Yang JD, Hainaut P, Gores GJ. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604.
Article
PubMed
PubMed Central
Google Scholar
Zamboni CG, Kozielski KL, Vaughan HJ, Nakata MM, Kim J, Higgins LJ, et al. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release. 2017;263:18–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020,70(4):313.
Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62.
Article
CAS
PubMed
Google Scholar
Chen W, Desert R, Ge X, Han H, Song Z. The matrisome genes from hepatitis B-related hepatocellular carcinoma unveiled. Hepatol Commun. 2021;5(9):1571–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
<Guidelines for Diagnosis and Treatment of Primary Liver Cancer in China (2022 Edition).pdf>. 2022.
Mohkam K, Dumont PN, Manichon AF, Jouvet JC, Boussel L, Merle P, et al. No-touch multibipolar radiofrequency ablation vs. surgical resection for solitary hepatocellular carcinoma ranging from 2 to 5 cm. J Hepatol. 2018;68(6):1172–80.
Article
PubMed
Google Scholar
Xu XL, Liu XD, Liang M, Luo BM. Radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma: systematic review of randomized controlled trials with meta-analysis and trial sequential analysis. Radiology. 2018;287(2):461–72.
Article
PubMed
Google Scholar
Choi JW, Lee JM. Radiofrequency ablation using internally cooled wet electrodes in bipolar mode for the treatment of recurrent hepatocellular carcinoma after locoregional treatment: A randomized prospective comparative study. PLoS ONE. 2020;15(9):e0239733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu WY, Wei HY, Li KM, Wang RB, Xu XQ, Feng R. LINC00511 as a ceRNA promotes cell malignant behaviors and correlates with prognosis of hepatocellular carcinoma patients by modulating miR-195/EYA1 axis. Biomed Pharmacother. 2020;121:109642.
Article
CAS
PubMed
Google Scholar
Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5(1):146.
Article
PubMed
PubMed Central
Google Scholar
Iranshahy M, Rezaee R, Karimi G. Hepatoprotective activity of metformin: a new mission for an old drug? Eur J Pharmacol. 2019;850:1–7.
Article
CAS
PubMed
Google Scholar
Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England). 2017;389(10064):56–66.
Article
CAS
Google Scholar
Qin S, Li Q, Gu S, Chen X, Lin L, Wang Z, et al. Apatinib as second-line or later therapy in patients with advanced hepatocellular carcinoma (AHELP): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol. 2021;6(7):559–68.
Article
PubMed
Google Scholar
Qin S, Ren Z, Meng Z, Chen Z, Chai X, Xiong J, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020;21(4):571–80.
Article
CAS
PubMed
Google Scholar
Xu J, Shen J, Gu S, Zhang Y, Wu L, Wu J, et al. Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): a nonrandomized, open-label phase II trial. Clin Cancer Res. 2021;27(4):1003–11.
Article
CAS
PubMed
Google Scholar
Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: the checkmate 040 randomized clinical trial. JAMA Oncol. 2020;6(11): e204564.
Article
PubMed
PubMed Central
Google Scholar
Xu J, Zhang Y, Jia R, Yue C, Chang L, Liu R, et al. Anti-PD-1 antibody SHR-1210 combined with apatinib for advanced hepatocellular carcinoma, gastric, or esophagogastric junction cancer: an open-label, dose escalation and expansion study. Clin Cancer Res. 2019;25(2):515–23.
Article
CAS
PubMed
Google Scholar
Zhu AX, Kang YK, Yen CJ, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20(2):282–96.
Article
CAS
PubMed
Google Scholar
Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379(1):54–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
Article
PubMed
Google Scholar
Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, et al. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond). 2018;13(8):849–70.
Article
CAS
Google Scholar
Wu H, Wang MD, Liang L, Xing H, Zhang CW, Shen F, et al. Nanotechnology for hepatocellular carcinoma: from surveillance, diagnosis to management. Small. 2021;17(6):e2005236.
Article
PubMed
Google Scholar
Fan W, Yung B, Huang P. Nanotechnology for multimodal synergistic cancer therapy. Chem Rev. 2017;117(22):13566–638.
Article
CAS
PubMed
Google Scholar
Liu JN, Bu W. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem Soc Rev. 2017;117(9):6160–224.
Article
CAS
Google Scholar
Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev. 2017;46(23):7438–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verslype C, Rosmorduc O, Rougier P. Hepatocellular carcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012. https://doi.org/10.1093/annonc/mds225.
Article
PubMed
Google Scholar
Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 2018;413:102–9.
Article
CAS
PubMed
Google Scholar
Campbell RB. Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med Chem. 2006;6(6):503–12.
Article
CAS
PubMed
Google Scholar
Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond). 2010;5(4):597–615.
Article
CAS
Google Scholar
Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Nanomedicine. 2017;6(1):44.
Google Scholar
Bu LL, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, et al. Advances in drug delivery for post-surgical cancer treatment. Biomaterials. 2019;219: 119182.
