer. 2014;134(11):2513–22.
Article
CAS
PubMed
Google Scholar
Chen H-M, Fang J-Y. Epigenetic biomarkers for the early detection of gastrointestinal cancer. Gastrointest Tumors. 2014;1(4):201–8.
Article
CAS
PubMed
Google Scholar
Grady WM, Yu M, Markowitz SD. Epigenetic alterations in the gastrointestinal tract: current and emerging use for biomarkers of cancer. Gastroenterology. 2021;160(3):690–709.
Article
CAS
PubMed
Google Scholar
Wang Y, Li Z, Xu S, Guo J. Novel potential tumor biomarkers: circular RNAs and exosomal circular RNAs in gastrointestinal malignancies. J Clin Lab Anal. 2020;34(7): e23359.
CAS
PubMed
PubMed Central
Google Scholar
Leung WK, Wu M-S, Kakugawa Y, Kim JJ, Yeoh K-G, Goh KL, et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol. 2008;9(3):279–87.
Article
PubMed
Google Scholar
Wang X, Shu G, Gao C, Yang Y, Xu Q, Tang M. Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy. Anal Biochem. 2014;466:51–8.
Article
CAS
PubMed
Google Scholar
Wang Q, Li Q, Yang X, Wang K, Du S, Zhang H, et al. Graphene oxide-gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Biosens Bioelectron. 2016;77:1001–7.
Article
CAS
PubMed
Google Scholar
Daneshpour M, Omidfar K, Ghanbarian H. A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. Beilstein J Nanotechnol. 2016;7:2023–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratajczak K, Krazinski BE, Kowalczyk AE, Dworakowska B, Jakiela S, Stobiecka M. Optical biosensing system for the detection of survivin mRNA in colorectal cancer cells using a graphene oxide carrier-bound oligonucleotide molecular beacon. Nanomaterials. 2018;8(7):510.
Article
PubMed Central
CAS
Google Scholar
Tran DP, Winter MA, Wolfrum B, Stockmann R, Yang C-T, Pourhassan-Moghaddam M, et al. Toward intraoperative detection of disseminated tumor cells in lymph nodes with silicon nanowire field effect transistors. ACS Nano. 2016;10(2):2357–64.
Article
CAS
PubMed
Google Scholar
Shehada N, Brönstrup G, Funka K, Christiansen S, Leja M, Haick H. Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath volatolome. Nano Lett. 2015;15(2):1288–95.
Article
CAS
PubMed
Google Scholar
Barrow E, Evans DG, McMahon R, Hill J, Byers R. A comparative study of quantitative immunohistochemistry and quantum dot immunohistochemistry for mutation carrier identification in lynch syndrome. J Clin Pathol. 2011;64(3):208–14.
Article
PubMed
Google Scholar
Xing X, Zhang B, Wang X, Liu F, Shi D, Cheng Y. An, “imaging-biopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials. 2015;48:16–25.
Article
CAS
PubMed
Google Scholar
Sun J, Zhang S, Jiang S, Bai W, Liu F, Yuan H, et al. Gadolinium-loaded solid lipid nanoparticles as a tumor-absorbable contrast agent for early diagnosis of colorectal tumors using magnetic resonance colonography. J Biomed Nanotechnol. 2016;12(9):1709–23.
Article
CAS
PubMed
Google Scholar
Wang H, Ding W, Peng L, Fan H, Yan C, Xu S, et al. Gadolinium-loaded solid lipid nanoparticles for colorectal tumor in mr colonography. J Biomed Nanotechnol. 2020;16(5):594–602.
Article
CAS
PubMed
Google Scholar
Khantasup K, Saiviroonporn P, Jarussophon S, Chantima W, Dharakul T. Anti-EpCAM scFv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer. MAGMA. 2018;31(5):633–44.
Article
CAS
PubMed
Google Scholar
Shi H, Sun Y, Yan R, Liu S, Zhu L, Liu S, et al. Magnetic Semiconductor Gd-Doping CuS nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors. Nano Lett. 2019;19(2):937–47.
Article
CAS
PubMed
Google Scholar
Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomedicine. 2016;12(2):287–307.
Article
CAS
PubMed
Google Scholar
Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011;166(1–2):8.
Article
CAS
PubMed
Google Scholar
Wang P, Qu Y, Li C, Yin L, Shen C, Chen W, et al. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomed. 2015;10:749–63.
