World Health Organization. Coronavirus disease (COVID-19) outbreak situation. 2022. https://covid19.who.int/.
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.
Article
Google Scholar
Jin YH, Cai L, Cheng ZS, Cheng H, Deng T, Fan YP, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res. 2020;7(1):4.
CAS
Google Scholar
Wang YX, Zhang Y, Chen JB, Wang MJ, Zhang T, Luo WX, et al. Detection of SARS-CoV-2 and its mutated variants via CRISPR-Cas13-based transcription amplification. Anal Chem. 2021;93(7):3393–402.
Article
CAS
Google Scholar
Liu JJ, Liu Y, Xia HJ, Zou J, Weaver SC, Swanson KA, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature. 2021;596(7871):273–5.
Article
CAS
Google Scholar
Wang PF, Nair MS, Liu LH, Iketani S, Luo Y, Guo YC, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593(7857):130–5.
Article
CAS
Google Scholar
Collier DA, De Marco A, Ferreira I, Meng B, Datir RP, Walls AC, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021;593(7857):136–41.
Article
CAS
Google Scholar
Wang ZJ, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after Infection. Nature. 2021;595(7867):426–31.
Article
CAS
Google Scholar
Chen R, Ren CP, Liu M, Ge XP, Qu MS, Zhou XB, et al. Early detection of SARS-CoV-2 seroconversion in humans with aggregation-induced near-infrared emission nanoparticle-labeled lateral flow immunoassay. ACS Nano. 2021;15(5):8996–9004.
Article
CAS
Google Scholar
Wang CW, Yang XS, Gu B, Liu HF, Zhou ZH, Shi LL, et al. Sensitive and simultaneous detection of SARS-CoV-2-specific IgM/IgG using lateral flow immunoassay based on dual-mode quantum dot nanobeads. Anal Chem. 2020;92(23):15542–9.
Article
CAS
Google Scholar
Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020;26(7):1033–6.
Article
CAS
Google Scholar
Beavis KG, Matushek SM, Abeleda APF, Bethel C, Hunt C, Gillen S, et al. Evaluation of the EUROIMMUN anti-SARS-CoV-2 ELISA assay for detection of IgA and IgG antibodies. J Clin Virol. 2020;129: 104468.
Article
CAS
Google Scholar
Soleimani R, Khourssaji M, Gruson D, Rodriguez-Villalobos H, Berghmans M, Belkhir L, et al. Clinical usefulness of fully automated chemiluminescent immunoassay for quantitative antibody measurements in COVID-19 patients. J Med Virol. 2021;93(3):1465–77.
Article
CAS
Google Scholar
Shao LJ, Shen LH, Wang HB, Xu XP, Lu XD, Zhu YX, et al. Serological chemiluminescence immunoassay for the diagnosis of SARS-CoV-2 infection. J Clin Lab Anal. 2020;34(10): e23466.
CAS
Google Scholar
Suligoi B, Galli C, Massi M, Di Sora F, Sciandra M, Pezzotti P, et al. Precision and accuracy of a procedure for detecting recent human immunodeficiency virus infections by calculating the antibody avidity index by an automated immunoassay-based method. J Clin Microbiol. 2002;40(11):4015–20.
Article
CAS
Google Scholar
Nguyen THT, Clapham HE, Phung KL, Nguyen TK, DInh TT, Nguyen THQ, et al. Methods to discriminate primary from secondary dengue during acute symptomatic infection. BMC Infect Dis. 2018;18(1):375.
Article
Google Scholar
Lai CC, Liu YH, Wang CY, Wang YH, Hsueh SC, Yen MY, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–12.
Article
CAS
Google Scholar
Bauer G. The variability of the serological response to SARS-Corona virus-2: potential resolution of ambiguity through determination of avidity (functional affinity). J Med Virol. 2021;93(1):311–22.
Article
CAS
Google Scholar
Abdulhalim I. Coupling configurations between extended surface electromagnetic waves and localized surface plasmons for ultrahigh field enhancement. Nanophotonics. 2018;7(12):1891–916.
Article
Google Scholar
Abdulhalim I. Plasmonic sensing using metallic nano-sculptured thin films. Small. 2014;10(17):3499–514.
Article
CAS
Google Scholar
Srivastava SK, Grüner C, Hirsch D, Rauschenbach B, Abdulhalim I. Enhanced intrinsic fluorescence from carboxidized nano-sculptured thin films of silver and their application for label free dual detection of glycated hemoglobin. Opt Express. 2017;25(5):4761–72.