Article
CAS
PubMed
Google Scholar
Kumar V, Rahman M. Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opin Drug Deliv. 2021;18(6):673–94.
Article
CAS
PubMed
Google Scholar
Ji Y, Xiao Y, Xu L, He J, Qian C, Li W, et al. Drug-bearing supramolecular MMP inhibitor nanofibers for inhibition of metastasis and growth of liver cancer. Adv Sci. 2018;5(8):1700867.
Article
Google Scholar
Wang J, Meng J, Ran W, Lee RJ. Hepatocellular carcinoma growth retardation and PD-1 blockade therapy potentiation with synthetic high-density lipoprotein. Nano Lett. 2019;19(8):5266–76.
Article
CAS
PubMed
Google Scholar
Liang Y, Fu X, Du C, Xia H, Lai Y, Sun Y. Enzyme/pH-triggered anticancer drug delivery of chondroitin sulfate modified doxorubicin nanocrystal. Artif Cells Nanomed Biotechnol. 2020;48(1):1114–24.
Article
CAS
PubMed
Google Scholar
Cormode DP, Skajaa GO, Delshad A, Parker N, Jarzyna PA, Calcagno C, et al. A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver. Bioconjug Chem. 2011;22(3):353–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008;5(4):487–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sykes EA, Chen J, Zheng G, Chan WC. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8(6):5696–706.
Article
CAS
PubMed
Google Scholar
Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15(11):1212–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009;5(1):126–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi X, Zhang R, Zhao T, Gong X, Wei R, Yin Z, et al. Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology. 2019;30(17): 175101.
Article
CAS
PubMed
Google Scholar
Gullotti E, Park J, Yeo Y. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles. Pharm Res. 2013;30(8):1956–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao W, Zhang J, Zeng X, Liu D, Liu G, Zhu X, et al. Blended nanoparticle system based on miscible structurally similar polymers: a safe, simple, targeted, and surprisingly high efficiency vehicle for cancer therapy. Adv Healthcare Mater. 2015;4(8):1203–14.
Article
CAS
Google Scholar
Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release. 2008;132(3):164–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Zhang H, Han J, Chen Y. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Adv Mater. 2018;30(25):e1706981.
Article
PubMed
Google Scholar
Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release. 2011;152(1):2–12.
Article
CAS
PubMed
Google Scholar
Saeed AO, Newland B, Pandit A, Wang W. The reverse of polymer degradation: in situ crosslinked gel formation through disulfide cleavage. Chem Commun (Camb). 2012;48(4):585–7.
Article
CAS
Google Scholar
Li Z, Han J, Yu L, Qian X, Xing H, Lin H, et al. Synergistic sonodynamic/chemotherapeutic suppression of hepatocellular carcinoma by targeted biodegradable mesoporous nanosonosensitizers. Adv Func Mater. 2018;28(26):1800145.
Article
Google Scholar
Milosevic M, Fyles A, Hedley D, Hill R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol. 2004;14(3):249–58.
Article
PubMed
Google Scholar
Khawar IA, Kim JH, Kuh HJ. Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release. 2015;201:78–89.
Article
CAS
PubMed
Google Scholar
Chen B, Dai W, Mei D, Liu T, Li S, He B, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release. 2016;241:68–80.
Article
CAS
PubMed
Google Scholar
Perche F, Biswas S, Wang T, Zhu L, Torchilin VP. Hypoxia-targeted siRNA delivery. Angew Chem Int Ed Engl. 2014;53(13):3362–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu B, Shang H, Liang X, Sun Y, Jing H, Han X, et al. Preparation of novel targeting nanobubbles conjugated with small interfering RNA for concurrent molecular imaging and gene therapy in vivo. FASEB J. 2019;33(12):14129–36.
Article
CAS
PubMed
Google Scholar
Liu Z, Zhang J, Tian Y, Zhang L, Han X, Wang Q, et al. Targeted delivery of reduced graphene oxide nanosheets using multifunctional ultrasound nanobubbles for visualization and enhanced photothermal therapy. Int J Nanomed. 2018;13:7859–72.
Article
CAS
Google Scholar
Wang R, Luo Y, Yang S, Lin J, Gao D, Zhao Y, et al. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma. Sci Rep. 2016;6:33844.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen JM, Li XX, Fan LL, Zhou X, Han JM, Jia MK, et al. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe(3)O(4) composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma. Int J Nanomed. 2017;12:1183–200.
Article
CAS
Google Scholar
Mintz K, Waidely E, Zhou Y, Peng Z, Al-Youbi AO, Bashammakh AS, et al. Carbon dots and gold nanoparticles based immunoassay for detection of alpha-L-fucosidase. Anal Chim Acta. 2018;1041:114–21.
Article
CAS
PubMed
Google Scholar
Zhang NN, Lu CY, Shu GF, Li J, Chen MJ, Chen CM, et al. Gadolinium-loaded calcium phosphate nanoparticles for magnetic resonance imaging of orthotopic hepatocarcinoma and primary hepatocellular carcinoma. Biomater Sci. 2020;8(7):1961–72.