Article
CAS
Google Scholar
Yan X, Song X, Wang Z. Construction of specific magnetic resonance imaging/optical dual-modality molecular probe used for imaging angiogenesis of gastric cancer. Artif Cells Nanomed Biotechnol. 2017;45(3):399–403.
Article
CAS
PubMed
Google Scholar
Guo H, Zhang Y, Liang W, Tai F, Dong Q, Zhang R, et al. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. J Inorg Biochem. 2019;192:72–81.
Article
CAS
PubMed
Google Scholar
Ma Y-Y, Jin K-T, Wang S-B, Wang H-J, Tong X-M, Huang D-S, et al. Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media Mol Imaging. 2017;2017:1026270.
PubMed
PubMed Central
Google Scholar
Moreno C, Kim DH, Bartel TB, Cash BD, Chang KJ, Feig BW, et al. ACR appropriateness criteria colorectal cancer screening. J Am Coll Radiol. 2018;15(5S):S56–68.
Article
PubMed
Google Scholar
Kimm MA, Shevtsov M, Werner C, Sievert W, Zhiyuan W, Schoppe O, et al. Gold nanoparticle mediated multi-modal CT imaging of Hsp70 membrane-positive tumors. Cancers. 2020;12(5):1331.
Article
CAS
PubMed Central
Google Scholar
Kim CS, Wilder-Smith P, Ahn Y-C, Liaw L-HL, Chen Z, Kwon YJ. Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt. 2009;14(3):034008.
Article
PubMed
CAS
Google Scholar
Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Zhang X, et al. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnology. 2013;11:17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang K, Du X, Yu K, Zhang K, Zhou Y. Application of novel targeting nanoparticles contrast agent combined with contrast-enhanced computed tomography during screening for early-phase gastric carcinoma. Exp Ther Med. 2018;15(1):47–54.
CAS
PubMed
Google Scholar
Yong Y, Zhou L, Gu Z, Yan L, Tian G, Zheng X, et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale. 2014;6(17):10394–403.
Article
CAS
PubMed
Google Scholar
Zhou Z, Kong B, Yu C, Shi X, Wang M, Liu W, et al. Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy. Sci Rep. 2014;4:3653.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meta J, Seltzer M, Schiepers C, Silverman DH, Ariannejad M, Gambhir SS, et al. Impact of 18F-FDG PET on managing patients with colorectal cancer: the referring physician’s perspective. J Nucl Med. 2001;42(4):586–90.
CAS
PubMed
Google Scholar
Jing B, Qian R, Jiang D, Gai Y, Liu Z, Guo F, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J Nanobiotechnol. 2021;19(1):151.
Article
CAS
Google Scholar
Wanderi K, Cui Z. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration. 2022;2(2):20210097.
Article
Google Scholar
Matsui A, Tanaka E, Choi HS, Winer JH, Kianzad V, Gioux S, et al. Real-time intra-operative near-infrared fluorescence identification of the extrahepatic bile ducts using clinically available contrast agents. Surgery. 2010;148(1):87–95.
Article
PubMed
Google Scholar
Lee JH, Son T, Chung YE, Cho M, Kim YM, Kwon IG, et al. Real-time identification of aberrant left hepatic arterial territories using near-infrared fluorescence with indocyanine green during gastrectomy for gastric cancer. Surg Endosc. 2021;35(5):2389–97.
Article
PubMed
Google Scholar
Ding J, Feng M, Wang F, Wang H, Guan W. Targeting effect of PEGylated liposomes modified with the Arg-Gly-Asp sequence on gastric cancer. Oncol Rep. 2015;34(4):1825–34.
Article
CAS
PubMed
Google Scholar
Tivony R, Larush L, Sela-Tavor O, Magdassi S. Biomedical imaging of colorectal cancer by near infrared fluorescent nanoparticles. J Biomed Nanotechnol. 2014;10(6):1041–8.
Article
CAS
PubMed
Google Scholar
Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Hiraki S, et al. Theranostic photosensitive nanoparticles for lymph node metastasis of gastric cancer. Ann Surg Oncol. 2015;22(Suppl 3):S923–8.
Article
PubMed
Google Scholar
Wang S, Chi C, Cheng H, Pan X, Li S, Zhang F, et al. Photothermal adjunctive cytoreductive surgery for treating peritoneal metastasis of gastric cancer. Small Methods. 2018;2(4):1700368.