Article
CAS
Google Scholar
Li A, Isaacs S, Abdulhalim I, Li SZ. Ultrahigh enhancement of electromagnetic fields by exciting localized with extended surface plasmons. J Phys Chem C. 2015;119(33):19382–9.
Article
CAS
Google Scholar
Abutoama M, Bajaj A, Li D, Wang YW, Jiang L, Abdulhalim I. Resonant modes of reflecting gratings engineered for multimodal sensing. APL Photon. 2020;5(7): 076108.
Article
CAS
Google Scholar
Shrivastav AM, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol. 2021;4(1):70.
Article
CAS
Google Scholar
Tabakman SM, Lau L, Robinson JT, Price J, Sherlock SP, Wang HL, et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun. 2011;2:466.
Article
Google Scholar
Koh B, Li XY, Zhang B, Yuan B, Lin Y, Antaris AL, et al. Visible to near-infrared fluorescence enhanced cellular imaging on plasmonic gold chips. Small. 2016;12(4):457–65.
Article
CAS
Google Scholar
Li XY, Kuznetsova T, Cauwenberghs N, Wheeler M, Maecker H, Wu JC, et al. Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proc Natl Acad Sci U S A. 2017;114(27):7089–94.
Article
CAS
Google Scholar
Liu TC, Hsiung J, Zhao S, Kost J, Sreedhar D, Hanson CV, et al. Quantification of antibody avidities and accurate detection of SARS-CoV-2 antibodies in serum and saliva on plasmonic substrates. Nat Biomed Eng. 2020;4(12):1188–96.
Article
CAS
Google Scholar
Cao YL, Wang J, Jian FC, Xiao TH, Song WL, Yisimayi A, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature. 2022;602(7898):657–63.
Article
CAS
Google Scholar
Zou J, Xia HJ, Xie XP, Kurhade C, Machado RRG, Weaver SC, et al. Neutralization against omicron SARS-CoV-2 from previous non-Omicron infection. Nat Commun. 2022;13(1):852.
Article
CAS
Google Scholar
Wabl M, Cascalho M, Steinberg C. Hypermutation in antibody affinity maturation. Curr Opin Immunol. 1999;11(2):186–9.
Article
CAS
Google Scholar
Hurlburt NK, Seydoux E, Wan YH, Edara VV, Stuart AB, Feng JL, et al. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nat Commun. 2020;11(1):5413.
Article
Google Scholar
Vollmers HP, Brändlein S. Natural IgM antibodies: from parias to parvenus. Histol Histopathol. 2006;21(12):1355–6.
CAS
Google Scholar
Boes M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol. 2000;37(18):1141–9.
Article
CAS
Google Scholar
Suryawanshi RK, Chen IP, Ma TC, Syed AM, Brazer N, Saldhi P, et al. Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination. Nature. 2022;607(7918):351–5.
Article
CAS
Google Scholar
Liu LH, Iketani S, Guo YC, Chan JFW, Wang M, Liu LY, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 2022;602(7898):676–81.
Article
CAS
Google Scholar
Bekliz M, Adea K, Vetter P, Eberhardt CS, Hosszu-Fellous K, Vu DL, et al. Neutralization capacity of antibodies elicited through homologous or heterologous infection or vaccination against SARS-CoV-2 VOCs. Nat Commun. 2022;13(1):3840.
Article
CAS
Google Scholar
Aydar Y, Sukumar S, Szakal AK, Tew JG. The influence of immune complex-bearing follicular dendritic cells on the IgM response, Ig class switching, and production of high affinity IgG. J Immunol. 2005;174(9):5358–66.
Article
CAS
Google Scholar
Tseng CE, Donato FD, Buyon JP. Stability of immunoblot profile of anti-SSA/Ro-SSB/La antibodies over time in mothers whose children have neonatal lupus. Lupus. 1996;5(3):212–5.
Article
CAS
Google Scholar
Li QQ, Nie JH, Wu JJ, Zhang L, Ding RX, Wang HX, et al. SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. 2021;184(9):2362–71.
Article
CAS
Google Scholar
Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol. 2022;7(8):1161–79.
Article
CAS
Google Scholar
Tang JJ, Novak T, Hecker JL, Grubbs G, Zahra FT, Bellusci L, et al. Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C. Nat Commun. 2022;13(1):2979.
Article
CAS
Google Scholar
Pérez-Then E, Lucas C, Monteiro VS, Miric M, Brache V, Cochon L, et al. Neutralizing antibodies against the SARS-CoV-2 delta and Omicron variants following heterologous CoronaVac plus BNT162b2 booster vaccination. Nat Med. 2022;28(3):481–5.
Article
Google Scholar