Article
CAS
PubMed
Google Scholar
Wang Z, Chang Z, Lu M, Shao D, Yue J, Yang D, et al. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials. 2018;154:147–57.
Article
CAS
PubMed
Google Scholar
Wang JK, Zhou YY, Guo SJ, Wang YY, Nie CJ, Wang HL, et al. Cetuximab conjugated and doxorubicin loaded silica nanoparticles for tumor-targeting and tumor microenvironment responsive binary drug delivery of liver cancer therapy. Mater Sci Eng, C Mater Biol Appl. 2017;76:944–50.
Article
CAS
Google Scholar
Wu D, Yu Y, Jin D, Xiao MM, Zhang ZY. Dual-aptamer modified graphene field-effect transistor nanosensor for label-free and specific detection of hepatocellular carcinoma-derived microvesicles. Anal Chem. 2020;92(5):4006–15.
Article
CAS
PubMed
Google Scholar
Wu C, Li P, Fan N, Han J, Zhang W, Zhang W, et al. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl Mater Interfaces. 2019;11(48):44999–5006.
Article
CAS
PubMed
Google Scholar
Ma X, Jin Y, Wang Y, Zhang S, Peng D, Yang X, et al. Multimodality molecular imaging-guided tumor border delineation and photothermal therapy analysis based on graphene oxide-conjugated gold nanoparticles chelated with Gd. Contrast Media Mol Imaging. 2018;2018:9321862.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Li X, Li Y, Qi Y, Yuan H, He J, et al. Designing pH-triggered drug release iron oxide nanocomposites for MRI-guided photothermal-chemoembolization therapy of liver orthotopic cancer. Biomater Sci. 2019;7(5):1842–51.
Article
CAS
PubMed
Google Scholar
Xu YH, Yang J, Meng J, Wang H. Targeted MR imaging adopting T1-weighted ultra-small iron oxide nanoparticles for early hepatocellular carcinoma: an in vitro and in vivo study. Chin Med Sci J. 2020;35(2):142–50.
PubMed
Google Scholar
Siciliano G, Corricelli M, Iacobazzi RM, Canepa F, Comegna D, Fanizza E, et al. Gold-speckled SPION@SiO(2) nanoparticles decorated with thiocarbohydrates for ASGPR1 targeting: towards HCC dual mode imaging potential applications. Chem Eur J. 2020;26(48):11048–59.
Article
CAS
PubMed
Google Scholar
Fukuda K, Mori K, Hasegawa N, Nasu K, Ishige K, Okamoto Y, et al. Safety margin of radiofrequency ablation for hepatocellular carcinoma: a prospective study using magnetic resonance imaging with superparamagnetic iron oxide. Jpn J Radiol. 2019;37(7):555–63.
Article
CAS
PubMed
Google Scholar
Zhang H, Deng L, Liu H, Mai S, Cheng Z, Shi G, et al. Enhanced fluorescence/magnetic resonance dual imaging and gene therapy of liver cancer using cationized amylose nanoprobe. Mater Today Bio. 2022;13: 100220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Li J, Liu F, Feng L, Yu D, Zhang N. Theranostic polymeric micelles for the diagnosis and treatment of hepatocellular carcinoma. J Biomed Nanotechnol. 2015;11(4):613–22.
Article
CAS
PubMed
Google Scholar
Han Y, An Y, Jia G, Wang X, He C, Ding Y, et al. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Nanoscale. 2018;10(14):6511–23.
Article
CAS
PubMed
Google Scholar
Zhao H, Wu M, Zhu L, Tian Y, Wu M, Li Y, et al. Cell-penetrating peptide-modified targeted drug-loaded phase-transformation lipid nanoparticles combined with low-intensity focused ultrasound for precision theranostics against hepatocellular carcinoma. Theranostics. 2018;8(7):1892–910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Shi S, Wu M, Shen W, Ren J, Mei Z. iRGD peptide-mediated liposomal nanoparticles with photoacoustic/ultrasound dual-modality imaging for precision theranostics against hepatocellular carcinoma. IJN. 2021;16:6455–75.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Ren L, Li S, Li W, Zheng X, Yang Y, et al. The biology, function, and applications of exosomes in cancer. Acta pharmaceutica Sinica B. 2021;11(9):2783–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials. 2011;32(22):5167–76.
Article
CAS
PubMed
Google Scholar
Shi Z, Chu C, Zhang Y, Su Z, Lin H, Pang X, et al. Self-assembled metal-organic nanoparticles for multimodal imaging-guided photothermal therapy of hepatocellular carcinoma. J Biomed Nanotechnol. 2018;14(11):1934–43.
Article
CAS
PubMed
Google Scholar
Najahi-Missaoui W, Arnold RD. Safe nanoparticles: are we there yet? IJMS. 2020. https://doi.org/10.3390/ijms22010385.
Article
PubMed
PubMed Central
Google Scholar
Pan L, Liu J, He Q, Shi J. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater. 2014;26(39):6742–8.