Article
CAS
Google Scholar
Cohen S, Pellach M, Kam Y, Grinberg I, Corem-Salkmon E, Rubinstein A, et al. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer. Mater Sci Eng C Mater Biol Appl. 2013;33(2):923–31.
Article
CAS
PubMed
Google Scholar
Yoon SM, Myung SJ, Kim IW, Do EJ, Ye BD, Ryu JH, et al. Application of near-infrared fluorescence imaging using a polymeric nanoparticle-based probe for the diagnosis and therapeutic monitoring of colon cancer. Dig Dis Sci. 2011;56(10):3005–13.
Article
CAS
PubMed
Google Scholar
Tian R, Zhao S, Liu G, Chen H, Ma L, You H, et al. Construction of lanthanide-doped upconversion nanoparticle-Uelx Europaeus agglutinin-I bioconjugates with brightness red emission for ultrasensitive in vivo imaging of colorectal tumor. Biomaterials. 2019;212:64–72.
Article
CAS
PubMed
Google Scholar
Tian R, Ma H, Yang Q, Wan H, Zhu S, Chandra S, et al. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci. 2019;10(1):326–32.
Article
CAS
PubMed
Google Scholar
Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics. 2019;16: 100144.
Article
PubMed
PubMed Central
Google Scholar
Yamada H, Matsumoto N, Komaki T, Konishi H, Kimura Y, Son A, et al. Photoacoustic in vivo 3D imaging of tumor using a highly tumor-targeting probe under high-threshold conditions. Sci Rep. 2020;10(1):19363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang RQ, Lou KL, Wang PY, Gao YY, Zhang YQ, Chen M, et al. Surgical navigation for malignancies guided by near-infrared-II fluorescence imaging. Small Methods. 2021;5(3): e2001066.
Article
PubMed
CAS
Google Scholar
Rogalla S, Flisikowski K, Gorpas D, Mayer AT, Flisikowska T, Mandella MJ, et al. Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis. Adv Funct Mater. 2019;29(51):1904992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opilik L, Schmid T, Zenobi R. Modern Raman imaging: vibrational spectroscopy on the micrometer and nanometer scales. Annu Rev Anal Chem. 2013;6:379–98.
Article
CAS
Google Scholar
Yilmaz H, Yilmaz D, Taskin IC, Culha M. Pharmaceutical applications of a nanospectroscopic technique: surface-enhanced Raman spectroscopy. Adv Drug Deliv Rev. 2022;184: 114184.
Article
CAS
PubMed
Google Scholar
Harmsen S, Rogalla S, Huang R, Spaliviero M, Neuschmelting V, Hayakawa Y, et al. Detection of premalignant gastrointestinal lesions using surface-enhanced resonance Raman scattering-nanoparticle endoscopy. ACS Nano. 2019;13(2):1354–64.
CAS
PubMed
PubMed Central
Google Scholar
Dhillon SS, Demmy TL, Yendamuri S, Loewen G, Nwogu C, Cooper M, et al. A phase I study of light dose for photodynamic therapy using 2-[1-hexyloxyethyl]-2 devinyl pyropheophorbide-a for the treatment of non-small cell carcinoma in situ or non-small cell microinvasive bronchogenic carcinoma: a dose ranging study. J Thorac Oncol. 2016;11(2):234–41.
Article
PubMed
Google Scholar
Mao B, Liu C, Zheng W, Li X, Ge R, Shen H, et al. Cyclic cRGDfk peptide and chlorin e6 functionalized silk fibroin nanoparticles for targeted drug delivery and photodynamic therapy. Biomaterials. 2018;161:306–20.
Article
CAS
PubMed
Google Scholar
Yan Z, Wang M, Shi M, He Y, Zhang Y, Qiu S, et al. Amphiphilic BODIPY dye aggregates in polymeric micelles for wavelength-dependent photo-induced cancer therapy. J Mater Chem B. 2020;8(31):6886–97.
Article
CAS
PubMed
Google Scholar
Zhang Y, Yang Z, Zheng X, Chen L, Xie Z. Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. J Mater Chem B. 2020;8(24):5305–11.
Article
CAS
PubMed
Google Scholar
Yan J, Wang C, Jiang X, Wei Y, Wang Q, Cui K, et al. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci. 2021;17(5):1361–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell. 2010;40(2):253–66.