Article
CAS
PubMed
Google Scholar
Liu X, Sun Y, Xu S, Gao X, Kong F, Xu K, et al. Homotypic cell membrane-cloaked biomimetic nanocarrier for the targeted chemotherapy of hepatocellular carcinoma. Theranostics. 2019;9(20):5828–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang YJ, Yu H, Feng G, Zhuang L, Xi W, Ma M, et al. High-performance poly(lactic-co-glycolic acid)-magnetic microspheres prepared by rotating membrane emulsification for transcatheter arterial embolization and magnetic ablation in VX(2) liver tumors. ACS Appl Mater Interfaces. 2017;9(50):43478–89.
Article
CAS
PubMed
Google Scholar
Mondal J, Khuda-Bukhsh AR. Cisplatin and farnesol co-encapsulated PLGA nano-particles demonstrate enhanced anti-cancer potential against hepatocellular carcinoma cells in vitro. Mol Biol Rep. 2020;47(5):3615–28.
Article
CAS
PubMed
Google Scholar
Yao Q, Dai Z, Hoon Choi J, Kim D. Building stable MMP2-responsive multifunctional polymeric micelles by an all-in-one polymer-lipid conjugate for tumor-targeted intracellular drug delivery. ACS Appl Mater Interfaces. 2017;9(38):32520–33.
Article
CAS
PubMed
Google Scholar
Jin X, Sun P, Tong G, Zhu X. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis. Biomaterials. 2018;178:738–50.
Article
CAS
PubMed
Google Scholar
Zhuang W, Xu Y, Li G. Redox and pH dual-responsive polymeric micelles with aggregation-induced emission feature for cellular imaging and chemotherapy. ACS Appl Mater Interfaces. 2018;10(22):18489–98.
Article
CAS
PubMed
Google Scholar
Wang W, Ding Y, Xu H, Xu C, Tong Z, Zhang S, et al. A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Adv Sci. 2020;7(17):2001060.
Article
Google Scholar
Chen X, Song L, Li X, Zhang L, Li L, Zhang X, Wang C. Co-delivery of hydrophilic/hydrophobic drugs by multifunctional yolk-shell nanoparticles for hepatocellular carcinoma theranostics. Chem Eng J. 2020. https://doi.org/10.1016/j.cej.2020.124416.
Article
PubMed
PubMed Central
Google Scholar
Kalluri R. The biology and function of exosomes in cancer. J Clin Investig. 2016;126(4):1208–15.
Article
PubMed
PubMed Central
Google Scholar
Li C, Xu X. Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma. CMLS. 2019;76(21):4203–19.
Article
CAS
PubMed
Google Scholar
Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.
Article
CAS
PubMed
Google Scholar
Qi Q, Moore JT, Kumar D, Rios-Colon L, Arthur E, Niture S. The role of exosomes in the crosstalk between adipocytes and liver cancer cells. Cells. 2020. https://doi.org/10.3390/cells9091988.
Article
PubMed
PubMed Central
Google Scholar
Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 2019;12(1):53.
Article
PubMed
PubMed Central
Google Scholar
Wang T, Feng B, Wang R, Chu X, Abudoureyimu M, Zhou H, et al. Recent progress in the emerging role of exosome in hepatocellular carcinoma. Cell Prolif. 2019;52(2):e12541.
Article
PubMed
Google Scholar
He R, Wang Z, Shi W, Yu L, Xia H, Huang Z, et al. Exosomes in hepatocellular carcinoma microenvironment and their potential clinical application value. Biomed Pharmacother. 2021;138:111529.
Article
CAS
PubMed
Google Scholar
Ge Y, Mu W, Ba Q, Li J, Jiang Y, Xia Q, et al. Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application. Cancer Lett. 2020;477:41–8.
Article
CAS
PubMed
Google Scholar
Loh XJ, Lee TC, Dou Q, Deen GR. Utilising inorganic nanocarriers for gene delivery. Biomaterials science. 2016;4(1):70–86.
Article
CAS
PubMed
Google Scholar
Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol. 2003;62(1):27–34.
Article
CAS
PubMed
Google Scholar
Titze-de-Almeida SS, Brandão PRP, Faber I, Titze-de-Almeida R. Leading RNA interference therapeutics part 1: silencing hereditary transthyretin amyloidosis, with a focus on Patisiran. Mol Diagn Ther. 2020;24(1):49–59.
Article
CAS
PubMed
Google Scholar
Li C, Zhang W, Yang H, Xiang J, Wang X, Wang J. Integrative analysis of dysregulated lncRNA-associated ceRNA network reveals potential lncRNA biomarkers for human hepatocellular carcinoma. PeerJ. 2020;8: e8758.
Article
PubMed
PubMed Central
Google Scholar
Zhang X, Ng HLH, Lu A, Lin C, Zhou L, Lin G, et al. Drug delivery system targeting advanced hepatocellular carcinoma: Current and future. Nanomed Nanotechnol Biol Med. 2016;12(4):853–69.