Article
CAS
PubMed
Google Scholar
Gournaris E, Park W, Cho S, Bentrem DJ, Larson AC, Kim DH. Near-infrared fluorescent endoscopic image-guided photothermal ablation therapy of colorectal cancer using dual-modal gold nanorods targeting tumor-infiltrating innate immune cells in a transgenic TS4 CRE/APC (loxΔ468) mouse model. ACS Appl Mater Interfaces. 2019;11(24):21353–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye L, Chen Y, Mao J, Lei X, Yang Q, Cui C. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors. J Exp Clin Cancer Res. 2021;40(1):303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni W, Wu J, Fang H, Feng Y, Hu Y, Lin L, et al. Photothermal-chemotherapy enhancing tumor immunotherapy by multifunctional metal-organic framework based drug delivery system. Nano Lett. 2021;21(18):7796–805.
Article
CAS
PubMed
Google Scholar
Liu H, Xu C, Meng M, Li S, Sheng S, Zhang S, et al. Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer. Acta Biomater. 2022;144:132–41.
Article
CAS
PubMed
Google Scholar
Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer Basic principles and applications. Clin Transl. 2008;10(3):148–54.
CAS
Google Scholar
Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110(5):2795–838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui X, Zhang Z, Yang Y, Li S, Lee C-S. Organic radical materials in biomedical applications: state of the art and perspectives. Exploration. 2022;2(2):20210264.
Article
Google Scholar
Chen M, Liang X, Gao C, Zhao R, Zhang N, Wang S, et al. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer. ACS Nano. 2018;12(7):7312–26.
Article
CAS
PubMed
Google Scholar
Yin T, Huang P, Gao G, Shapter JG, Shen Y, Sun R, et al. Superparamagnetic Fe(3)O(4)-PEG(2K)-FA@Ce6 Nanoprobes for in Vivo dual-mode imaging and targeted photodynamic therapy. Sci Rep. 2016;6:36187.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang F, Zhu L, Li M, Song Y, Sun M, Zhao D, Zhang J. Thermally activated delayed fluorescence material: an emerging class of metal-free luminophores for biomedical applications. Adv Sci (Weinh). 2021;8(24):e2102970.
Article
CAS
Google Scholar
Fang F, Yuan Y, Wan Y, Li J, Song Y, Chen WC, et al. Near-infrared thermally activated delayed fluorescence nanoparticle: a metal-free photosensitizer for two-photon-activated photodynamic therapy at the cell and small animal levels. Small. 2022;18(6):e2106215.
Article
PubMed
CAS
Google Scholar
Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71(3):264–79.
Article
PubMed
Google Scholar
Shitara K, Doi T, Dvorkin M, Mansoor W, Arkenau HT, Prokharau A, et al. Trifluridine/tipiracil versus placebo in patients with heavily pretreated metastatic gastric cancer (TAGS): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2018;19(11):1437–48.
Article
CAS
PubMed
Google Scholar
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 2022;72:372.
Article
PubMed
Google Scholar
Wathoni N, Nguyen AN, Rusdin A, Umar AK, Mohammed AFA, Motoyama K, et al. Enteric-coated strategies in colorectal cancer nanoparticle drug delivery system. Drug Des Dev Ther. 2020;14:4387.
Article
CAS
Google Scholar
Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale. 2014;6:12273–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45:1457–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herszényi L, Hritz I, Lakatos G, Varga MZ, Tulassay Z. The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer. Int J Mol Sci. 2012;13(10):13240–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bouga H, Tsouros I, Bounias D, Kyriakopoulou D, Stavropoulos MS, Papageorgakopoulou N, et al. Involvement of hyaluronidases in colorectal cancer. BMC Cancer. 2010;17(10):499.
Article
CAS
Google Scholar
Husain SS, Szabo IL, Tarnawski AS. NSAID inhibition of GI cancer growth: clinical implications and molecular mechanisms of action. Am J Gastroenterol. 2002;97(3):542–53.
Article
CAS
PubMed
Google Scholar
Santhanam S, Alvarado DM, Ciorba MA. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res. 2016;167(1):67–79.
Article
CAS
PubMed
Google Scholar
Mauriz JL, Martín-Renedo J, García-Palomo A, Tuñón MJ, González-Gallego J. Methionine aminopeptidases as potential targets for treatment of gastrointestinal cancers and other tumours. Curr Drug Targets. 2010;11(11):1439–57.
Article
CAS
PubMed
Google Scholar
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C, et al. Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol. 2020;13(1):57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou CF, Li XB, Sun H, Zhang B, Han YS, Jiang Y, et al. Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells. IUBMB Life. 2012;64(9):775–82.
Article
CAS
PubMed
Google Scholar
Kontos CK, Mavridis K, Talieri M, Scorilas A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: mechanistic and clinical aspects. Thromb Haemost. 2013;110(3):450–7.
Article
CAS
PubMed
Google Scholar
Karimi M, Eslami M, Sahandi-Zangabad P, et al. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:696–716.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thakral S, Thakral NK, Majumdar DK. Eudragit: a technology evaluation. Expert Opin Drug Deliv. 2013;10:131–49.
Article
CAS
PubMed
Google Scholar
Sood A, Dev A, Mohanbhai SJ, Shrimali N, Kapasiya M, Kushwaha AC, et al. Disulfide-bridged chitosan-eudragit S-100 nanoparticles for colorectal cancer. ACS Applied Nano Materials. 2019;2(10):6409–17.
Article
CAS
Google Scholar
Sharma A, Kim EJ, Shi H, Lee JY, Chung BG, Kim JS. Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. Biomaterials. 2018;155:145–51.
Article
CAS
PubMed
Google Scholar
Feng X, Xu W, Liu J, Li D, Li G, Ding J, et al. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Sci Bulletin. 2021;66(4):362–73.
Article
CAS
Google Scholar
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu T, Tan L, Cheng N, Yan Q, Zhang YF, Liu CJ, et al. PNIPAAM modified mesoporous hydroxyapatite for sustained osteogenic drug release and promoting cell attachment. Mater Sci Eng C Mater Biol Appl. 2016;62:888–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci. 2020;26(7): 587012.
Article
CAS
Google Scholar
Carreño G, Pereira A, Ávila-Salas F, Marican A, Andrade F, Roca-Melendres MM, et al. Development of “on-demand” thermo-responsive hydrogels for anti-cancer drugs sustained release: rational design, in silico prediction and in vitro validation in colon cancer models. Mater Sci Eng C Mater Biol Appl. 2021;131: 112483.
Article
PubMed
CAS
Google Scholar
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12.
Article
PubMed Central
CAS
Google Scholar
Das M, Huang L. Liposomal nanostructures for drug delivery in gastrointestinal cancers. J Pharmacol Exp Ther. 2019;370(3):647–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Y, Xie Y, Tang H, Ren Z, Luan X, Zhang Y, et al. In vitro and in vivo evaluation of a novel estrogen-targeted pegylated oxaliplatin liposome for gastric cancer. Int J Nanomed. 2021;16:8279–303.
Article
CAS
Google Scholar
Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, et al. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: current status and future perspectives. Semin Cancer Biol. 2022;S1044-579X((22)):0009–12.
Google Scholar
Hui B, Lu C, Wang J, Xu Y, Yang Y, Ji H, et al. Engineered exosomes for co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance in colon cancer. J Cell Physiol. 2022;237(1):911–33.
Article
CAS
PubMed
Google Scholar
Kaur J, Gulati M, Jha NK, Disouza J, Patravale V, Dua K, et al. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov Today. 2022;27(5):1495–512.
Article
CAS
PubMed
Google Scholar
Dos Santos AM, Meneguin AB, Akhter DT, Fletcher N, Houston ZH, Bell C, et al. Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract. Eur J Pharm Biopharm. 2021;158:371–8.
Article
PubMed
CAS
Google Scholar
Fernandes E, Ferreira D, Peixoto A, Freitas R, Relvas-Santos M, Palmeira C, et al. Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. Int J Pharm. 2019;570: 118646.
Article
CAS
PubMed
Google Scholar
Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14:1791.
Google Scholar
Ohta S, Hiramoto S, Amano Y, Emoto S, Yamaguchi H, Ishigami H, et al. Intraperitoneal delivery of cisplatin via a hyaluronan-based nanogel/in situ cross-linkable hydrogel hybrid system for peritoneal dissemination of gastric cancer. Mol Pharm. 2017;14(9):3105–13.
Article
CAS
PubMed
Google Scholar
Al Sharabati M, Sabouni R, Husseini GA. Biomedical applications of metal-organic frameworks for disease diagnosis and drug delivery: a review. Nanomaterials. 2022;12(2):277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Javanbakht S, Hemmati A, Namazi H, Heydari A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int J Biol Macromol. 2020;155:876–82.
Article
CAS
PubMed
Google Scholar
Katona BW, Rustgi AK. Gastric cancer genomics: advances and future directions. Cell Mol Gastroenterol Hepatol. 2017;3(2):211–7.