Article
CAS
Google Scholar
Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155–61.
Article
CAS
PubMed
Google Scholar
Cai X, Weng S, Guo R, Lin L, Chen W, Zheng Z, et al. Ratiometric electrochemical immunoassay based on internal reference value for reproducible and sensitive detection of tumor marker. Biosens Bioelectron. 2016;81:173–80.
Article
CAS
PubMed
Google Scholar
Wang YL, Liu FR, Cao JT, Ren SW, Liu YM. Spatial-resolved dual-signal-output electrochemiluminescent ratiometric strategy for accurate and sensitive immunoassay. Biosens Bioelectron. 2018;102:525–30.
Article
CAS
PubMed
Google Scholar
Tang B, Wang J, Hutchison JA, Ma L, Zhang N, Guo H, et al. Ultrasensitive, multiplex raman frequency shift immunoassay of liver cancer biomarkers in physiological media. ACS Nano. 2016;10(1):871–9.
Article
CAS
PubMed
Google Scholar
Coleman RL, Herzog TJ, Chan DW, Munroe DG, Pappas TC, Smith A, et al. Am J Obstet Gynecol. 2016. https://doi.org/10.1016/j.ajog.2016.03.003.
Article
PubMed
PubMed Central
Google Scholar
Al-Ani INT, Al-Ani HA. Role of Micro-RNA in the regulation of cell polarization in hepatocellular carcinoma. Hum Gene Ther. 2022;33(5–6):301–8.
Article
CAS
PubMed
Google Scholar
Lee KM, Choi EJ, Kim IA. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol. 2011;101(1):171–6.
Article
CAS
PubMed
Google Scholar
de Wit S, van Dalum G, Lenferink AT, Tibbe AG, Hiltermann TJ, Groen HJ, et al. The detection of EpCAM(+) and EpCAM(-) circulating tumor cells. Sci Rep. 2015;5:12270.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Oishi N, Shimakami T, Yamashita T, Honda M, Murakami S, et al. Hepatitis B virus X protein induces hepatic stem cell-like features in hepatocellular carcinoma by activating KDM5B. World J Gastroenterol. 2017;23(18):3252–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piñero F, Dirchwolf M, Pessôa MG. Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells. 2020. https://doi.org/10.3390/cells9061370.
Article
PubMed
PubMed Central
Google Scholar
Minami Y, Nishida N, Kudo M. Therapeutic response assessment of RFA for HCC: contrast-enhanced US, CT and MRI. World J Gastroenterol. 2014;20(15):4160–6.
Article
PubMed
PubMed Central
Google Scholar
Li J, Wang J, Yu S, Yuan G, He S. Letter to the Editor: hepatocellular carcinoma surveillance in high-risk patients with cirrhosis: contrast-enhanced ultrasound may be a choice. Hepatology. 2020;71(1):392.
Article
PubMed
Google Scholar
Baroni S, Ruggiero MR, Bitonto V, Broche LM, Lurie DJ, Aime S, et al. In vivo assessment of tumour associated macrophages in murine melanoma obtained by low-field relaxometry in the presence of iron oxide particles. Biomaterials. 2020;236: 119805.
Article
CAS
PubMed
Google Scholar
Wang Z, Wu P, He Z, He H, Rong W, Li J, et al. Mesoporous silica nanoparticles with lactose-mediated targeting effect to deliver platinum(iv) prodrug for liver cancer therapy. J Mater Chem B. 2017;5(36):7591–7.
Article
CAS
PubMed
Google Scholar
Shao D, Li J, Zheng X, Pan Y, Wang Z, Zhang M, et al. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials. 2016;100:118–33.
Article
CAS
PubMed
Google Scholar
Rahman M, Almalki WH, Alrobaian M, Iqbal J, Alghamdi S, Alharbi KS, et al. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opin Drug Deliv. 2021;18(4):489–513.
Article
CAS
PubMed
Google Scholar
Wu H, Xing H, Wu MC, Shen F, Chen Y, Yang T. Extracellular-vesicles delivered tumor-specific sequential nanocatalysts can be used for MRI-informed nanocatalytic Therapy of hepatocellular carcinoma. Theranostics. 2021;11(1):64–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dou J, Zhou Q, Ren X, Wu Q, Tang S, Zhou H, et al. Microwave responsive nanoplatform via P-selectin mediated drug delivery for treatment of hepatocellular carcinoma with distant metastasis. Nano Lett. 2019;19(5):2914–27.
Article
PubMed
Google Scholar
Gadzhimagomedova Z, Zolotukhin P, Kit O, Kirsanova D, Soldatov A. Nanocomposites for X-Ray photodynamic therapy. IJMS. 2020. https://doi.org/10.3390/ijms21114004.
Article
PubMed
PubMed Central
Google Scholar
Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for deep tumor treatment. Mini Rev Med Chem. 2021;21(6):677–88.
Article
CAS
PubMed
Google Scholar
Sebak AA, El-Shenawy BM, El-Safy S, El-Shazly M. From passive targeting to personalized nanomedicine: multidimensional insights on nanoparticles’ interaction with the tumor microenvironment. Curr Pharm Biotechnol. 2021;22(11):1444–65.
Article
CAS
PubMed
Google Scholar
Wang Y, Wang Z, Xu C, Tian H, Chen X. A disassembling strategy overcomes the EPR effect and renal clearance dilemma of the multifunctional theranostic nanoparticles for cancer therapy. Biomaterials. 2019;197:284–93.
Article
CAS
PubMed
Google Scholar
Zhang L, Zhang M, Zhou L, Han Q, Chen X, Li S, et al. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials. 2018;181:113–25.
Article
CAS
PubMed
Google Scholar
Miao L, Qi J, Zhao Q, Wu QN, Wei DL, Wei XL, et al. Targeting the STING pathway in tumor-associated macrophages regulates innate immune sensing of gastric cancer cells. Theranostics. 2020;10(2):498–515.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olesch C, Ringleb J, Ören B, Döring C, Savai R, Jung M, et al. S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J Exp Med. 2017;214(9):2695–713.
Article
PubMed
PubMed Central
Google Scholar
Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy. 2017;9(3):289–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang K, Meng X, Yang Z, Dong H, Zhang X. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials. 2020;258: 120278.
Article
CAS
PubMed
Google Scholar
Xu W, Wang J, Li Q, Wu C, Wu L, Li K, et al. Cancer cell membrane-coated nanogels as a redox/pH dual-responsive drug carrier for tumor-targeted therapy. J Mater Chem B. 2021;9(38):8031–7.
Article
CAS
PubMed
Google Scholar
Ding Y, Sun Z, Tong Z, Zhang S, Min J, Xu Q, et al. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics. 2020;10(12):5195–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma W, Yu M, Li Z, Li C, Liu H, Xiao H, et al. illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-i/ii imaging and glutathione scavenging. ACS Nano. 2020;14(10):13536–47.
Article
PubMed
Google Scholar
Yang Y, Liu X, Ma W, Xu Q, Chen G, Wang Y, et al. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials. 2021;265: 120456.
Article
CAS
PubMed
Google Scholar
Wang X, Wang ZY, Xie Z, Sun T, Han J, Liu S. Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer. ACS Nano. 2019;13(6):7345–54.
Article
PubMed
Google Scholar
Zhang Y, Wang X. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat Commun. 2020;11(1):5421.
Article
PubMed
PubMed Central
Google Scholar
Lyu J, Wang Z, Xu W, Wang J, Li Q, Wu C, et al. Cancer cell membrane-coated nanogels as a redox/pH dual-responsive drug carrier for tumor-targeted therapy. J Mater Chem. 2021;9(38):8031–7.
Google Scholar
Day NB, Wixson WC, Shields CWT. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B. 2021;11(8):2172–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Gao A, Chen B, Gao J, Zhou F, Saeed M, et al. Sheddable prodrug vesicles combating adaptive immune resistance for improved photodynamic immunotherapy of cancer. Nano Lett. 2020;20(1):353–62.
Article
PubMed
Google Scholar
Hu X, Chen Z, Jin AJ, Yang Z, Gan D, Wu A, et al. Rational design of all-organic nanoplatform for highly efficient MR/NIR-II imaging-guided cancer phototheranostics. Small. 2021;17(12):e2007566.
Article
PubMed
Google Scholar
Niessen C, Thumann S, Beyer L, Pregler B, Kramer J, Lang S, et al. Percutaneous irreversible electroporation: long-term survival analysis of 71 patients with inoperable malignant hepatic tumors. Sci Rep. 2017;7:43687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Z, Wen Y, Xiong L, Yang T, Zhao P, Tan L, et al. Intratumoral H(2)O(2)-triggered release of CO from a metal carbonyl-based nanomedicine for efficient CO therapy. Chem Commun (Camb). 2017;53(40):5557–60.
Article
CAS
Google Scholar
Sung YC, Jin PR, Chu LA. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat Nanotechnol. 2019;14(12):1160–9.
Article
CAS
PubMed
Google Scholar
Hu Y, Lv T, Ma Y, Xu J, Zhang Y. Nanoscale coordination polymers for synergistic no and chemodynamic therapy of liver cancer. Nano Lett. 2019;19(4):2731–8.
Article
CAS
PubMed
Google Scholar
Cui Y, Xu J, Cheng M, Liao X, Peng S. Review of CRISPR/Cas9 sgRNA design tools. Interdiscip Sci. 2018;10(2):455–65.
Article
CAS
PubMed
Google Scholar
Sen CK, Roy S. miRNA: licensed to kill the messenger. DNA Cell Biol. 2007;26(4):193–4.
Article
CAS
PubMed
Google Scholar
Kong H, Ju E, Yi K, Xu W, Lao YH, Cheng D, et al. Advanced nanotheranostics of CRISPR/Cas for viral hepatitis and hepatocellular carcinoma. Adv Sci. 2021;8(24):e2102051.