Article
PubMed
PubMed Central
Google Scholar
Lazarus J, Maj T, Smith JJ, Perusina Lanfranca M, Rao A, D’Angelica MI, et al. Spatial and phenotypic immune profiling of metastatic colon cancer. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.121932.
Article
PubMed
PubMed Central
Google Scholar
Kubota T, Kuroda S, Kanaya N, Morihiro T, Aoyama K, Kakiuchi Y, et al. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine. 2018;14(6):1919–29.
Article
CAS
PubMed
Google Scholar
Sabra R, Billa N, Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int J Pharm. 2019;572: 118775.
Article
CAS
PubMed
Google Scholar
Zhang Z, Niu B, Chen J, He X, Bao X, Zhu J, et al. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials. 2014;35(15):4565–72.
Article
CAS
PubMed
Google Scholar
Lin YW, Raj EN, Liao WS, Lin J, Liu KK, Chen TH, et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci Rep. 2017;7(1):9814.
Article
PubMed
PubMed Central
Google Scholar
Schmid D, Park CG, Hartl CA, Subedi N, Cartwright AN, Puerto RB, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 2017;8(1):1747.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z, Yang W, Ma F, Ma Q, Zhang B, Zhang Y, et al. Enhancing the chemotherapy effect of Apatinib on gastric cancer by co-treating with salidroside to reprogram the tumor hypoxia micro-environment and induce cell apoptosis. Drug Deliv. 2020;27(1):691–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nosrati R, Abnous K, Alibolandi M, Mosafer J, Dehghani S, Taghdisi SM, et al. Targeted SPION siderophore conjugate loaded with doxorubicin as a theranostic agent for imaging and treatment of colon carcinoma. Sci Rep. 2021;11(1):13065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang RY, Cheng K, Xuan Y, Yang XQ, An J, Hu YG, et al. A pH/ultrasonic dual-response step-targeting enterosoluble granule for combined sonodynamic-chemotherapy guided via gastrointestinal tract imaging in orthotopic colorectal cancer. Nanoscale. 2021;13(7):4278–94.
Article
CAS
PubMed
Google Scholar
Wu B, Li K, Sun F, Niu J, Zhu R, Qian Y, et al. Trifunctional graphene quantum Dot@LDH integrated nanoprobes for visualization therapy of gastric cancer. Adv Healthc Mater. 2021;10(16): e2100512.
Article
PubMed
CAS
Google Scholar
Yang X, Xue X, Luo Y, Lin TY, Zhang H, Lac D, et al. Sub-100nm, long tumor retention SN-38-loaded photonic micelles for tri-modal cancer therapy. J Control Release. 2017;261:297–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen G, Zhao Y, Xu Y, Zhu C, Liu T, Wang K. Chitosan nanoparticles for oral photothermally enhanced photodynamic therapy of colon cancer. Int J Pharm. 2020;589: 119763.
Article
CAS
PubMed
Google Scholar
Gong L, Zhang Y, Zhao J, Zhang Y, Tu K, Jiao L, et al. All-in-one biomimetic nanoplatform based on hollow polydopamine nanoparticles for synergistically enhanced radiotherapy of colon cancer. Small. 2022;18(14): e2107656.
Article
PubMed
CAS
Google Scholar
Deng W, Chen W, Clement S, Guller A, Zhao Z, Engel A, et al. Controlled gene and drug release from a liposomal delivery platform triggered by x-ray radiation. Nat Commun. 2018;9(1):2713.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hashemkhani M, Demirci G, Bayir A, Muti A, Sennaroglu A, Mohammad Hadi L, et al. Cetuximab-Ag(2)S quantum dots for fluorescence imaging and highly effective combination of ALA-based photodynamic/chemo-therapy of colorectal cancer cells. Nanoscale. 2021;13(35):14879–99.
Article
CAS
PubMed
Google Scholar
He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Yang H, Chen X, Gao J, Duan Y, Wei D, et al. Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. Biomaterials. 2021;269: 120654.
Article
CAS
PubMed
Google Scholar
Yuan Z, Fan G, Wu H, Liu C, Zhan Y, Qiu Y, et al. Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles. Mol Ther. 2021;29(10):2931–48.
Article
CAS
PubMed
Google Scholar
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
Article
CAS
Google Scholar
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, et al. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: a road from failure to success in clinical applications. J Control Release. 2020;328:59–77.
Article
PubMed
CAS
Google Scholar