Article
Google Scholar
Mou H, Ozata DM, Smith JL, Sheel A, Kwan SY, Hough S, et al. CRISPR-SONIC: targeted somatic oncogene knock-in enables rapid in vivo cancer modeling. Genome Med. 2019;11(1):21.
Article
PubMed
PubMed Central
Google Scholar
Liu S, Cheng Q. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater. 2021;20(5):701–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlson-Stevermer J, Kelso R. CRISPRoff enables spatio-temporal control of CRISPR editing. Nat Commun. 2020;11(1):5041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discovery. 2009;8(2):129–38.
Article
CAS
PubMed
Google Scholar
Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9(3):347–51.
Article
CAS
PubMed
Google Scholar
Liu H, Chen Z, Jin W, Barve A, Wan YY, Cheng K. Silencing of α-complex protein-2 reverses alcohol- and cytokine-induced fibrogenesis in hepatic stellate cells. Liver research. 2017;1(1):70–9.
Article
PubMed
PubMed Central
Google Scholar
Jing Y, Shishkov A, Ponnappa BC. Inhibition of tumor necrosis factor alpha secretion in rat Kupffer cells by siRNA: in vivo efficacy of siRNA-liposomes. Biochem Biophys Acta. 2008;1780(1):34–40.
Article
CAS
PubMed
Google Scholar
Shi W, Su L, Li Q, Sun L, Lv J, Li J, et al. Suppression of toll-like receptor 2 expression inhibits the bioactivity of human hepatocellular carcinoma. Tumour Biol. 2014;35(10):9627–37.
Article
CAS
PubMed
Google Scholar
Mehdizadeh A, Somi MH, Darabi M, Farajnia S, Akbarzadeh A, Montazersaheb S, et al. Liposome-mediated RNA interference delivery against Erk1 and Erk2 does not equally promote chemosensitivity in human hepatocellular carcinoma cell line HepG2. Artif Cells Nanomed Biotechnol. 2017;45(8):1612–9.
Article
CAS
PubMed
Google Scholar
Zhao Y, Jian W, Gao W, Zheng YX, Wang YK, Zhou ZQ, et al. RNAi silencing of c-Myc inhibits cell migration, invasion, and proliferation in HepG2 human hepatocellular carcinoma cell line: c-Myc silencing in hepatocellular carcinoma cell. Cancer Cell Int. 2013;13(1):23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee YH, Judge AD, Seo D, Kitade M, Gómez-Quiroz LE, Ishikawa T, et al. Molecular targeting of CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response. Oncogene. 2011;30(40):4175–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Xia H, Zhang X, Karthik S, Pratap SV, Ooi LL, et al. ECT2 regulates the Rho/ERK signalling axis to promote early recurrence in human hepatocellular carcinoma. J Hepatol. 2015;62(6):1287–95.
Article
CAS
PubMed
Google Scholar
Li K, Lin SY, Brunicardi FC, Seu P. Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Can Res. 2003;63(13):3593–7.
CAS
Google Scholar
Farra R, Dapas B, Pozzato G, Giansante C, Heidenreich O, Uxa L, et al. Serum response factor depletion affects the proliferation of the hepatocellular carcinoma cells HepG2 and JHH6. Biochimie. 2010;92(5):455–63.
Article
CAS
PubMed
Google Scholar
Bogorad RL, Yin H, Zeigerer A, Nonaka H, Ruda VM, Zerial M, et al. Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nat Commun. 2014;5:3869.
Article
CAS
PubMed
Google Scholar
Sass G, Leukel P, Schmitz V, Raskopf E, Ocker M, Neureiter D, et al. Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int J Cancer. 2008;123(6):1269–77.
Article
CAS
PubMed
Google Scholar
Raskopf E, Vogt A, Sauerbruch T, Schmitz V. siRNA targeting VEGF inhibits hepatocellular carcinoma growth and tumor angiogenesis in vivo. J Hepatol. 2008;49(6):977–84.
Article
CAS
PubMed
Google Scholar
Xie B, Xing R, Chen P, Gou Y, Li S, Xiao J, et al. Down-regulation of c-Met expression inhibits human HCC cells growth and invasion by RNA interference. J Surg Res. 2010;162(2):231–8.
Article
CAS
PubMed
Google Scholar
Gao J, Yu Y, Zhang Y, Song J, Chen H, Li W, et al. EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma. Biomaterials. 2012;33(1):270–82.
Article
CAS
PubMed
Google Scholar
Kang D, Han Z, Oh GH, Joo Y, Choi HJ, Song JJ. Down-regulation of TGF-β expression sensitizes the resistance of hepatocellular carcinoma cells to sorafenib. Yonsei Med J. 2017;58(5):899–909.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu Q, Liu ZY, Chen Q, Lin JS. Mcl-1 as a potential therapeutic target for human hepatocelluar carcinoma. J Huazhong Univ Sci Technolog Med Sci. 2016;36(4):494–500.
Article
CAS
PubMed
Google Scholar
Kuntzen C, Sonuc N, De Toni EN, Opelz C, Mucha SR, Gerbes AL, et al. Inhibition of c-Jun-N-terminal-kinase sensitizes tumor cells to CD95-induced apoptosis and induces G2/M cell cycle arrest. Can Res. 2005;65(15):6780–8.
Article
CAS
Google Scholar
Lu WJ, Chua MS, So SK. Suppressing N-Myc downstream regulated gene 1 reactivates senescence signaling and inhibits tumor growth in hepatocellular carcinoma. Carcinogenesis. 2014;35(4):915–22.
Article
CAS
PubMed
Google Scholar
Zhang K, Chen J, Chen D, Huang J, Feng B, Han S, et al. Aurora-A promotes chemoresistance in hepatocelluar carcinoma by targeting NF-kappaB/microRNA-21/PTEN signaling pathway. Oncotarget. 2014;5(24):12916–35.
Article
PubMed
PubMed Central
Google Scholar
Morales A, París R, Villanueva A, Llacuna L, García-Ruiz C, Fernández-Checa JC. Pharmacological inhibition or small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene. 2007;26(6):905–16.
Article
CAS
PubMed
Google Scholar
Kanda T, Yokosuka O, Imazeki F, Arai M, Saisho H. Enhanced sensitivity of human hepatoma cells to 5-fluorouracil by small interfering RNA targeting Bcl-2. DNA Cell Biol. 2005;24(12):805–9.
Article
CAS
PubMed
Google Scholar
Takahashi Y, Nishikawa M, Takakura Y. Inhibition of tumor cell growth in the liver by RNA interference-mediated suppression of HIF-1alpha expression in tumor cells and hepatocytes. Gene Ther. 2008;15(8):572–82.
Article
CAS
PubMed
Google Scholar
Lu X, Qin W, Li J, Tan N, Pan D, Zhang H, et al. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Can Res. 2005;65(15):6843–9.
Article
CAS
Google Scholar
Salvi A, Arici B, De Petro G, Barlati S. Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells. Mol Cancer Ther. 2004;3(6):671–8.
Article
CAS
PubMed
Google Scholar
Li C, Wang J, Zhang H, Zhu M, Chen F, Hu Y, et al. Interferon-stimulated gene 15 (ISG15) is a trigger for tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget. 2014;5(18):8429–41.
Article
PubMed
PubMed Central
Google Scholar
Perche F, Biswas S, Patel NR, Torchilin VP. Hypoxia-responsive copolymer for siRNA delivery. Methods Mol Biol. 2016;1372:139–62.
Article
CAS
PubMed
Google Scholar
Voutila J, Reebye V, Roberts TC, Protopapa P, Andrikakou P, Blakey DC, et al. Development and mechanism of small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for liver cancer. Mol Ther. 2017;25(12):2705–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Setten RL, Lightfoot HL, Habib NA, Rossi JJ. Development of MTL-CEBPA: small activating RNA drug for hepatocellular carcinoma. Curr Pharm Biotechnol. 2018;19(8):611–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lloyd P, Felstead S, Vasara J, Habib R, Sarker D, Plummer R, et al. MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label phase I trial. Clin Cancer Res. 2020;26(15):3936–46.
Article
PubMed
Google Scholar
Xiao Y, Chen J. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat Commun. 2022;13(1):758.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C, Yin M, Xu G, Lin WJ, Chen J, Zhang Y, et al. Biodegradable polymers as a noncoding mirna nanocarrier for multiple targeting therapy of human hepatocellular carcinoma. Adv Healthcare Mater. 2019;8(8): e1801318.
Article
Google Scholar
Hammond SM, Aartsma-Rus A. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med. 2021;13(4):e13243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv H, Wang T, Ma F, Zhang K, Gao T, Pei R. Aptamer-functionalized targeted siRNA delivery system for tumor immunotherapy. Biomed Mater. 2022. https://doi.org/10.1088/1748-605X/ac5415.
Article
PubMed
Google Scholar
Chen Y, Chen HN, Wang K, Zhang L, Huang Z, Liu J, et al. Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma. J Hepatol. 2019;70(1):66–77.
Article
CAS
PubMed
Google Scholar
Shamay Y, Shah J, Işık M, Mizrachi A, Leibold J, Tschaharganeh DF, et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat Mater. 2018;17(4):361–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deshpande S, Spoelstra WK, van Doorn M, Kerssemakers J, Dekker C. Mechanical division of cell-sized liposomes. ACS Nano. 2018;12(3):2560–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohamed NK, Hamad MA, Hafez MZ, Wooley KL, Elsabahy M. Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. Int J Cancer. 2017;140(7):1475–84.
Article
CAS
PubMed
Google Scholar
Lu J, Wang J, Ling D. Surface engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small. 2018. https://doi.org/10.1002/smll.201702037.
Article
PubMed
PubMed Central
Google Scholar